Skip to main content

Generating the Logicome of a Biological Network

  • Conference paper
  • First Online:
Algorithms for Computational Biology (AlCoB 2016)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9702))

Included in the following conference series:

Abstract

There has been much progress in recent years towards building larger and larger computational models for biochemical networks, driven by advances both in high throughput data techniques, and in computational modeling and simulation. Such models are often given as unstructured lists of species and interactions between them, making it very difficult to understand the logicome of the network, i.e. the logical connections describing the activation of its key nodes. The problem we are addressing here is to predict whether these key nodes will get activated at any point during a fixed time interval (even transiently), depending on their initial activation status. We solve the problem in terms of a Boolean network over the key nodes, that we call the logicome of the biochemical network. The main advantage of the logicome is that it allows the modeler to focus on a well-chosen small set of key nodes, while abstracting away from the rest of the model, seen as biochemical implementation details of the model. We validate our results by showing that the interpretation of the obtained logicome is in line with literature-based knowledge of the EGFR signalling pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  1. Akutsu, T., Miyano, S., Kuhara, S.: Identification of genetic networks from a small number of gene expression patterns under the Boolean network model. In: Somogyi, R., Kitano, H. (eds.) Pacific Symposium on Biocomputing, vol. 4, pp. 17–28. Citeseer (1999)

    Google Scholar 

  2. Britton, D., Hutcheson, I.R., Knowlden, J.M., Barrow, D., Giles, M., McClelland, R.A., Gee, J.M., Nicholson, R.I.: Bidirectional cross talk between ER\(\alpha \) and EGFR signalling pathways regulates tamoxifen-resistant growth. Breast Cancer Res. Treat. 96(2), 131–146 (2006)

    Article  Google Scholar 

  3. Bruggeman, F.J., Westerhoff, H.V., Hoek, J.B., Kholodenko, B.N.: Modular response analysis of cellular regulatory networks. J. Theor. Biol. 218(4), 507–520 (2002)

    Article  MathSciNet  Google Scholar 

  4. Chaves, M., Sontag, E.D., Albert, R.: Methods of robustness analysis for Boolean models of gene control networks. IEEE Proc. Syst. Biol. 153(4), 154–167 (2006)

    Article  Google Scholar 

  5. Davidich, M.I., Bornholdt, S.: Boolean network model predicts cell cycle sequence of fission yeast. PloS ONE 3(2), e1672 (2008)

    Article  Google Scholar 

  6. Glass, L., Kauffman, S.A.: The logical analysis of continuous, non-linear biochemical control networks. J. Theor. Biol. 39(1), 103–129 (1973)

    Article  Google Scholar 

  7. Gong, Y., Zhao, X.: Shc-dependent pathway is redundant but dominant in mapk cascade activation by egf receptors: a modeling inference. FEBS Lett. 554(3), 467–472 (2003)

    Article  Google Scholar 

  8. Gratie, D.-E., Iancu, B., Petre, I.: ODE analysis of biological systems. In: Bernardo, M., de Vink, E., Di Pierro, A., Wiklicky, H. (eds.) SFM 2013. LNCS, vol. 7938, pp. 29–62. Springer, Heidelberg (2013)

    Chapter  MATH  Google Scholar 

  9. Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M., Xu, L., Mendes, P., Kummer, U.: COPASI - a complex pathway simulator. Bioinformatics 22(24), 3067–3074 (2006)

    Article  Google Scholar 

  10. Hornberg, J.J., Binder, B., Bruggeman, F.J., Schoeberl, B., Heinrich, R., Westerhoff, H.V.: Control of MAPK signalling: from complexity to what really matters. Oncogene 24(36), 5533–5542 (2005)

    Article  Google Scholar 

  11. Hwa, H.R.: A method for generating prime implicants of a Boolean expression. IEEE Trans. Comput. 23(6), 637–641 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  12. Janes, K.A., Yaffe, M.B.: Data-driven modelling of signal-transduction networks. Nat. Rev. Mol. Cell Biol. 7(11), 820–828 (2006)

    Article  Google Scholar 

  13. Kauffman, S.: Homeostasis and differentiation in random genetic control networks. Nature 224, 177–178 (1969)

    Article  Google Scholar 

  14. Klipp, E., Herwig, R., Kowald, A., Wierling, C., Lehrach, H.: Systems Biology in Practice: Concepts, Implementation and Application. Wiley, Weinheim (2008)

    Google Scholar 

  15. Le Novere, N.: Quantitative and logic modelling of molecular and gene networks. Nat. Rev. Genet. 16(3), 146–158 (2015)

    Article  Google Scholar 

  16. Liang, S., Fuhrman, S., Somogyi, R.: Reveal, a general reverse engineering algorithm for inference of genetic network architectures. In: Bryant, B., Milosavljevic, A., Somogyi, R. (eds.)Pacific Symposium on Biocomputing, vol. 3, pp. 18–29. Citeseer (1998)

    Google Scholar 

  17. Macklin, D.N., Ruggero, N.A., Covert, M.W.: The future of whole-cell modeling. Curr. Opin. Biotechnol. 28, 111–115 (2014)

    Article  Google Scholar 

  18. Martin, S., Zhang, Z., Martino, A., Faulon, J.: Boolean dynamics of genetic regulatory networks inferred from microarray time series data. Bioinformatics 23(7), 866–874 (2007)

    Article  Google Scholar 

  19. Morris, M.K., Saez-Rodriguez, J., Sorger, P.K., Lauffenburger, D.A.: Logic-based models for the analysis of cell signalling networks. Biochemistry 49(15), 3216–3224 (2010)

    Article  Google Scholar 

  20. Oda, K., Matsuoka, Y., Funahashi, A., Kitano, H.: A comprehensive pathway map of epidermal growth factor receptor signaling. Curr. Opin. Biotechnol. 1(1), 1–17 (2005)

    Google Scholar 

  21. Pantel, P., Pennacchiotti, M.: Espresso: Leveraging generic patterns for automatically harvesting semantic relations. In: Carpuat, M., Duh, K. (eds.) Proceedings of the 21st International Conference on Computational Linguistics and the 44th Annual Meeting of the Association for Computational Linguistics, Association for Computational Linguistics, pp. 113–120 (2006)

    Google Scholar 

  22. Pitkänen, E., Jouhten, P., Hou, J., Syed, M.F., Blomberg, P., Kludas, J., Oja, M., Holm, L., Penttilä, M., Rousu, J., Arvas, M.: Comparative genome-scale reconstruction of gapless metabolic networks for present and ancestral species. PLoS Comput. Biol. 10(2), 1–12 (2014)

    Article  Google Scholar 

  23. Rajalingam, K., Schreck, R., Rapp, U.R., Albert, V.: Ras oncogenes and their downstream targets. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 1773(8), 1177–1195 (2007)

    Article  Google Scholar 

  24. Rajasekharan, S., Raman, T.: Ras and ras mutations in cancer. Cent. Eur. J. Biol. 8(7), 609–624 (2013)

    Google Scholar 

  25. Roskoski, R.: Raf protein-serine/threonine kinases: structure and regulation. Biochem. Biophys. Res. Commun. 399(3), 313–317 (2010)

    Article  Google Scholar 

  26. Saez-Rodriguez, J., Alexopoulos, L.G., Epperlein, J., Samaga, R., Lauffenburger, D.A., Klamt, S., Sorger, P.K.: Discrete logic modelling as a means to link protein signalling networks with functional analysis of mammalian signal transduction. Mol. Syst. Biol. 5(1), 331 (2009)

    Article  Google Scholar 

  27. Saez-Rodriguez, J., Alexopoulos, L.G., Zhang, M., Morris, M.K., Lauffenburger, D.A., Sorger, P.K.: Comparing signaling networks between normal and transformed hepatocytes using discrete logical models. Cancer Res. 71(16), 5400–5411 (2011)

    Article  Google Scholar 

  28. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D., Müller, G.: Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20(118), 370–375 (2002)

    Article  Google Scholar 

  29. Sebastian, S., Settleman, J., Reshkin, S.J., Azzariti, A., Bellizzi, A., Paradiso, A.: The complexity of targeting EGFR signalling in cancer: from expression to turnover. Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1766(1), 120–139 (2006)

    Article  Google Scholar 

  30. Stötzel, C., Röblitz, S., Siebert, H.: Complementing ODE-based system analysis using Boolean networks derived from an Euler-like transformation. PLoS ONE 10(10), e0140954 (2015)

    Article  Google Scholar 

  31. Wang, D.Y., Cardelli, L., Phillips, A., Piterman, N., Fisher, J.: Computational modeling of the EGFR network elucidates control mechanisms regulating signal dynamics. BMC Syst. Biol. 3(1), 1–18 (2009)

    Article  Google Scholar 

  32. Yarden, Y.: The EGFR family and its ligands in human cancer: signalling mechanisms and therapeutic opportunities. Eur. J. Cancer 37(4), 3–8 (2001)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ion Petre .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Panchal, C., Azimi, S., Petre, I. (2016). Generating the Logicome of a Biological Network. In: Botón-Fernández, M., Martín-Vide, C., Santander-Jiménez, S., Vega-Rodríguez, M.A. (eds) Algorithms for Computational Biology. AlCoB 2016. Lecture Notes in Computer Science(), vol 9702. Springer, Cham. https://doi.org/10.1007/978-3-319-38827-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-38827-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-38826-7

  • Online ISBN: 978-3-319-38827-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics