Skip to main content

Allosteric Modulators of the Class A G Protein Coupled Receptors

  • Chapter
  • First Online:
Protein Targeting Compounds

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 917))

Abstract

Allosteric modulation is the regulation of a protein by binding of an effector molecule at the proteins allosteric site (a site other than that of the endogenous ligand). Allosteric modulators, by virtue of the fact that they may stabilize different global conformations of a receptor, have the potential to disrupt protein-protein interactions of very large proteins and elicit diverse functional responses. The existence of ligands that allosterically modulate the G protein receptor (GPCR) functions provides both challenges and opportunities for drug development campaigns. A number of therapeutic advantages of allosteric modulators over classic orthosteric ligands were proposed, involving nature of response, improved selectivity and ligand-directed signaling. In this review I discuss various aspects of allosteric modulation of GPCRs, which arise from the interactions of receptors with synthetic or endogenous small molecules, ions, lipids and diverse proteins. Detection and quantification of allosteric modulation will be also addressed. In the conclusion I will present future opportunities and challenges in the development of allosteric modulators as therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fredriksson R, Lagerström MC, Lundin L-G, Schiöth HB (2003) The G-protein-coupled receptors in the human genome form five main families. Phylogenetic analysis, paralogon groups, and fingerprints. Mol Pharmacol 63:1256–1272

    Article  CAS  PubMed  Google Scholar 

  2. Lagerström MC, Schiöth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    Article  PubMed  CAS  Google Scholar 

  3. Christopoulos A, Kenakin T (2002) G protein-coupled receptor allosterism and complexing. Pharmacol Rev 54:323–374

    Article  CAS  PubMed  Google Scholar 

  4. Overington JP, Al-Lazikani B, Hopkins AL (2006) How many drug targets are there? Nat Rev Drug Discov 5:993–996

    Article  CAS  PubMed  Google Scholar 

  5. Hurowitz EH, Melnyk JM, Chen YJ, Kouros-Mehr H, Simon MI, Shizuya H (2000) Genomic characterization of the human heterotrimeric G protein alpha, beta, and gamma subunit genes. DNA Res 7:111–120

    Article  CAS  PubMed  Google Scholar 

  6. Robishaw JD, Berlot CH (2004) Translating G protein subunit diversity into functional specificity. Curr Opin Cell Biol 16:206–209

    Article  CAS  PubMed  Google Scholar 

  7. Simon MI, Strathmann MP, Gautam N (1991) Diversity of G proteins in signal transduction. Science 252:802–808

    Article  CAS  PubMed  Google Scholar 

  8. Brandt DR, Ross EM (1985) GTPase activity of the stimulatory GTP-binding regulatory protein of adenylate cyclase, Gs. Accumulation and turnover of enzyme-nucleotide intermediates. J Biol Chem 260:266–272

    CAS  PubMed  Google Scholar 

  9. Dupré DJ, Robitaille M, Rebois RV, Hébert TE (2009) The role of Gbetagamma subunits in the organization, assembly, and function of GPCR signaling complexes. Annu Rev Pharmacol Toxicol 49:31–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Marinissen MJ, Gutkind JS (2001) G-protein-coupled receptors and signaling networks: emerging paradigms. Trends Pharmacol Sci 22:368–376

    Article  CAS  PubMed  Google Scholar 

  11. Shenoy SK, Lefkowitz RJ (2011) β-Arrestin-mediated receptor trafficking and signal transduction. Trends Pharmacol Sci 32:521–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Rajagopal S, Rajagopal K, Lefkowitz RJ (2010) Teaching old receptors new tricks: biasing seven-transmembrane receptors. Nat Rev Drug Discov 9:373–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kenakin T, Christopoulos A (2013) Signalling bias in new drug discovery: detection, quantification and therapeutic impact. Nat Rev Drug Discov 12:205–216

    Article  CAS  PubMed  Google Scholar 

  14. Kenakin T (2011) Functional selectivity and biased receptor signaling. J Pharmacol Exp Ther 336:296–302

    Article  CAS  PubMed  Google Scholar 

  15. Kenakin T, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang CIA, Lewis RJ (2013) Emerging opportunities for allosteric modulation of G-protein coupled receptors. Biochem Pharmacol 85:153–162

    Article  CAS  PubMed  Google Scholar 

  17. Kenakin T (2005) New concepts in drug discovery: collateral efficacy and permissive antagonism. Nat Rev Drug Discov 4:919–927

    Article  CAS  PubMed  Google Scholar 

  18. Kenakin TP (2009) ′7TM receptor allostery: putting numbers to shapeshifting proteins. Trends Pharmacol Sci 30:460–469

    Article  CAS  PubMed  Google Scholar 

  19. Bridges TM, Lindsley CW (2008) G-protein-coupled receptors: from classical modes of modulation to allosteric mechanisms. ACS Chem Biol 3:530–541

    Article  CAS  PubMed  Google Scholar 

  20. Leach K, Sexton PM, Christopoulos A (2007) Allosteric GPCR modulators: taking advantage of permissive receptor pharmacology. Trends Pharmacol Sci 28:382–389

    Article  CAS  PubMed  Google Scholar 

  21. Wootten D, Christopoulos A, Sexton PM (2013) Emerging paradigms in GPCR allostery: implications for drug discovery. Nat Rev Drug Discov 12:630–644

    Article  CAS  PubMed  Google Scholar 

  22. Spalding TA, Trotter C, Skjaerbaek N, Messier TL, Currier EA, Burstein ES, Li D, Hacksell U, Brann MR (2002) Discovery of an ectopic activation site on the M(1) muscarinic receptor. Mol Pharmacol 61:1297–1302

    Article  CAS  PubMed  Google Scholar 

  23. Moriconi A, Cesta MC, Cervellera MN, Aramini A, Coniglio S, Colagioia S, Beccari AR, Bizzarri C, Cavicchia MR, Locati M, Galliera E, Di Benedetto P, Vigilante P, Bertini R, Allegretti M (2007) Design of noncompetitive interleukin-8 inhibitors acting on CXCR1 and CXCR2. J Med Chem 50:3984–4002

    Article  CAS  PubMed  Google Scholar 

  24. Litschig S, Gasparini F, Rueegg D, Stoehr N, Flor PJ, Vranesic I, Prézeau L, Pin JP, Thomsen C, Kuhn R (1999) CPCCOEt, a noncompetitive metabotropic glutamate receptor 1 antagonist, inhibits receptor signaling without affecting glutamate binding. Mol Pharmacol 55:453–461

    CAS  PubMed  Google Scholar 

  25. May LT, Leach K, Sexton PM, Christopoulos A (2007) Allosteric modulation of G protein-coupled receptors. Annu Rev Pharmacol Toxicol 47:1–51

    Article  CAS  PubMed  Google Scholar 

  26. Watson C, Jenkinson S, Kazmierski W, Kenakin T (2005) The CCR5 receptor-based mechanism of action of 873140, a potent allosteric noncompetitive HIV entry inhibitor. Mol Pharmacol 67:1268–1282

    Article  CAS  PubMed  Google Scholar 

  27. Gnagey A, Ellis J (1996) Allosteric regulation of the binding of [3H]acetylcholine to m2 muscarinic receptors. Biochem Pharmacol 52:1767–1775

    Article  CAS  PubMed  Google Scholar 

  28. Gregory KJ, Sexton PM, Christopoulos A (2007) Allosteric modulation of muscarinic acetylcholine receptors. Curr Neuropharmacol 5:157–167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Jakubík J, Bacáková L, El-Fakahany EE, Tucek S (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol 52:172–179

    PubMed  Google Scholar 

  30. Avlani V, May LT, Sexton PM, Christopoulos A (2004) Application of a kinetic model to the apparently complex behavior of negative and positive allosteric modulators of muscarinic acetylcholine receptors. J Pharmacol Exp Ther 308:1062–1072

    Article  CAS  PubMed  Google Scholar 

  31. Christopoulos A, Lanzafame A, Ziegler A, Mitchelson F (1997) Kinetic studies of co-operativity at atrial muscarinic M2 receptors with an “infinite dilution” procedure. Biochem Pharmacol 53:795–800

    Article  CAS  PubMed  Google Scholar 

  32. Lanzafame A, Christopoulos A, Mitchelson F (1997) Three allosteric modulators act at a common site, distinct from that of competitive antagonists, at muscarinic acetylcholine M2 receptors. J Pharmacol Exp Ther 282:278–285

    CAS  PubMed  Google Scholar 

  33. Liu W, Chun E, Thompson AA, Chubukov P, Xu F, Katritch V, Han GW, Roth CB, Heitman LH, IJzerman AP, Cherezov V, Stevens RC (2012) Structural basis for allosteric regulation of GPCRs by sodium ions. Science 337:232–236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Conigrave AD, Quinn SJ, Brown EM (2000) L-amino acid sensing by the extracellular Ca2+-sensing receptor. Proc Natl Acad Sci U S A 97:4814–4819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Schetz JA, Sibley DR (1997) Zinc allosterically modulates antagonist binding to cloned D1 and D2 dopamine receptors. J Neurochem 68:1990–1997

    Article  CAS  PubMed  Google Scholar 

  36. Lanzafame AA, Guida E, Christopoulos A (2004) Effects of anandamide on the binding and signaling properties of M 1 muscarinic acetylcholine receptors. Biochem Pharmacol 68:2207–2219

    Article  CAS  PubMed  Google Scholar 

  37. Lane JR, Beukers MW, Mulder-Krieger T, IJzerman AP (2010) The endocannabinoid 2-arachidonylglycerol is a negative allosteric modulator of the human A3 adenosine receptor. Biochem Pharmacol 79:48–56

    Article  CAS  PubMed  Google Scholar 

  38. Rossi M, Dimida A, Ferrarini E, Silvano E, De Marco G, Agretti P, Aloisi G, Simoncini T, Di Bari L, Tonacchera M, Giorgi F, Maggio R (2009) Presence of a putative steroidal allosteric site on glycoprotein hormone receptors. Eur J Pharmacol 623:155–159

    Article  CAS  PubMed  Google Scholar 

  39. Cloëz-Tayarani I, Cardona A, Rousselle JC, Massot O, Edelman L, Fillion G (1997) Autoradiographic characterization of [3H]-5-HT-moduline binding sites in rodent brain and their relationship to 5-HT1B receptors. Proc Natl Acad Sci U S A 94:9899–9904

    Article  PubMed  PubMed Central  Google Scholar 

  40. Massot O, Rousselle JC, Fillion MP, Grimaldi B, Cloëz-Tayarani I, Fugelli A, Prudhomme N, Seguin L, Rousseau B, Plantefol M, Hen R, Fillion G (1996) 5-hydroxytryptamine-moduline, a new endogenous cerebral peptide, controls the serotonergic activity via its specific interaction with 5-hydroxytryptamine1B/1D receptors. Mol Pharmacol 50:752–762

    CAS  PubMed  Google Scholar 

  41. Goin JC, Borda E, Leiros CP, Storino R, Sterin-Borda L (1994) Identification of antibodies with muscarinic cholinergic activity in human Chagas’ disease: pathological implications. J Auton Nerv Syst 47:45–52

    Article  CAS  PubMed  Google Scholar 

  42. Leiros CP, Sterin-Borda L, Borda ES, Goin JC, Hosey MM (1997) Desensitization and sequestration of human m2 muscarinic acetylcholine receptors by autoantibodies from patients with Chagas’ disease. J Biol Chem 272:12989–12993

    Article  CAS  PubMed  Google Scholar 

  43. Pert CB, Pasternak G, Snyder SH (1973) Opiate agonists and antagonists discriminated by receptor binding in brain. Science 182:1359–1361

    Article  CAS  PubMed  Google Scholar 

  44. Katritch V, Fenalti G, Abola EE, Roth BL, Cherezov V, Stevens RC (2014) Allosteric sodium: a key co-factor in class A GPCR signaling. Trends Biochem Sci 39(5):233–244

    Google Scholar 

  45. Gutiérrez-de-Terán H, Massink A, Rodríguez D, Liu W, Han GW, Joseph JS, Katritch I, Heitman LH, Xia L, Ijzerman AP, Cherezov V, Katritch V, Stevens RC (2013) The role of a sodium ion binding site in the allosteric modulation of the A2A adenosine G protein-coupled receptor. Structure 21:2175–2185

    Article  PubMed  CAS  Google Scholar 

  46. Gao ZG, Melman N, Erdmann A, Kim SG, Müller CE, IJzerman AP, Jacobson KA (2003) Differential allosteric modulation by amiloride analogues of agonist and antagonist binding at A1 and A3 adenosine receptors. Biochem Pharmacol 65:525–534

    Article  CAS  PubMed  Google Scholar 

  47. Tsai BIES, Lefkowitz RJ (1978) Agonist-specific effects of monovalent and divalent cations on adenylate cyclase-coupled alpha adrenergic receptors in rabbit platelets. Mol Pharmacol 14:540–548

    CAS  PubMed  Google Scholar 

  48. Horstman DA, Brandon S, Wilson AL, Guyer CA, Cragoe EJ, Limbird LE (1990) An aspartate conserved among G-protein receptors confers allosteric regulation of alpha 2-adrenergic receptors by sodium. J Biol Chem 265:21590–21595

    CAS  PubMed  Google Scholar 

  49. Ceresa BP, Limbird LE (1994) Mutation of an aspartate residue highly conserved among G-protein- coupled receptors results in nonreciprocal disruption of alpha 2- adrenergic receptor-G-protein interactions. A negative charge at amino acid residue 79 forecasts alpha 2A-adrenergic recep. J Biol Chem 269:29557–29564

    CAS  PubMed  Google Scholar 

  50. Neve KA (1991) Regulation of dopamine D2 receptors by sodium and pH. Mol Pharmacol 39:570–578

    CAS  PubMed  Google Scholar 

  51. Neve KA, Cumbay MG, Thompson KR, Yang R, Buck DC, Watts VJ, DuRand CJ, Teeter MM (2001) Modeling and mutational analysis of a putative sodium-binding pocket on the dopamine D2 receptor. Mol Pharmacol 60:373–381

    CAS  PubMed  Google Scholar 

  52. Martin S, Botto JM, Vincent JP, Mazella J (1999) Pivotal role of an aspartate residue in sodium sensitivity and coupling to G proteins of neurotensin receptors. Mol Pharmacol 55:210–215

    CAS  PubMed  Google Scholar 

  53. Quitterer U, AbdAlla S, Jarnagin K, Müller-Esterl W (1996) Na+ ions binding to the bradykinin B2 receptor suppress agonist-independent receptor activation. Biochemistry 35:13368–13377

    Article  CAS  PubMed  Google Scholar 

  54. Ballesteros JA, Weinstein H (1995) Integrated methods for the construction of three-dimensional models and computational probing of structure-function relations in G protein-coupled receptors. Methods Neurosci 25:366–428

    Article  CAS  Google Scholar 

  55. Held C, Hervet M, Plomer M, Tschammer N, Harald H, Gmeiner P, Einsiedel J, Hübner H (2011) Discovery of highly potent and neurotensin receptor 2 selective neurotensin mimetics. J Med Chem 54:2915–2923

    Article  PubMed  CAS  Google Scholar 

  56. Zhang C, Srinivasan Y, Arlow DH, Fung JJ, Palmer D, Zheng Y, Green HF, Pandey A, Dror RO, Shaw DE, Weis WI, Coughlin SR, Kobilka BK (2012) High-resolution crystal structure of human protease-activated receptor 1. Nature 492:387–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Miller-Gallacher JL, Nehmé R, Warne T, Edwards PC, Schertler GFX, Leslie AGW, Tate CG (2014) The 2.1 Å resolution structure of cyanopindolol-bound β1-adrenoceptor identifies an intramembrane Na+ ion that stabilises the ligand-free receptor. PLoS One 9:e92727

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  58. Fenalti G, Giguere PM, Katritch V, Huang X-P, Thompson A a, Cherezov V, Roth BL, Stevens RC (2014) Molecular control of Δ-opioid receptor signalling. Nature 506:191–196

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu F, Wu H, Katritch V, Han GW, Jacobson KA, Gao Z-G, Cherezov V, Stevens RC (2011) Structure of an agonist-bound human A2A adenosine receptor. Science 332:322–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Rasmussen SGF, DeVree BT, Zou Y, Kruse AC, Chung KY, Kobilka TS, Thian FS, Chae PS, Pardon E, Calinski D, Mathiesen JM, Shah STA, Lyons JA, Caffrey M, Gellman SH, Steyaert J, Skiniotis G, Weis WI, Sunahara RK, Kobilka BK (2011) Crystal structure of the β2 adrenergic receptor–Gs protein complex. Nature 477:549–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Montaner S, Kufareva I, Abagyan R, Gutkind JS (2013) Molecular mechanisms deployed by virally encoded G protein-coupled receptors in human diseases. Annu Rev Pharmacol Toxicol 53:331–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Lo S, Hu H, Tschammer N, Gmeiner P, Löber S, Hübner H (2011) Recent advances in the search for D3- and D4-selective drugs: probes, models and candidates. Trends Pharmacol Sci 32:148–157

    Article  CAS  Google Scholar 

  63. Quantifying functional selectivity (biased agonism) Terry Kenakin 1, Steve Novick 2, Arthur Christopoulos 3 1

    Google Scholar 

  64. Gardner RC, Assinder SJ, Christie G, Mason GG, Markwell R, Wadsworth H, McLaughlin M, King R, Chabot-Fletcher MC, Breton JJ, Allsop D, Rivett AJ (2000) Characterization of peptidyl boronic acid inhibitors of mammalian 20 S and 26 S proteasomes and their inhibition of proteasomes in cultured cells. Biochem J 346(Pt 2):447–454

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Takeda A (2000) Movement of zinc and its functional significance in the brain. Brain Res Rev 34:137–148

    Article  CAS  PubMed  Google Scholar 

  66. Palm R, Hallmans G (1982) Zinc concentrations in the cerebrospinal fluid of normal adults and patients with neurological diseases. J Neurol Neurosurg Psychiatry 45:685–690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Markesbery WR, Ehmann WD, Alauddin M, Hossain TIM (1984) Brain trace element concentrations in aging. Neurobiol Aging 5:19–28

    Article  CAS  PubMed  Google Scholar 

  68. Schetz JA, Chu A, Sibley DR (1999) Zinc modulates antagonist interactions with D2-like dopamine receptors through distinct molecular mechanisms. J Pharmacol Exp Ther 289:956–964

    CAS  PubMed  Google Scholar 

  69. Liu Y, Teeter MM, DuRand CJ, Neve KA (2006) Identification of a Zn2+ -binding site on the dopamine D 2 receptor. Biochem Biophys Res Commun 339:873–879

    Article  CAS  PubMed  Google Scholar 

  70. Holst B, Elling CE, Schwartz TW (2002) Metal ion-mediated agonism and agonist enhancement in melanocortin MC1 and MC4 receptors. J Biol Chem 277:47662–47670

    Article  CAS  PubMed  Google Scholar 

  71. Fowler CB, Pogozheva ID, LeVine H, Mosberg HI (2004) Refinement of a homology model of the Μ-opioid receptor using distance constraints from intrinsic and engineered zinc-binding sites. Biochemistry 43:8700–8710

    Article  CAS  PubMed  Google Scholar 

  72. Peacock M (2010) Calcium metabolism in health and disease. Clin J Am Soc Nephrol 5(Suppl 1):S23–S30

    Article  CAS  PubMed  Google Scholar 

  73. Galvez T, Urwyler S, Prézeau L, Mosbacher J, Joly C, Malitschek B, Heid J, Brabet I, Froestl W, Bettler B, Kaupmann K, Pin JP (2000) Ca(2+) requirement for high-affinity gamma-aminobutyric acid (GABA) binding at GABA(B) receptors: involvement of serine 269 of the GABA(B)R1 subunit. Mol Pharmacol 57:419–426

    CAS  PubMed  Google Scholar 

  74. Mun H-C, Franks AH, Culverston EL, Krapcho K, Nemeth EF, Conigrave AD (2004) The venus Fly trap domain of the extracellular Ca2+ -sensing receptor is required for L-amino acid sensing. J Biol Chem 279:51739–51744

    Article  CAS  PubMed  Google Scholar 

  75. Grazzini E, Guillon G, Mouillac B, Zingg HH (1998) Inhibition of oxytocin receptor function by direct binding of progesterone. Nature 392:509–512

    Article  CAS  PubMed  Google Scholar 

  76. Gimpl G, Wiegand V, Burger K, Fahrenholz F (2002) Cholesterol and steroid hormones: modulators of oxytocin receptor function. Progress Brain Res 139:43–55

    Article  CAS  Google Scholar 

  77. Pang L, Graziano M, Wang S (1999) Membrane cholesterol modulates galanin-GalR2 interaction. Biochemistry 38:12003–12011

    Article  CAS  PubMed  Google Scholar 

  78. Pucadyil TJ, Chattopadhyay A (2004) Cholesterol modulates ligand binding and G-protein coupling to serotonin1A receptors from bovine hippocampus. Biochim Biophys Acta Biomembr 1663:188–200

    Article  CAS  Google Scholar 

  79. Hanson MA, Cherezov V, Griffith MT, Roth CB, Jaakola VP, Chien EYT, Velasquez J, Kuhn P, Stevens RC (2008) A specific cholesterol binding site is established by the 2.8 Å structure of the human β2-adrenergic receptor. Structure 16:897–905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Verma V, Mann A, Costain W, Pontoriero G, Castellano JM, Skoblenick K, Gupta SK, Pristupa Z, Niznik HB, Johnson RL, Nair VD, Mishra RK (2005) Modulation of agonist binding to human dopamine receptor subtypes by L-prolyl-L-leucyl-glycinamide and a peptidomimetic analog. J Pharmacol Exp Ther 315:1228–1236

    Article  CAS  PubMed  Google Scholar 

  81. Chiu S, Paulose CS, Mishra RK (1981) Effect of L-prolyl-L-leucyl-glycinamide (PLG) on neuroleptic-induced catalepsy and dopamine/neuroleptic receptor bindings. Peptides 2:105–111

    Article  CAS  PubMed  Google Scholar 

  82. Borda E, Pascual J, Cossio P, De La Vega M, Arana R, Sterin-Borda L (1984) A circulating IgG in Chagas’ disease which binds to beta-adrenoceptors of myocardium and modulates their activity. Clin Exp Immunol 57:679–686

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Goin JC, Leiros CP, Borda E, Sterin-Borda L (1997) Interaction of human chagasic IgG with the second extracellular loop of the human heart muscarinic acetylcholine receptor: functional and pathological implications. FASEB J 11:77–83

    CAS  PubMed  Google Scholar 

  84. Milligan G (2009) G protein-coupled receptor hetero-dimerization: contribution to pharmacology and function. Br J Pharmacol 158:5–14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Rivero-Müller A, Chou Y-Y, Ji I, Lajic S, Hanyaloglu AC, Jonas K, Rahman N, Ji TH, Huhtaniemi I (2010) Rescue of defective G protein-coupled receptor function in vivo by intermolecular cooperation. Proc Natl Acad Sci U S A 107:2319–2324

    Article  PubMed  PubMed Central  Google Scholar 

  86. Palczewski K, Kumasaka T, Hori T, Behnke C (2000) Crystal structure of rhodopsin: AG protein-coupled receptor. Science 289:739–745

    Article  CAS  PubMed  Google Scholar 

  87. Wu B, Chien EYT, Mol CD, Fenalti G, Liu W, Katritch V, Abagyan RA, Brooun A, Wells P, Bi FC, Hamel DJ, Kuhn P, Handel TM, Cherezov V, Stevens RC (2010) Structures of the CXCR4 chemokine GPCR with small-molecule and cyclic peptide antagonists. Science 330:1066–1071

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Cherezov V, Rosenbaum DM, Hanson MA, Rasmussen SGF, Thian FS, Kobilka TS, Choi H-J, Kuhn P, Weis WI, Kobilka BK, Stevens RC (2007) High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318:1258–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Wu H, Wacker D, Mileni M, Katritch V, Han G (2012) Structure of the human Κ-opioid receptor in complex with JDTic. Nature 485:327–332

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Schwartz TW, Holst B (2006) Ago-allosteric modulation and other types of allostery in dimeric 7TM receptors. J Recept Signal Transduct Res 26:107–128

    Article  CAS  PubMed  Google Scholar 

  91. Vilardaga J-P, Nikolaev VO, Lorenz K, Ferrandon S, Zhuang Z, Lohse MJ (2008) Conformational cross-talk between alpha2A-adrenergic and Mu-opioid receptors controls cell signaling. Nat Chem Biol 4:126–131

    Article  CAS  PubMed  Google Scholar 

  92. Koschatzky S, Tschammer N, Gmeiner P (2011) Cross-receptor interactions between dopamine D2L and neurotensin NTS1 receptors modulate binding affinities of dopaminergics. ACS Chem Neurosci 2(6):308–316

    Google Scholar 

  93. Armstrong D, Strange PG (2001) Dopamine D2 receptor dimer formation: evidence from ligand binding. J Biol Chem 276:22621–22629

    Article  CAS  PubMed  Google Scholar 

  94. Han Y, Moreira IS, Urizar E, Weinstein H, Javitch JA (2009) Allosteric communication between protomers of dopamine class a GPCR dimers modulates activation. Nat Chem Biol 5:688–695

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Lane JR, Donthamsetti P, Shonberg J, Draper-Joyce CJ, Dentry S, Michino M, Shi L, López L, Scammells PJ, Capuano B, Sexton PM, Javitch JA, Christopoulos A (2014) A new mechanism of allostery in a G protein-coupled receptor dimer. Nat Chem Biol 10:745–752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. AbdAlla S, Lother H, el Massiery A, Quitterer U (2001) Increased AT(1) receptor heterodimers in preeclampsia mediate enhanced angiotensin II responsiveness. Nat Med 7:1003–1009

    Article  CAS  PubMed  Google Scholar 

  97. AbdAlla S, Lother H, Quitterer U (2000) AT1-receptor heterodimers show enhanced G-protein activation and altered receptor sequestration. Nature 407:94–98

    Article  CAS  PubMed  Google Scholar 

  98. He L, Fong J, Von Zastrow M, Whistler JL (2002) Regulation of opioid receptor trafficking and morphine tolerance by receptor oligomerization. Cell 108:271–282

    Article  CAS  PubMed  Google Scholar 

  99. Waldhoer M, Fong J, Jones RM, Lunzer MM, Sharma SK, Kostenis E, Portoghese PS, Whistler JL (2005) A heterodimer-selective agonist shows in vivo relevance of G protein-coupled receptor dimers. Proc Natl Acad Sci U S A 102:9050–9055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Kenakin TP (2010) Ligand detection in the allosteric world. J Biomol Screen 15:119–130

    Article  CAS  PubMed  Google Scholar 

  101. Lazareno S, Birdsall NJ (1995) Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol Pharmacol 48:362–378

    CAS  PubMed  Google Scholar 

  102. Leach K, Sexton PM, Christopoulos A (2011) Quantification of allosteric interactions at G protein–coupled receptors using radioligand binding assays. Current protocols in pharmacology. 52:1.22:1.22.1–1.22.41. Wiley

    Google Scholar 

  103. Gregory KJ, Sexton PM, Christopoulos A (2010) Overview of receptor allosterism. Curr Protocols Pharmacol 51:1.21:1.21.1–1.21.34

    Google Scholar 

  104. Kenakin T, Watson C, Muniz-Medina V, Christopoulos A, Novick S (2012) A simple method for quantifying functional selectivity and agonist bias. ACS Chem Neurosci 3:193–203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Ehlert FJ (1988) Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol Pharmacol 33:187–194

    CAS  PubMed  Google Scholar 

  106. Black JW, Leff P (1983) Operational models of pharmacological agonism. Proc R Soc Lond B Biol Sci 220:141–162

    Article  CAS  PubMed  Google Scholar 

  107. Ehlert FJ (2005) Analysis of allosterism in functional assays. J Pharmacol Exp Ther 315:740–754

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nuska Tschammer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tschammer, N. (2016). Allosteric Modulators of the Class A G Protein Coupled Receptors. In: Böldicke, T. (eds) Protein Targeting Compounds. Advances in Experimental Medicine and Biology, vol 917. Springer, Cham. https://doi.org/10.1007/978-3-319-32805-8_9

Download citation

Publish with us

Policies and ethics