Skip to main content

Climate Variability Impact on Wheat Production in Europe: Adaptation and Mitigation Strategies

  • Chapter
  • First Online:
Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability

Abstract

Increased carbon dioxide concentration, rise in temperature and drought stress are important key factors causing frequent occurrence of climate events. Important adaptation strategy such as modification of phenological pattern to avoid stressful period during plant development will be key feature in crop plants. In addition, comprehensive understanding of plants response to elevated CO2 concentration, temperature and drought stress alone or in combination will be needed to acclimatize crop plant to these changes. Study of climate variability impact on wheat production concerning mitigation strategies is need of time in order to reduce the risk of climate change on crop yield and growth. Similarly, information about the time in which climate variable(s) occurred in the field is important as the severity of its effect/their combined effect can vary largely. Agronomic practices such as cultivar choice, water and nitrogen supply, nutrients availability and growing conditions should be taken into account to design adaptation options. The failure of agriculture to adapt to climatic variability will impact global food, especially wheat production. A holistic approach will be paramount to sustaining agriculture and the vitality of the world in the face of climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abayomi, Y., and D. Wright. 1999. Effects of water stress on growth and yield of spring wheat (Triticum aestivum L.) cultivars. Tropical Agriculture 76: 120–125.

    Google Scholar 

  • Abraha, M.G., and M.J. Savage. 2006. Potential impacts of climate change on the grain yield of maize for the midlands of KwaZulu-Natal, South Africa. Agriculture Ecosystems and Environment 115: 150–160.

    Article  Google Scholar 

  • Adam, M., L.G.J. Van Bussel, P.A. Leffelaar, H. Van Keulen, and F. Ewert. 2011. Effects of modelling detail on simulated potential crop yields under a wide range of climatic conditions. Ecological Modelling 222: 131–143.

    Article  Google Scholar 

  • Aggarwal, P.K., and R.K. Mall. 2002. Climate change and rice yields in diverse agro-environments of India. II. Effect of uncertainties in scenarios and crop models on impact assessment. Climatic Change 52(3): 331–343.

    Article  Google Scholar 

  • Ahmed, M., and Fayyaz-ul-Hassan. 2011. APSIM and DSSAT models as decision support tools. The 19th international congress on modelling and simulation, Perth, Australia. http://mssanz.org.au/modsim2011.

  • Ainsworth, E.A., and S.P. Long. 2005. What have we learned from 15 years of Free-Air CO2 Enrichment (FACE)? A meta-analytic review of the responses of photosynthesis, canopy. and plant production to rising CO2. The New Phytologist 165: 351–371.

    Article  Google Scholar 

  • Ainsworth, E.A., P.A. Davey, C.J. Bernacchi, O.C. Dermody, E.A. Heaton, D.J. Moore, P.B. Morgan, S.L. Naidu, H.S.Y. Ra, X.G. Zhu, P.S. Curtis, and S.P. Long. 2002. A meta-analysis of elevated CO2 effects on soybean (Glycine max) physiology, growth and yield. Glob Change Biology 8(8): 695–709.

    Article  Google Scholar 

  • Akkaya, A., T. Dokuyucu, R. Kara, and M. Akçura. 2006. Harmonization ratio of post- to pre-anthesis durations by thermal times for durum wheat cultivars in a Mediterranean environment. European Journal of Agronomy 24: 404–408.

    Article  Google Scholar 

  • Akram, M. 2011. Growth and yield components of wheat under water stress of different growth stages. Bangladesh Journal of Agricultural Research 36(3): 455–468.

    Article  Google Scholar 

  • Albert, K.R., T.N. Mikkelsen, A. Michelsen, H. Ro-Poulsen, and L. van der Linden. 2011. Interactive effects of drought, elevated CO2 and warming on photosynthetic capacity and photosystem performance in temperate heath plants. Journal of Plant Physiology 168: 1550–1561.

    Article  CAS  Google Scholar 

  • Alcamo, J., G.J.J. Kreileman, J.C. Bollen, G.J. van den Born, R. Gerlagh, M.S. Krol, A.M.C. Toet, and H.J.M. Vries. 1996. Baseline scenarios of global environmental change. Global Environmental Change 6: 261–303.

    Article  Google Scholar 

  • Alexander, B., P. Hayman, G. McDonald, A. Talukder, G. Gill. 2010. Characterizing the risk of heat stress on wheat in South Australia: Meteorology, climatology and the design of a field heating system. In: 15th Australian agronomy conference, Christchurch, New Zealand. http://www.agronomy.org.au/.

  • Alhajj Ali, S., L. Tedone, and G. De Mastro. 2015. Optimization of the environmental performance of rainfed durum wheat by adjusting the management practices. Journal of Cleaner Production 87: 105–118.

    Article  Google Scholar 

  • Al-Issa, T.A., and N.H. Samarah. 2006. Tillage practices in wheat production under rainfed conditions in Jordan: An economic comparison. World Journal of Agricultural Research 2(3): 322–325.

    Google Scholar 

  • Allen Jr., L.H. 1990. Plant responses to rising carbon dioxide and potential interactions with air pollutants. Journal of Environmental Quality 19: 15–34.

    Article  CAS  Google Scholar 

  • Altenbach, S.B., F.M. DuPont, K.M. Kothari, R. Chan, E.L. Johnson, and D. Lieu. 2003. Temperature, water and fertilizer influence the timing of key events during grain development in a US spring wheat. Journal of Cereal Science 37: 9–20.

    Article  Google Scholar 

  • Amir, J., and T.R. Sinclair. 1991. A model of water limitation on spring wheat growth and yield. Field Crops Research 28(1–2): 59–69.

    Article  Google Scholar 

  • Amthor, J.S. 2001. Effects of atmospheric CO2 concentration on wheat yield: Review of results from experiments using various approaches to control CO2 concentration. Field Crops Research 73: 1–34.

    Article  Google Scholar 

  • Andarzian, B., A.M. Bakhshandeh, M. Bannayan, Y. Emam, G. Fathi, and K.A. Saeed. 2008. WheatPot: A simple model for spring wheat yield potential using monthly weather data. Biosystems Engineering 99(4): 487–495.

    Article  Google Scholar 

  • Andarzian, B., M. Bannayan, P. Steduto, H. Mazraeh, M.E. Barati, M.A. Barati, and A. Rahnama. 2011. Validation and testing of the AquaCrop model under full and deficit irrigated wheat production in Iran. Agricultural Water Management 100: 1–8.

    Article  Google Scholar 

  • Andersson, A., E. Johansson, and P. Oscarson. 2004. Post-anthesis nitrogen accumulation and distribution among grains in spring wheat spikes. The Journal of Agricultural Science 142: 525–533.

    Article  CAS  Google Scholar 

  • Annicchiarico, P., and L. Pecetti. 1993. Contribution of some agronomic traits to durum wheat performance in a dry Mediterranean region of Northern Syria. Agronomie, EDP Sciences 13(1): 25–34.

    Article  Google Scholar 

  • Annicchiarico, P., L. Pecetti, and A.B. Damania. 1995. Relationships between phenotypic variation and climatic factors at collecting sites in durum wheat landraces. Hereditas 122(2): 163–167.

    Article  Google Scholar 

  • Anonymous. 2009. How to feed the world in 2050. High-level experts forum, 35. Rome: FAO.

    Google Scholar 

  • Anwar, M.R., G. O’Leary, D. McNeil, H. Hossain, and R. Nelson. 2007. Climate change impact on rainfed wheat in south-eastern Australia. Field Crops Research 104: 139–147.

    Article  Google Scholar 

  • Araus, J.L., G.A. Slafer, M.P. Reynolds, and C. Royo. 2002. Plant breeding and water relations in C3 cereals: What to breed for? Annals of Botany 89: 925–940.

    Article  Google Scholar 

  • Araus, J.L., G.A. Slafer, C. Royo, and M.D. Serret. 2008. Breeding for yield potential and stress adaptation in cereals. Critical Reviews in Plant Science 27: 377–412.

    Article  Google Scholar 

  • Ashraf, M.Y. 1998. Yield and yield components response of wheat (Triticum aestivum L.) genotypes tinder different soil waler deficit conditions. Acta Agronomica Hungarica 46: 45–51.

    Google Scholar 

  • Asseng, S., B.A. Keatingb, I.R.P. Fillerya, P.J. Gregoryd, J.W. Bowdenc, N.C. Turnera, J.A. Paltaa, and D.G. Abrechte. 1998. Performance of the APSIM-wheat model in Western Australia. Field Crops Research 57(2): 163–179.

    Article  Google Scholar 

  • Asseng, S., H. van Keulen, and W. Stol. 2000. Performance and application of the APSIM N wheat model in the Netherlands. European Journal of Agronomy 12: 37–54.

    Article  Google Scholar 

  • Asseng, S., L. Foster, and N.C. Turner. 2011. The impact of temperature variability on wheat yield. Global Change Biology 17: 997–1012.

    Article  Google Scholar 

  • Asseng, S., F. Ewert, C. Rosenzweig, J.W. Jones, J.L. Hatfield, A.C. Ruane, K.J. Boote, P.J. Thorburn, R.P. Rotter, D. Cammarano, N. Brisson, B. Basso, P. Martre, P.K. Aggarwal, C. Angulo, P. Bertuzzi, C. Biernath, A.J. Challinor, J. Doltra, S. Gayler, R. Goldberg, R. Grant, L. Heng, J. Hooker, L.A. Hunt, J. Ingwersen, R.C. Izaurralde, K.C. Kersebaum, C. Müller, S. Naresh Kumar, C. Nendel, G. O’Leary, J.E. Olesen, T.M. Osborne, T. Palosuo, E. Priesack, D. Ripoche, M.A. Semenov, I. Shcherbak, P. Steduto, C. Stockle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, M. Travasso, K. Waha, D. Wallach, J.W. White, J.R. Williams, and J. Wolf. 2013. Uncertainty in simulating wheat yields under climate change. Nature Climate Change 3: 827–832.

    Article  CAS  Google Scholar 

  • Asseng, S., F. Ewert, P. Martre, R.P. Rötter, D.B. Lobell, D. Cammarano, B.A. Kimball, M.J. Ottman, G.W. Wall, J.W. White, M.P. Reynolds, P.D. Alderman, P.V.V. Prasad, P.K. Aggarwal, J. Anothai, B. Basso, C. Biernath, A.J. Challinor, G. De Sanctis, J. Doltra, E. Fereres, M. Garcia-Vila, S. Gayler, G. Hoogenboom, L.A. Hunt, R.C. Izaurralde, M. Jabloun, C.D. Jones, K.C. Kersebaum, C. Müller, A.K. Koehler, S. Naresh Kumar, C. Nendel, G. O’Leary, J.E. Olesen, T. Palosuo, E. Priesack, E. Eyshi Rezaei, A.C. Ruane, M.A. Semenov, I. Shcherbak, C. Stöckle, P. Stratonovitch, T. Streck, I. Supit, F. Tao, P. Thorburn, K. Waha, E. Wang, D. Wallach, J. Wolf, Z. Zhao, and Y. Zhu. 2015. Rising temperatures reduce global wheat production. Nature Climate Change 5: 143–147. doi:10.1038/nclimate2470.

    Article  Google Scholar 

  • Baker, J.T., and L.H. Allen Jr. 1993. Contrasting crop responses to CO2 and temperature: Rice, soybean and citrus. Vegetatio 104/105: 239–260.

    Article  Google Scholar 

  • Bale, J.S., G.J. Masters, I.D. Hodkinson, C. Awmack, T.M. Bezemer, V.K. Brown, J. Butterfield, A. Buse, J.C. Coulson, J. Farrar, J.E.G. Good, R. Harrington, S. Hartley, T.H. Jones, R.L. Lindroth, M.C. Press, I. Symrnioudis, A.D. Watt, and J.B. Whittaker. 2002. Herbivory in global climate change research: Direct effects of rising temperature on insect herbivores. Global Change Biology 8: 1–16.

    Article  Google Scholar 

  • Balla, K., M. Rakszegi, Z. Li, F. Békés, S. Bencze, and O. Veisz. 2011. Quality of winter wheat in relation to heat and drought shock after anthesis. Czech Journal of Food Sciences 29(2): 117–128.

    CAS  Google Scholar 

  • Bansal, K.C., S.K. Lenaka, and T.K. Mondal. 2013. Genomic resources for breeding crops with enhanced abiotic stress tolerance. Plant Breeding. doi:10.1111/pbr.12117.

    Google Scholar 

  • Barnabás, B., K. Jäger, and A. Fehér. 2008. The effect of drought and heat stress on reproductive processes in cereals. Plant, Cell and Environment 31: 11–38.

    Google Scholar 

  • Barneix, A.J., and M.R. Guitman. 1993. Leaf regulation of the nitrogen concentration in the grain of wheat plants. Journal of Experimental Botany 44: 1607–1612.

    Article  CAS  Google Scholar 

  • Battisti, D.S., and R.L. Naylor. 2009. Historical warnings of future food insecurity with unprecedented seasonal heat. Science 323: 240–244.

    Article  CAS  Google Scholar 

  • Batts, G.R., J.I.L. Morison, R.H. Ellis, P. Hadley, and T.R. Wheeler. 1997. Effects of CO2 and temperature on growth and yield of crops of winter wheat over four seasons. European Journal of Agronomy 7: 43–52.

    Article  Google Scholar 

  • Bazzaz, F.A., and K. Garbutt. 1988. The response of annuals in competitive neighborhoods: Effects of elevated CO2. Ecology 69: 937–946.

    Article  Google Scholar 

  • Bender, J., U. Hertstein, and C.R. Black. 1999. Growth and yield responses of spring wheat to increasing carbon dioxide, ozone and physiological stresses: A statistical analysis of ‘ESPACE-Wheat’ results. European Journal of Agronomy 10: 185–195.

    Article  Google Scholar 

  • Benli, B., M. Pala, C. Stockle, and T. Oweis. 2007. Assessment of winter wheat production under early sowing with supplemental irrigation in a cold highland environment using CropSyst simulation model. Agricultural Water Management 93(1–2): 45–53.

    Article  Google Scholar 

  • Benlloch-Gonzalez, M., R. Bochicchio, J. Berger, H. Bramley, and J.A. Palta. 2014. High temperature reduces the positive effect of elevated CO2 on wheat root system growth. Field Crops Research 165: 71–79.

    Article  Google Scholar 

  • Bergthorsson, P., H. Bjornsson, O. Dyrmundsson, B. Gudmundsson, A. Helgadottir, and J.V. Jonmundsson. 1988. The effects of climatic variations on agriculture in Iceland. In The impact of climatic variations on agriculture, volume 1, Assessments in cool temperate and cold regions, ed. M.L. Parry, T.R. Carter, and N.T. Konijn, 383–509. Dordrecht: Kluwer.

    Google Scholar 

  • Bernklau, E.J., E.A. Fromm, and L.B. Bjostad. 2004. Disruption of host location of western corn rootworm larvae (Coleoptera: Chrysomelidae) with carbon dioxide. Journal of Economic Entomology 97: 330–339.

    Article  CAS  Google Scholar 

  • Berntsen, J., B.M. Petersen, B.H. Jacobsen, J.E. Olesen, and N.J. Hutchings. 2003. Evaluating nitrogen taxation scenarios using the dynamic whole farm simulation model FASSET. Agricultural Systems 76(3): 817–839.

    Article  Google Scholar 

  • Berzitis, E. 2013. Climate change effects on the pest status and distribution of the bean leaf beetle (Cerotoma trifurcata). A PhD thesis, University of Guelph, Ontario, Canada.

    Google Scholar 

  • Bita, C.E., and T. Gerats. 2013. Plant tolerance to high temperature in a changing environment: Scientific fundamentals and production of heat stress-tolerant crops. Frontiers in Plant Science 4: 273. doi:10.3389/fpls.2013.00273.

    Article  Google Scholar 

  • Blum, A. 1988. Plant breeding for stress environment. Boca Raton: CRC Press.

    Google Scholar 

  • Blum, A. 1998. Improving wheat grain filling under stress by stem reserve mobilisation. Euphytica 100: 77–83.

    Article  Google Scholar 

  • Blumenthal, C.S., E.W.R. Barlow, and C.W. Wrigley. 1993. Growth environment and wheat quality: The effect of heat stress on dough properties and gluten proteins. Journal of Cereal Science 18: 3–21.

    Article  CAS  Google Scholar 

  • Boogaard, H., J. Wolf, I. Supit, S. Niemeyer, and M. van Ittersum. 2013. A regional implementation of WOFOST for calculating yield gaps of autumn-sown wheat across the European Union. Field Crops Research 143: 130–142.

    Article  Google Scholar 

  • Borghi, B., M. Corbellini, C. Minoia, M. Palumbo, N. Di Fonzo, and M. Perenzin. 1997. Effects of Mediterranean climate on wheat bread-making quality. European Journal of Agronomy 6: 145–154.

    Article  Google Scholar 

  • Borjigidai, A., K. Hikosaka, T. Hirose, T. Hasegawa, M. Okada, and K. Kobayashi. 2006. Seasonal changes in temperature dependence of photosynthetic rate in rice under a free-air CO2 enrichment. Annals of Botany 97: 549–557.

    Article  CAS  Google Scholar 

  • Borlaug, N.E., and C.R. Dowswell. 1996. The acid lands: One of agriculture’s last frontiers. In Plant-soil interactions at low pH. Proceedgins of the 4th international symposium, ed. A.C. Moniz, A.M.C. Furlani, R.E. Schaffert, N.K. Fageria, C.A. Rosolem, and H. Cantorella. Belo Horizonte: The Brazilian Soil Science Society.

    Google Scholar 

  • Bosello, F., and Zhang, J. 2005. Assessing climate change impacts: Agriculture. CIP – Climate impacts and policy division, working paper n. 02.2007.

    Google Scholar 

  • Bowes, G. 1993. Facing the inevitable: Plants and increasing atmospheric CO2. Annual Review of Plant Physiology and Plant Molecular Biology 44: 309–332.

    Article  CAS  Google Scholar 

  • Brassard, J.P., and B. Singh. 2008. Impacts of climate change and CO(2) increase on agricultural production and adaptation options for Southern Quebec, Canada. Mitigation and Adaptation Strategies for Global Change 13: 241–265.

    Article  Google Scholar 

  • Braun, H.J., G. Atlin, and T. Payne. 2010. Multi-location testing as a tool to identify plant response to global climate change. In Climate change and crop production, ed. M. Reynolds. London: CABI.

    Google Scholar 

  • Bray, S., and D.M. Reid. 2002. The effect of salinity and CO2 enrichment on the growth and anatomy of the second trifoliate leaf of Phaseolus vulgaris. Canadian Journal of Botany 80: 349–359.

    Article  Google Scholar 

  • Briggle, L.W. 1980. Origin and botany of wheat. In Wheat documenta cibageigy, ed. E. Häfliger, 6–13. Switzerland: Basle.

    Google Scholar 

  • Brisson, N., B. Mary, D. Ripoche, M.H. Jeuffroy, F. Ruget, B. Nicoullaud, P. Gate, F. Devienne-Barret, R. Antonioletti, and C. Durr. 1998. STICS: A generic model for the simulation of crops and their water and nitrogen balances. I. Theory and parameterization applied to wheat and corn. Agronomie 18: 311–346.

    Article  Google Scholar 

  • Buchner, P., M. Tausz, R. Ford, A. Leo, G.J. Fitzgerald, M.J. Hawkesford, and S. Tausz-Posch. 2015. Expression patterns of C- and N-metabolism related genes in wheatare changed during senescence under elevated CO2 in dry-land agriculture. Plant Science 236: 239–249.

    Article  CAS  Google Scholar 

  • Bunce, J.A. 1998. The temperature dependence of the stimulation of photosynthesis by elevated carbon dioxide in wheat and barley. Journal of Experimental Botany 49: 1555–1561.

    Article  CAS  Google Scholar 

  • Cameron, D., and P. Oram. 1994. Minimum and reduced tillage: Its use in North America and Western Europe and its potential application in Eastern Europe, Russia, and Central Asia. Washington, DC: International Food Policy Research Institute. 121 pp.

    Google Scholar 

  • Campbell, G.S., and J.M. Norman. 1989. The description and measurement of plant canopy structure. In Plant canopies: Their growth, form and function, ed. G. Russell, B. Marshall, and P.G. Jarvis, 1–19. Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Cardoso-Vilhena, J., and J. Barnes. 2001. Does nitrogen supply affect the response of wheat (Triticum aestivum cv. Hanno) to the combination of elevated CO2 and O3? Journal of Experimental Botany 52: 901–1911.

    Article  Google Scholar 

  • Carter, T.R., R.N. Jones, and X.L. Lu. 2007. New assessment methods and the characterization of future conditions. In Climate change 2007: Impacts, adaptation and vulnerability, contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change, ed. IPCC, 133–171. Cambridge: Cambridge University Press.

    Google Scholar 

  • Cattivelli, L., F. Rizza, F.-W. Badeck, E. Mazzucotelli, A.M. Mastrangelo, E. Francia, C. Marè, A. Tondelli, and M.A. Stanca. 2008. Drought tolerance improvement in crop plants: An intergrated view from breeding to economics. Field Crops Research 105: 1–14.

    Article  Google Scholar 

  • Chakraborty, S., A. von Tiedemann, and P.S. Teng. 2000. Climate change: Potential impact on plant diseases. Environmental Pollution 108: 317–326.

    Article  CAS  Google Scholar 

  • Challinor, A.J., E.S. Simelton, E.D.G. Fraser, D. Hemming, and M. Collins. 2010. Increased crop failure due to climate change: Assessing adaptation options using models and socio-economic data for wheat in China. Environmental Research Letters 5: 034012–034012.

    Article  Google Scholar 

  • Chaudhuri, U.N., M.B. Kirkam, and E.T. Kanemasu. 1990. Root growth of winter wheat under elevated carbon dioxide and drought. Crop Science 30: 853–857.

    Article  CAS  Google Scholar 

  • Chaves, M.M., J.P. Maroco, and J.S. Pereira. 2003. Understanding plant responses to drought—from genes to the whole plant. Functional Plant Biology 30(3): 239–264.

    Article  CAS  Google Scholar 

  • Chen, De.X., H.W. Hunt, and J.A Morgan. 1996. Responses of a C3 and C4 perennial grass to CO2 enrichment and climate change: Comparison between model predictions and experimental data. Ecological Modeling 87, 11–27.

    Google Scholar 

  • Christensen, J.H., B. Hewitson, A. Busuioc, A. Chen, X. Gao, I. Held, R. Jones, R.K. Kolli, W.-T. Kwon, R. Laprise, V. Magaña Rueda, L. Mearns, C.G. Menéndez, J. Räisänen, A. Rinke, A. Sarr, and P. Whetton. 2007. Regional climate projections. In Climate change 2007: The physical science basis. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller. Cambridge/New York: Cambridge University Press.

    Google Scholar 

  • CIMMYT, International Maize and Wheat Improvement Centre. 2014 Wheat improvement – the mandate of CIMMYT’s global wheat program. Wheat Research, CIMMYT website.

    Google Scholar 

  • Conroy, J. 1992. Influence of elevated atmospheric CO2 concentration on plant nutrition. Australian Journal of Botany 40: 445–456.

    CAS  Google Scholar 

  • Conroy, J.P., S. Seneweera, A.S. Basra, G. Rogers, and B. Nissen-Wooller. 1994. influence of rising atmospheric concentrations and temperature on growth, yield and grain quality of cereal crops. Australian Journal of Plant Physiology 21: 741–758.

    Article  Google Scholar 

  • Coucheney, E., S. Buis, M. Launay, J. Constantin, B. Mary, I. García de Cortazar-Atauri, D. Ripoche, N. Beaudoin, F. Ruget, K.S. Andrianarisoa, C. Le Bas, E. Justes, and J. Leonard. 2015. Accuracy, robustness and behavior of the STICS soil-crop model for plant, water and nitrogen outputs: Evaluation over a wide range of agro-environmental conditions in France. Environmental Modelling & Software 64: 177–190.

    Article  Google Scholar 

  • Crafts-Brandner, S.J., and R.D. Law. 2000. Effect of heat stress on the inhibition and the recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta 212: 67–74.

    Article  CAS  Google Scholar 

  • Cure, J.D., and B. Acock. 1986. Crop responses to carbon dioxide doubling: A literature survey. Agricultural and Forest Meteorology 38: 127–145.

    Article  Google Scholar 

  • Curtis, B.C. 1982. Potential for a yield increase in wheat. In Proceedings of the national wheat research conference, Beltsville, MD, USA, 26–28 October, p. 5–19. Washington, DC: National Association of Wheat Growers Foundation.

    Google Scholar 

  • Dahal, K., V.L. Knowles, W.C. Plaxton, and N.P.A. Hüner. 2014. Enhancement of photosynthetic performance, water use efficiency and grain yield during long-term growth under elevated CO2 in wheat and rye is growth temperature and cultivar dependent. Environmental and Experimental Botany 106: 207–220.

    Article  CAS  Google Scholar 

  • Dalrymple, D.G. 1986. Development and spread of high yielding varieties of wheat in developing countries. Washington, DC: Bureau for Science and Technology, Agency for International Development, US Government Printing Office.

    Google Scholar 

  • Davidson, R.H., and W.F. Lyon. 1987. Insect pests of farm, garden and orchard. New York: Wiley. 640 pp.

    Google Scholar 

  • Day, A.D., and S. Intalap. 1970. Some effects of soil moisture stress on growth of wheat (Triticum aestiuum). Agronomy Journal 62: 27–29.

    Article  Google Scholar 

  • De Oliveira, A.C., N. Marini, and D.R. Farias. 2014. Climate change: New breeding pressures and goals. In Encyclopedia of agriculture and food systems, 284–293. Amsterdam: Elsevier/Academic Press.

    Chapter  Google Scholar 

  • DeBach, P. 1965. Some biological and ecological phenomena associated with colonizing entomophagous insects. In The genetics of colonizing species, ed. H.G. Baker and G.L. Stebbins, 287–303. New York: Academic.

    Google Scholar 

  • Debaeke, P., and A. Aboudrare. 2004. Adaptation of crop management to water-limited environments. European Journal of Agronomy 21: 433–446.

    Article  Google Scholar 

  • Deka, S., K. Byjesh, U. Kumar, and R. Choudhary. 2009. Climate change and impacts on crop pests — A critique. In Impact of climate change on agriculture, ed. S. Panigrahy, S.S. Ray, and J.S. Parihar. Ahmedabad: ISPRS Workshop Proceedings XXXVIII-8/W3.

    Google Scholar 

  • Denby, K., and C. Gehring. 2005. Engineering drought and salinity tolerance in plants: Lessons from genome-wide expression profiling in Arabidopsis. Trends in Biotechnology 23(11): 547–552.

    Article  CAS  Google Scholar 

  • Denčić, S., R. Kastori, B. Kobiljski, and B. Duggan. 2000. Evaluation of grain yield and its components in wheat cultivars and landraces under near optimal and drought conditions. Euphytica 113(1): 43–52.

    Article  Google Scholar 

  • Denyer, K., C.M. Hylton, and A.M. Smith. 1994. The effect of high temperature on starch synthesis and the activity of starch synthase. Australian Journal of Plant Physiology 21: 783–789.

    Article  CAS  Google Scholar 

  • Deryng, D., W.J. Sacks, C.C. Barford, and N. Ramankutty. 2011. Simulating the effects of climate and agricultural management practices on global crop yield. Global Biogeochemical Cycles 25, GB2006.

    Article  CAS  Google Scholar 

  • Dhakhwa, G.B., C.L. Campbell, S.K. LeDuc, and E.J. Cooter. 1997. Maize growth: Assessing the effect of global warming and CO2 fertilization with crop models. Agricultural and Forest Meteorology 87: 253–272.

    Article  Google Scholar 

  • Dickin, E., and D. Wright. 2008. The effects of winter waterlogging and summer drought on the growth and yield of winter wheat. European Journal of Agronomy 28: 234–244.

    Article  Google Scholar 

  • Doheny-Adams, T., L. Hunt, P.J. Franks, D.J. Beerling, and J.E. Gray. 2012. Genetic manipulation of stomatal density influences stomatal size, plant growth and tolerance to restricted water supply across a growth carbon dioxide gradient. Philosophical Transactions of the Royal Society 367: 547–555.

    Article  CAS  Google Scholar 

  • Donatelli, M., G. Russell, A.E. Rizzoli, M. Acutis, M. Adam, I.N. Athanasiadis, et al. 2010. A component-based framework for simulating agricultural production and externalities. In Environmental and agricultural modeling-integrated approaches for policy impact assessment, ed. M.K. van Ittersum and F.M. Brouwer, 63–108. Dordrecht/New York: Springer.

    Google Scholar 

  • Dupont, F., and S. Altenbach. 2003. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. Journal of Cereal Science 38: 133–146.

    Article  CAS  Google Scholar 

  • Dwivedi, S.L., A.B. Britt, L. Tripathi, S. Sharma, H.D. Upadhyaya, and R. Ortiz. 2015. Haploids: Constraints and opportunities in plant breeding. Biotechnology Advances. doi:10.1016/j.biotechadv.2015.07.001.

    Google Scholar 

  • Eckersten, H., K. Blombäck, T. Kätterer, and P. Nyman. 2001. Modelling C, N, water and heat dynamics in winter wheat under climate change in southern Sweden. Agriculture Ecosystems and Environment 86: 221–235.

    Article  CAS  Google Scholar 

  • Ehleringer, J.R., T. Cerling, and M. Dearing. 2002. Atmospheric CO2 as a global change driver influencing plant-animal interactions. Integrative and Comparative Biology 42: 424–430.

    Article  Google Scholar 

  • Ekman, A., L. Bülow, and S. Stymne. 2007. Elevated atmospheric CO2 concentration and diurnal cycle induce changes in lipid composition in Arabidopsis thaliana. The New Phytologist 174(3): 591–599.

    Article  CAS  Google Scholar 

  • Erbs, M., R. Manderscheid, G. Jansen, S. Seddig, A. Pacholski, and H.J. Weigel. 2010. Effects of free-air CO2 enrichment and nitrogen supply on grain quality parameters and elemental composition of wheat and barley grown in a crop rotation. Agriculture Ecosystems and Environment 136: 59–68.

    Article  CAS  Google Scholar 

  • EUROSTAT. 2015. http://ec.europa.eu/eurostat/data/database. Last Accessed July, 2015.

  • Evans, L.T., and R.A. Fischer. 1999. Yield potential: Its definition, measurement and significance. Crop Science 39: 1544–1551.

    Article  Google Scholar 

  • Ewert, F., D. Rodriguez, P. Jamieson, M.A. Semenov, R.A.C. Mitchell, J. Goudriaan, J.R. Porter, B.A. Kimball, P.J. Pinter Jr., R. Manderscheid, H.J. Weigel, A. Fangmeier, E. Fereres, and F. Villalobos. 2002. Effects of elevated CO2 and drought on wheat: Testing crop simulation models for different experimental and climatic conditions. Agriculture Ecosystems and Environment 93: 249–266.

    Article  Google Scholar 

  • Ewert, F., M.D.A. Rounsevell, I. Reginster, M.J. Metzger, and R. Leemans. 2005. Future scenarios of European agricultural land use I. Estimating changes in crop productivity. Agriculture Ecosystems and Environment 107: 101–116.

    Article  Google Scholar 

  • Ewert, F., J.R. Porter, and M.D.A. Rounsevell. 2007. Crop models CO2, and climate change. Science 315: 459.

    Article  CAS  Google Scholar 

  • Falloon, P., D. Bebber, J. Bryant, M. Bushell, A.J. Challinor, S. Dessai, S. Gurr, and A.-K. Koehler. 2015. Using climate information to support crop breeding decisions and adaptation in agriculture. World Agriculture 5(1): 25–43.

    Google Scholar 

  • FAO. 1989. Guidelines for designing and evaluating surface irrigation systems, Irrigation and drainage papers, 45. Rome: FAO, 137 pp.

    Google Scholar 

  • FAO. 1991. Water harvesting, AGL miscellaneous papers, 17. Rome: FAO. 133 pp.

    Google Scholar 

  • FAO (Food and agriculture organization of the united nation). 2009. The second report on the state of the world’s plant genetic resources for food and agriculture. Intergovernmental technical working group on plant genetic resources for food and agriculture. Commission on genetic resources for food and agriculture. Rome, 15–17 July.

    Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations). 2013. FAOSTAT: Production-crops, 2013 data.

    Google Scholar 

  • FAOSTAT Data. 2013. Food and Agriculture Organization of the United Nations. Statistical database. http://faostat.fao.org/site/291/default.aspx

  • FAOSTAT Data. 2014. Food and Agriculture Organization of the United Nations. Statistical database. http://faostat.fao.org/site/291/default.aspx

  • FAOSTAT Data. 2015. Food and Agriculture Organization of the United Nations. Statistical database. http://faostat.fao.org/site/291/default.aspx

  • Farooq, M., H. Bramley, J.A. Palta, and K.H.M. Siddique. 2011. Heat stress in wheat during reproductive and grain-filling phases. Critical Reviews in Plant Sciences 30: 491–507.

    Article  Google Scholar 

  • Farooq, M., M. Hussain, and K.H.M. Siddique. 2014. Drought stress in wheat during flowering and frain-filling periods. Critical Reviews in Plant Sciences 33: 331–349.

    Article  CAS  Google Scholar 

  • Farrar, J.F., and M.L. Williams. 1991. The effects of increased atmospheric carbon-dioxide and temperature on carbon partitioning, source-sink relations and respiration. Plant, Cell and Environment 14: 819–830.

    Article  CAS  Google Scholar 

  • Fedoroff, N.V., D.S. Battisti, R.N. Beachy, P.J.M. Cooper, D.A. Fischhoff, C.N. Hodges, V.C. Knauf, D. Lobell, B.J. Mazur, D. Molden, M.P. Reynolds, P.C. Ronald, M.W. Rosegrant, P.A. Sanchez, A. Vonshak, and J.-K. Zhu. 2010. Radically rethinking agriculture for the 21st century. Science 327: 833–834.

    Article  CAS  Google Scholar 

  • Fernando, N., J. Panozzo, M. Tausz, R.M. Norton, G.J. Fitzgerald, S. Myers, M.E. Nicolas, and S. Seneweer. 2014. Intra-specific variation of wheat grain quality in response to elevated [CO2] at two sowing times under rain-fed and irrigation treatments. Journal of Cereal Science 59: 137–144.

    Article  CAS  Google Scholar 

  • Ferrara, R.M., P. Trevisiol, M. Acutis, G. Rana, G.M. Richter, and N. Baggaley. 2010. Topographic impacts on wheat yields under climate change: Two contrasted case studies in Europe. Theoretical and Applied Climatology 99: 53–65.

    Article  Google Scholar 

  • Ferris, R., R.H. Ellis, T.R. Wheeler, and P. Hadley. 1998. Effect of high temperature stress at anthesis on grain yield and biomass of field-grown crops of wheat. Annals of Botany 82: 631–639.

    Article  Google Scholar 

  • Ferris, R., T.R. Wheeler, R.H. Ellis, P. Hadley, B. Wollenweber, J.R. Porter, T.S. Karacostas, M.N. Papadopoulos, and J. Schellberg. 2000. Effects of high temperature extremes on wheat. In Final report of CLIVARA project (climate change, climatic variability and agriculture in Europe: an integrated assessment), Research report no. 21, ed. T.E. Downing, P.A. Harrison, R.E. Butterfield, and K.G. Lonsdale, 31–55. Oxford: Environmental Change Institute, University of Oxford.

    Google Scholar 

  • Flagella, Z., M.M. Giuliani, L. Giuzio, C. Volpi, and S. Masci. 2010. Influence of water deficit on durum wheat storage protein composition and technological quality. European Journal of Agronomy 33: 197–207.

    Article  Google Scholar 

  • Flexas, J., J. Bota, F. Loreto, G. Cornic, and T.D. Sharkey. 2004. Diffusive and metabolic limitations to photosynthesis under drought and salinity in C3 plants. Plant Biology 6(3): 269–279.

    Article  CAS  Google Scholar 

  • Flint, E.P., and D.T. Patterson. 1983. Interference and temperature effects on growth in soybean (Glycine max) and associated C3 and C4 weeds. Weed Science 31: 193–199.

    Google Scholar 

  • Flint, E.P., D.T. Patterson, D.A. Mortensen, G.H. Riechers, and J.L. Beyers. 1984. Temperature effects on growth and leaf production in three weed species. Weed Science 32: 655–663.

    Google Scholar 

  • Foulkes, M.J., R. Sylvester-Bradley, R. Weightman, and J.W. Snape. 2007. Identifying physiological traits associated with improved drought resistance in winter wheat. Field Crops Research 103: 11–24.

    Article  Google Scholar 

  • Fuhrer, J. 2003. Agroecosystem responses to combinations of elevated CO2, ozone, and global climate change – A review. Agriculture, Ecosystem & Environment 97(1–3): 1–20.

    Article  CAS  Google Scholar 

  • Garrido-Lestache, E., R.J. López-Bellido, and L. López-Bellido. 2005. Durum wheat quality under Mediterranean conditions as affected by N rate, timing and splitting, N form and S fertilization. European Journal of Agronomy 23: 265–278.

    Article  CAS  Google Scholar 

  • Germana, M.A. 2011. Gametic embryogenesis and haploid technology as valuable support to plant breeding. Plant Cell Reports 30: 839–857. doi:10.1007/s00299-011-1061-7.

    Article  CAS  Google Scholar 

  • Ghaley, B.B., and J.R. Porter. 2014. Ecosystem function and service quantification and valuation in a conventional winter wheat production system with DAISY model in Denmark. Ecosystem Services 10: 79–83.

    Article  Google Scholar 

  • Ghini, R., E. Hamada, F. Angelotti, L.B. Costa, and W. Bettiol. 2012. Research approaches, adaptation strategies, and knowledge gaps concerning the impacts of climate change on plant diseases. Tropical Plant Pathology 37: 5–24.

    Google Scholar 

  • Giannakopoulos, C., P. Le Sager, M. Bindi, E. Moriondo Kostopoulou, and C.M. Goodess. 2009. Climatic changes and associated impacts in the Mediterranean resulting from global warming. Global and Planetary Change 68: 209–224.

    Article  Google Scholar 

  • Goodenough, J.L., and J.M. Mckinion (eds.). 1992. Basics of insect modeling, ASAE monograph no. 10. St. Joseph: American Society Agricultural Engineers. 221 pp.

    Google Scholar 

  • Gooding, M.J., R.H. Ellis, P.R. Shewry, and J.D. Schofield. 2003. Effects of restricted water availability and increased temperature on the grain filling, drying and quality of winter wheat. Journal of Cereal Science 37: 295–309.

    Article  Google Scholar 

  • Grace, J. 1988. Temperature as a determinant of plant productivity. In Plants and temperature, ed. S.P. Long and F.I. Woodward, 91–107. Cambridge: The Company of Biologists.

    Google Scholar 

  • Grasty, S. 1999. Agriculture and climate change: In TDRI quarterly review, ed. P. Auger,and R. Suwanraks, vol. 14, no. 2, pp. 12–16.

    Google Scholar 

  • Graybosch, R.A., C.J. Peterson, P.S. Baenziger, and D.R. Shelton. 1995. Environmental modification of hard red winter wheat flour protein composition. Journal of Cereal Science 22: 45–51.

    Article  CAS  Google Scholar 

  • Griffin, J.J., T.G. Ranney, and D.M. Pharr. 2004. Heat and drought influence photosynthesis and water relations, and soluble carbohydrates of two ecotypes of redbud (Cercis canadensis). Journal of American Society for Horticultural Science 129: 497–502.

    CAS  Google Scholar 

  • Groot, J.J.R. 1987. Simulation of nitrogen balance in a system of winter wheat and soil, Simulation reports CABO-TT no. 13. Wageningen: Centre for Agrobiological Research and Department of Theoretical Production Ecology, Agricultural University.

    Google Scholar 

  • Guillaume, S., J.E. Bergez, D. Wallach, and E. Justes. 2011. Methodological comparison of calibration procedures for durum wheat parameters in the STICS model. European Journal of Agronomy 35: 15–126.

    Article  Google Scholar 

  • Guo, R.P., Z.H. Lin, X.G. Mo, and C.L. Yang. 2010. Responses of crop yield and water use efficiency to climate change in the North China Plain. Agricultural Water Management 97: 1185–1194.

    Article  Google Scholar 

  • Gutierrez, A.P. 2000. Climate change: Effects on pest dynamics. In Climate change and global crop productivity, ed. K.R. Reddy and H.F. Hodges. New York: CAB International.

    Google Scholar 

  • Guttieri, M.J., R. McLean, J.C. Stark, and E. Souza. 2005. Managing irrigation and nitrogen fertility of hard spring wheats for optimum bread and noodle quality. Crop Science 45: 2049–2059.

    Article  Google Scholar 

  • Hammer, G.L., E. van Oosterom, G. McLean, S.C. Chapman, I. Broad, P. Harland, and R.C. Muchow. 2010. Adapting APSIM to model the physiology and genetics ofcomplex adaptive traits in field crops. Journal of Experimental Botany 61: 2185–2202.

    Article  CAS  Google Scholar 

  • Han, X., X. Hao, S.K. Lam, H. Wang, Y. Li, T. Wheeler, H. Ju, and E. Lin. 2015. Yield and nitrogen accumulation and partitioning in winter wheat under elevated CO2: A 3-year free-air CO2 enrichment experiment. Agriculture Ecosystems and Environment 209: 132–137.

    Article  CAS  Google Scholar 

  • Hansen, J.W. 2005. Integrating seasonal climate prediction and agricultural models for insights into agricultural practice. Philosophical Transactions of the Royal Society Series B, Biological Sciences 360: 2037–2047.

    Article  Google Scholar 

  • Hansen, J., H.E. Jensen, N.E. Nielsen, and H. Svendsen. 1990. DAISY—A soil plant system model. Danish simulation model for transformation and transport of energy and matter in the soil–plant–atmosphere system. Copenhagen: National Agency for Environmental Protection.

    Google Scholar 

  • Hansen, S., H.E. Jensen, N.E. Nielsen, and H. Svendsen. 1991. Simulation of nitrogen dynamics and biomass production in winter wheat using the Danish simulation model Daisy. Fertiliser Research 27: 245–259.

    Article  CAS  Google Scholar 

  • Hansen, S., P. Abrahamsen, C.T. Petersen, M. Styczen. 2012. Daisy: Model use, calibration, and validation. Trans. ASABE55, 1315–1333.

    Google Scholar 

  • Harrison, P.A., and R.E. Butterfield. 1996. Effects of climate change on Europe-wide winter wheat and sunflower productivity. Climate Research 7: 225–241.

    Article  Google Scholar 

  • Hatzios, K.K., and D. Penner. 1982. Metabolism of herbicides in higher plants. Edina: CEPCO iv., Burgess Publ.

    Google Scholar 

  • Hays, D.B., J.H. Do, R.E. Mason, G. Morgan, and S.A. Finlayson. 2007. Heat stress induced ethylene production in developing wheat grains induces kernel abortion and increased maturation in a susceptible cultivar. Journal of Plant Sciences 172: 1113–1123.

    Article  CAS  Google Scholar 

  • Hellin, J., B. Shiferaw, J.E. Cairns, M. Reynolds, I. Ortiz-Monasterio, M. Banzige, K. Sonder, and R. La Rovere. 2012. Climate change and food security in the developing world: Potential of maize and wheat research to expand options for adaptation and mitigation. Journal of Development and Agricultural Economics 4(12): 311–321.

    Google Scholar 

  • Henry, R.J. 2014. Genomics strategies for germplasm characterization and the development of climate resilient crops. Frontiers in Plant Science 5: 68.

    Article  Google Scholar 

  • Hisas, S. 2011. The food gap. The impacts of climate change in food production: A 2020 perspective. Alexandria: Universal Ecological Fund.

    Google Scholar 

  • Hochman, Z.V.I. 1982. Effect of water stress with phasic development on yield of wheat grown in a semi-arid environment. Field Crops Research 5: 55–67.

    Article  Google Scholar 

  • Hocking, P., and C.P. Meyer. 1991. Effects of CO2 enrichment and nitrogen stress on growth and partitioning of dry matter and nitrogen in wheat and maize. Australian Journal of Plant Physiology 18: 339–356.

    Article  CAS  Google Scholar 

  • Högy, P., and A. Fangmeier. 2008. Effects of elevated atmospheric CO2 on grain quality of wheat. Journal of Cereal Science 48: 580–591.

    Article  CAS  Google Scholar 

  • Högy, P., M. Keck, K. Niehaus, J. Franzaring, and A. Fangmeier. 2010. Effects of atmospheric CO2 enrichment on biomass, yield and low molecular weight metabolites in wheat grain. Journal of Cereal Science 52: 215–220.

    Article  CAS  Google Scholar 

  • Hoogenboom, G., J.W. Jones, P.W. Wilkens, C.H. Porter, K.J. Boote, L.A. Hunt, U. Singh, J.L. Lizaso, J.W. White, O. Uryasev, F.S. Royce, R. Ogoshi, A.J. Gijsman, G.Y. Tsuji, J. Koo. 2012. Decision Support System for Agrotechnology Transfer (DSSAT) Version 4.5. University of Hawaii, Honolulu, Hawaii (CD-ROM).

    Google Scholar 

  • Hoogenboom, G., J.T. Ritchie, L.A. Hunt, J.W. White, and J. Anothai. 2013. The Cropping System Model (CSM)‐CERES‐Wheat. In Proceedings of the workshop on modeling wheat response to high temperature, CIMMYT, El Batán, Mexico, 19–21 June 2013, ed. P.D. Alderman, E. Quilligan, S. Asseng, F. Ewert, and M.P. Reynolds. Mexico: CIMMYT.

    Google Scholar 

  • Howden, S.M., J.-F. Soussana, F.N. Tubiello, N. Chhetri, M. Dunlop, and H. Meinke. 2007. Adapting agriculture to climate change. PNAS 104(50): 19691–19696.

    Article  CAS  Google Scholar 

  • Huang, J., L. Tian, S. Liang, H. Ma, I. Becker-Reshef, Y. Huang, W. Su, X. Zhang, D. Zhu, and W. Wu. 2015. Improving winter wheat yield estimation by assimilation of the leaf area index from Landsat TM and MODIS data into the WOFOST model. Agricultural and Forest Meteorology 204: 106–121.

    Article  Google Scholar 

  • Huang, J., F. Sedano, Y. Huang, H. Ma, X. Li, S. Liang, L. Tian, X. Zhang, J. Fan, and W. Wu. 2016. Assimilating a synthetic Kalman filter leaf area index series into the WOFOST model to improve regional winter wheat yield estimation. Agricultural and Forest Meteorology 216: 188–202.

    Article  Google Scholar 

  • Hurd, E.A. 1968. Growth of roots of seven cultivars of spring wheat at high and low moisture levels. Agronomy Journal 60: 201–205.

    Article  Google Scholar 

  • Hurkman, W.J., K.F. McCue, S.B. Altenbach, A. Korn, C.K. Tanaka, K.M. Kotharia, E.L. Johnson, D.B. Bechtel, J.D. Wilson, O.D. Anderson, and F.M. DuPont. 2003. Effect of temperature on expression of genes encoding enzymes for starch biosynthesis in developing wheat endosperm. Plant Science 164: 873–881.

    Article  CAS  Google Scholar 

  • ICARDA. 2014. ICARDA annual report 2013. Beirut: International Center for Agricultural Research in the Dry Areas. 68 pp.

    Google Scholar 

  • Idso, K.E., and S.B. Idso. 1994. Plant responses to atmospheric carbon dioxide enrichment in the face of environmental constraints-a review of the past 10 years of research. Agricultural and Forest Meteorology 69: 152–203.

    Article  Google Scholar 

  • Idso, S.B., B.A. Kimball, M.G. Anderson, and J.R. Mauney. 1987. Effects of atmospheric CO2 enrichment on plant growth: The interactive role of air temperature. Agriculture, Ecosystem & Environment 20(1): 1–10.

    Article  Google Scholar 

  • Ingram, J., and D. Bartels. 1996. The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology 47(1): 377–403.

    Article  CAS  Google Scholar 

  • IPCC (Intergovernmental Panel on Climate Change). 1996. In Climate change 1995, summary for policy makers, ed. J.T. Houghton et al., 1–7. New York: Cambridge University Press.

    Google Scholar 

  • IPCC. 2007a. Contribution of working group I to the fourth assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

    Google Scholar 

  • IPCC. 2007b. Contribution of working group II to the fourth assessment report of the Intergovernmental Panel on Climate Change. New York: Cambridge University Press.

    Google Scholar 

  • Irmak, S., H.A. Naeem, G.L. Lookhart, and F. MacRitchle. 2008. Effect of heat stress on wheat proteins during kernel development in wheat near-isogenic lines differing at Glu-D1. Journal of Cereal Science 48: 513–516.

    Article  CAS  Google Scholar 

  • Izaurralde, R.C., N.J. Rosenberg, R.A. Brown, and A.M. Thomson. 2003. Integrated assessment of Hadley Center (HadCM2) climate-change impacts on agricultural productivity and irrigation water supply in the conterminous United States—Part II. Regional agricultural production in 2030 and 2095. Agricultural and Forest Meteorology 117: 97–122.

    Article  Google Scholar 

  • Jäger, K. 2010. Simultaneous water withholding and elevated temperature alters embryo and endosperm development in wheat. Acta Agronomica Hungarica 58: 91–95.

    Article  Google Scholar 

  • James, R.A., R.J. Davenport, and R. Munns. 2006. Physiological characterization of two genes for Na + exclusion in durum wheat, Nax1 and Nax2. Plant Physiology 142: 1537–1547.

    Article  CAS  Google Scholar 

  • Jamieson, P.D., and D.R. Wilson. 1988. Agronomic uses of a model of wheat growth, development and water use. Proceedgins of Agronomy Society NZ 18: 7–10.

    Google Scholar 

  • Jamieson, P.D., J.R. Porter, J. Goudriaan, J.T. Ritchie, H. van Keulen, and W. Stol. 1998a. A comparison of the models AFRCWHEAT2, CERES-Wheat, Sirius, SUCROS2 and SWHEAT with measurements from wheat grown under drought. Field Crops Research 55: 23–44.

    Article  Google Scholar 

  • Jamieson, P.D., M.A. Semenov, I.R. Brooking, and G.S. Francis. 1998b. SIRIUS: A mechanistic model of wheat response to environmental variation. European Journal of Agronomy 8: 161–179.

    Article  Google Scholar 

  • Jamieson, P.D., J. Berntsen, F. Ewert, B.A. Kimball, J.E. Olesen, P.J.J. Pinter, J.R. Porter, and M.A. Semenov. 2000. Modelling CO2 effects on wheat with varying nitrogen supplies. Agriculture Ecosystems and Environment 82: 27–37.

    Article  CAS  Google Scholar 

  • Jenner, C.F. 1994. Starch synthesis in the kernel of wheat under high temperature conditions. Australian Journal of Plant Physiology 21: 791–806.

    Article  CAS  Google Scholar 

  • Ji, X., B. Shiran, J. Wan, D.C. Lewis, C.L. Jenkins, A.G. Condon, R.A. Richards, and R. Dolferus. 2010. Importance of pre-anthesis anther sink strength for maintenance of grain number during reproductive stage water stress in wheat. Plant, Cell and Environment 33(6): 926–942.

    Article  CAS  Google Scholar 

  • Jia, Y.W., S.H. Shen, C.W. Niu, Y.Q. Qiu, H. Wang, and Y. Liu. 2011. Coupling crop growth and hydrologic models to predict crop yield with spatial analysis technologies. Journal of Applied Remote Sensing 5(1): 053537.

    Article  Google Scholar 

  • Jiang, G.L. 2013. Molecular markers and marker-assisted breeding in plants. In Plant breeding from laboratories to fields, ed. S.B. Anderson, 45–83. Croatia: InTech.

    Google Scholar 

  • Jones, J.W., G. Hoogenboom, C.H. Porter, K.J. Boote, W.D. Batchelor, L.A. Hunt, P.W. Wilkens, U. Singh, A.J. Gijsman, and J.T. Ritchie. 2003. The DSSAT cropping system model. European Journal of Agronomy 18: 235–265.

    Article  Google Scholar 

  • Kang, Y., S. Khan, and X. Ma. 2009. Climate change impacts on crop yield, crop water productivity and food security – a review. Progress in Natural Science 19(12): 1665–1674.

    Article  Google Scholar 

  • Kaur, H., S.K. Jalota, R. Kanwar, and B.B. Vashisht. 2012. Climate change impacts on yield, evapotranspiration and nitrogen uptake in irrigated maize (Zea mays)-wheat (Triticum aestivum) cropping system: A simulation analysis. The Indian Journal of Agricultural Sciences 82: 213–219.

    CAS  Google Scholar 

  • Keating, B.A., P.S. Carberry, G.L. Hammer, M.E. Probert, M.J. Robertson, D. Holzworth, N.I. Huth, J.N.G. Hargreaves, H. Meinke, Z. Hochman, G. McLean, K. Verburg, V. Snow, J.P. Dimes, M. Silburn, E. Wang, S. Brown, K.L. Bristow, S. Asseng, S. Chapman, R.L. McCown, D.M. Freebairn, and C.J. Smith. 2003. An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18: 267–288.

    Article  Google Scholar 

  • Keeling, P.L., P.J. Bacon, and D.C. Holt. 1993. Elevated temperature reduces starch deposition in wheat endosperm by reducing the activity of soluble starch synthase. Planta 191: 342–348.

    Article  CAS  Google Scholar 

  • Kersebaum, K.C. 1995. Application of a simple management model to simulate water and nitrogen dynamics. Ecological Modelling 81: 145–156.

    Article  CAS  Google Scholar 

  • Kimball, B.A. 1983. Carbon dioxide and agricultural yield: An assemblage and analysis of 430 prior observations. Agronomy Journal 75: 779–788.

    Article  Google Scholar 

  • Kimball, B.A., and C.J. Bernacchi. 2006. Evapotranspiration, canopy temperature, and plant water relations. In Managed ecosystems and CO 2 , ed. J. Nösberger, S.P. Long, R.J. Norby, M. Stitt, G.R. Hendrey, and H. Blum, 311–324. Berlin/Heidelberg: Springer.

    Google Scholar 

  • Kimball, B.A., P.J. Pinter Jr., R.L. Garcia, R.L. LaMorte, G.W. Wall, D.J. Hunsaker, G. Wechsung, F. Wechsung, and Th Kartschall. 1995. Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biology 1(6): 429–442.

    Article  Google Scholar 

  • Kimball, B.A., K. Kobayashi, and M. Bindi. 2002. Responses of agricultural crops to free air CO2 enrichment. Advances in Agronomy 77: 293–368.

    Article  Google Scholar 

  • Ko, J.H., L.R. Ahuja, S.A. Saseendran, T.R. Green, L.W. Ma, D.C. Nielsen, and C.L. Walthall. 2012. Climate change impacts on dryland cropping systems in the Central Great Plains, USA. Climatic Change 111: 445–472.

    Article  CAS  Google Scholar 

  • Kristensen, K., K. Schelde, and J.E. Olesen. 2011. Winter wheat yield response to climate variability in Denmark. The Journal of Agricultural Science 149: 33–47.

    Article  Google Scholar 

  • Lal, R. 2005. Climate change, soil carbon dynamics, and global food security. In Climate change and global food security, ed. R. Lal, B. Stewart, N. Uphoff, et al., 113–143. Boca Raton: CRC Press.

    Chapter  Google Scholar 

  • Lam, S.K., D. Chen, and R. Norton. 2012. Nitrogen demand and the recovery of 15N labelled fertilizer in wheat grown under elevated carbon dioxide in southern Australia. Nutrient Cycling in Agroecosystems 92(2): 133–144.

    Article  CAS  Google Scholar 

  • Landau, S., R.A.C. Mitchell, V. Barnett, J.J. Coils, J. Craigon, K.L. Moore, and R.W. Payne. 1998. Testing winter wheat simulation models’ predictions against observed UK grain yields. Agricultural and Forest Meteorology 89: 85–99.

    Article  Google Scholar 

  • Langdale, G.W., L.T. West, and R.R. Bruce. 1992. Restoration of eroded soil with conservation tillage. Soil Technology 5: 81–90.

    Article  Google Scholar 

  • Larcher, W. 2003. Physiological plant ecology, 4th ed. Berlin/Heidelberg: Springer.

    Book  Google Scholar 

  • Laurila, H. 2001. Simulation of spring wheat responses to elevated CO2 and temperature by using CERES-wheat crop model. Agricultural and Food Science Finland 10: 175–196.

    Google Scholar 

  • Lawlor, D.W. 1995. The effect of water deficit on photosynthesis. In Environment and plant metabolism. Flexibility and acclimation, ed. N. Smirnoff, 129–160. Oxford: BIOS Scientific Publisher.

    Google Scholar 

  • Lawlor, D.W., and G. Cornic. 2002. Photosynthetic carbon assimilation and associated metabolism in relation to water deficits in higher plants. Plant, Cell and Environment 25(2): 275–294.

    Article  CAS  Google Scholar 

  • Lee-Ho, E., L.J. Walton, D.M. Reid, E.C. Yeung, and L.V. Kurepin. 2007. Effects of elevated carbon dioxide and sucrose concentrations on Arabidopsis thaliana root architecture and anatomy. Canadian Journal of Botany 85: 324–330.

    Article  CAS  Google Scholar 

  • Leemans, R., and A. Solomon. 1993. Modeling the potential change in yield and distribution of the earth’s crops under a warmed climate. Climate Research 3: 79–96.

    Article  Google Scholar 

  • Leonard, W.H., and J.H. Martin. 1963. Cereal crops. New York: MacMillan Publishing.

    Google Scholar 

  • Lepetz, V., M. Massot, D.S. Schmeller, and J. Clobert. 2009. Biodiversity monitoring: Some proposals to adequately study species’ responses to climate change. Biodiversity and Conservation 18: 3185–3203.

    Article  Google Scholar 

  • Li, A., Y. Hou, G.W. Wall, A. Trent, B.A. Kimball, and P.J. Pinter Jr. 2000. Free-air CO2 enrichment and drought stress effects on grain filling rate and duration in spring wheat. Crop Science 40: 1263–1270.

    Article  Google Scholar 

  • Li, A., Y. Hou, and A. Trent. 2001. Effects of elevated atmospheric CO2 and drought stress on individual grain filling rates and duration of the main stem in spring wheat. Agricultural and Forest Meteorology 106: 289–301.

    Article  Google Scholar 

  • Li, Y.-F., Y. Wu, N. Hernandez-Espinosa, and R.J. Peña. 2013. Heat and drought stress on durum wheat: Responses of genotypes, yield, and quality parameters. Journal of Cereal Science 57: 398–404.

    Article  Google Scholar 

  • Lin, E.D., W. Xiong, H. Ju, Y.L. Xu, Y. Li, L.P. Bai, and L.Y. Xie. 2005. Climate change impacts on crop yield and quality with CO2 fertilization in China. Philosophical Transactions of the Royal Society B 360: 2149–2154.

    Article  CAS  Google Scholar 

  • Lobell, D.B., M.B. Burke, C. Tebaldi, M.D. Mastrandrea, W.P. Falcon, and R.L. Naylor. 2008. Prioritizing climate change adaptation needs for food security in 2030. Science 319: 607–610.

    Article  CAS  Google Scholar 

  • Lobell, D.B., G.L. Hammer, G. McLean, C. Messina, M.J. Roberts, and W. Schlenker. 2013. The critical role of extreme heat for maize production in the United States. Nature Climate Change 3: 497–501.

    Article  Google Scholar 

  • Lonbani, M., and A. Arzani. 2011. Morpho-physiological traits associated with terminal drought stress tolerance in triticale and wheat. Agronomy Research 9(1–2): 315–329.

    Google Scholar 

  • Long, S.P. 1991. Modification of the response of photosynthetic productivity to rising temperature by atmospheric CO2 concentrations: Has its importance been underestimated? Plant, Cell & Environment 14(8): 729–740.

    Article  CAS  Google Scholar 

  • Lopes, M.S., and M.P. Reynolds. 2010. Partitioning of assimilates to deeper roots is associated with cooler canopies and increased yield under drought in wheat. Functional Plant Biology 37: 147–156.

    Article  Google Scholar 

  • Ludlow, M.M., and R.C. Muchow. 1990. A critical evaluation of traits for improving crop yields in water-limited environments. Advances in Agronomy 43: 107–153.

    Article  Google Scholar 

  • Luo, Q., M.A.J. Williamsa, W. Bellottib, and B. Bryana. 2003. Quantitative and visual assessments of climate change impacts on South Australian wheat production. Agricultural Systems 77: 173–186.

    Article  Google Scholar 

  • Luo, Q., W. Bellotti, M. Williams, and B. Bryan. 2005. Potential impact of climate change on wheat yield in South Australia. Agricultural and Forest Meteorology 132: 273–285.

    Article  Google Scholar 

  • Luo, Q., W. Bellotti, M. Williams, and E. Wang. 2009. Adaptation to climate change of wheat growing in South Australia: Analysis of management and breeding strategies. Agriculture Ecosystems & Environment 129(1–3): 261–267.

    Article  Google Scholar 

  • Ma, H., J. Zhu, Z. Xie, G. Liu, Q. Zeng, and Y. Han. 2007. Responses of rice and winterwheat to free air CO2 enrichment (China FACE) at rice/wheat rotation system. Plant and Soil 294: 137–146.

    Article  CAS  Google Scholar 

  • Manderscheid, R., J. Bender, H.J. Jager, and H.J. Weigel. 1995. Effects of season long CO2 enrichment on cereals. II. Nutrient concentrations and grain quality. Agriculture, Ecosystem and Environment 54: 175–185.

    Article  CAS  Google Scholar 

  • Manschadi, A.M., J. Christopher, P. Devoil, and G.L. Hammer. 2006. The role of root rchitectural traits in adaptation of wheat to water-limited environments. Functional Plant Biology 33: 823–837.

    Article  CAS  Google Scholar 

  • Martre, P., P.D. Jamieson, M.A. Semenov, R.F. Zyskowski, J.R. Porter, and E. Triboi. 2006. Modelling protein content and composition in relation to crop nitrogen dynamics for wheat. European Journal of Agronomy 25: 138–154.

    Article  CAS  Google Scholar 

  • Masters, G., P. Baker, and J. Flood. 2010. Climate change and agricultural commodities. CABI working paper 02, Europe-UK.

    Google Scholar 

  • Mattson, W.J. 1980. Herbivory in relation to plant nitrogen content. Annual Review of Ecology and Systematics 11: 119–161.

    Article  Google Scholar 

  • Mattson, W.J., and R.A. Haack. 1987. The role of drought in outbreaks of plant-eating insects. BioScience 37(2): 110–118.

    Article  Google Scholar 

  • McCown, R.L., G.L. Hammer, J.N.G. Hargreaves, D.P. Holzworth, and D.M. Freebairn. 1996. APSIM: A novel software system for model development, model testing and simulation in agricultural system research. Agricultural Systems 50: 255–271.

    Article  Google Scholar 

  • McDonald, A.J.S., and W.J. Davies. 1996. Keeping in touch: Responses of the whole plant to deficits in water and nitrogen supply. Advances in Botanical Research 22: 229–300.

    Article  Google Scholar 

  • Meinke, H., R. Rabbinge, G. Hammer, H. van Keulen, and P. Jamieson. 1998. Improving wheat simulation capabilities in Australia from a cropping systems perspective. II. Testing simulation capabilities of wheat growth. European Journal of Agronomy 8: 83–99.

    Article  Google Scholar 

  • Melloy, P., G. Hollaway, J. Luck, R. Norton, E. Aitken, and S. Chakraborty. 2010. Production and fitness of Fusarium pseudograminearum inoculum at elevated carbon dioxide in FACE. Global Change Biology 16: 3363–3373.

    Article  Google Scholar 

  • Meza, F.J., and D. Silva. 2009. Dynamic adaptation of maize and wheat production to climate change. Climatic Change 94: 143–156.

    Article  Google Scholar 

  • Milad, S.I., L.E. Wahba, and M.N. Barakat. 2011. Identification of RAPD and ISSR markers associated with flag leaf senescence under water-stressed conditions in wheat (Triticum aestivum L.). Australian Journal of Crop Science 5(3): 337–343.

    CAS  Google Scholar 

  • Mishra, A., R. Singh, N.S. Raghuwanshi, C. Chatterjee, and J. Froebrich. 2013. Spatial variability of climate change impacts on yield of rice and wheat in the Indian Ganga Basin. Science of the Total Environment 468–469: S132–S138.

    Article  CAS  Google Scholar 

  • Mkhabela, M., P. Bullock, M. Gervais, G. Finlay, and H. Sapirstein. 2010. Assessing indicators of agricultural drought impacts on spring wheat and quality on the Canadian prairies. Agricultural and Forest Meteorology 150: 399–410.

    Article  Google Scholar 

  • Mo, X.G., S.X. Liu, Z.H. Lin, and R.P. Guo. 2009. Regional crop yield, water consumption and water use efficiency and their responses to climate change in the North China Plain. Agriculture Ecosystems and Environment 134: 67–78.

    Article  Google Scholar 

  • Mochida, O. 1991. Impact of CO2-climate change on pests distribution. Agriculture and Horticulture 66: 128–136.

    Google Scholar 

  • Moffat, A.S. 2002. Plant genetics. Finding new ways to protect drought-stricken plants. Science 296: 1226–1229.

    Article  CAS  Google Scholar 

  • Mohammadi, R., B. Sadeghzadeh, H. Ahmadi, N. Bahrami, and A. Amri. 2015. Field evaluation of durum wheat landraces for prevailing abiotic and biotic stresses in highland rainfed regions of Iran. The Crop Journal. doi:10.1016/j.cj.2015.03.008.

    Google Scholar 

  • Mohanty, M., M.E. Probert, K.S. Reddy, R.C. Dalal, A.K. Mishra, A.S. Rao, M. Singh, and N.W. Menzies. 2012. Simulating soybean–wheat cropping system: APSIM model parameterization and validation. Agriculture Ecosystems and Environment 152: 68–78.

    Article  Google Scholar 

  • Morison, J.I.L. 1985. Sensitivity of stomata and water use efficiency to high CO2. Plant, Cell and Environment 8: 467–474.

    Article  Google Scholar 

  • Mullarkey, M., and P. Jones. 2000. Isolation and analysis of thermotolerant mutants of wheat. Journal of Experimental Botany 51: 139–146.

    Article  CAS  Google Scholar 

  • Munns, R., R.A. James, B. Xu, A. Athman, S.J. Conn, C. Jordans, C.S. Byrt, R.A. Hare, S.D. Tyerman, M. Tester, D. Plett, and M. Gilliham. 2012. Wheat grain yield on saline soils is improved by an ancestral Na(+) transporter gene. Nature Biotechnology 30: 360–364.

    Article  CAS  Google Scholar 

  • Murray, T.J., D.S. Ellsworth, D.T. Tissue, and M. Riegler. 2013. Interactive direct and plant-mediated effects of elevated atmospheric CO2 and temperature on a eucalypt-feeding insect herbivore. Global Change Biology 19: 1407–1416.

    Article  CAS  Google Scholar 

  • Natural Resources Institute Finland (NRIF). 2015. Global warming reduces wheat production markedly if no adaptation takes place. ScienceDaily. Retrieved 19 Feb, 2015 from www.sciencedaily.com/releases/2015/01/150112082944.htm.

  • Nawaz, A., M. Farooq, S.A. Cheema, and A. Wahid. 2013. Differential response of wheat cultivars to terminal heat stress. International Journal of Agriculture and Biology 15: 1354–1358.

    Google Scholar 

  • Nezhadahmadi, A., Z.H. Prodhan, and G. Faruq. 2013. Drought tolerance in wheat. Review Article 610721: 12. http://dx.doi.org/10.1155/2013/610721.

  • NIC, The National Intelligence Council. 2012. Global trends 2030: Alternative worlds. Washington, DC: NIC.

    Google Scholar 

  • Nicolas, M.E., R.M. Gleadow, and M.J. Dalling. 1985. Effect of post-anthesis drought on cell-division and starch accumulation in developing wheat grains. Annals of Botany 55: 433–444.

    Google Scholar 

  • Niinemets, Ü. 2010. Responses of forest trees to single and multiple environmental stresses from seedlings to mature plants: Past stress history, stress interactions, tolerance and acclimation. Forest Ecology and Management 260: 1623–1639.

    Article  Google Scholar 

  • Nonhebel, S. 1994. Inaccuracies in weather data and their effects on crop growth simulation results. II. Water-limited production. Climate Research 4: 61–74.

    Article  Google Scholar 

  • Nonhebel, S. 1996. Effects of temperature rise and increase in CO2 concentration on simulated wheat yields in Europe. Climatic Change 34: 73–90.

    Article  CAS  Google Scholar 

  • Oechel, W.C., and B.R. Strain. 1985. Native species responses to increased atmospheric carbon dioxide concentration. In Direct effects of increasing carbon dioxide on vegetation, ed. B.R. Strain and J.D. Cure, 117–154. Washington, DC: DOE/ER-0238, U.S. Department of Energy.

    Google Scholar 

  • Olesen, J.E., B.M. Petersen, J. Berntsen, S. Hansen, P.D. Jamieson, and A.G. Thomsen. 2002. Comparison of methods for simulating effects of nitrogen on green area index and dry matter growth in winter wheat. Field Crops Research 74: 131–149.

    Article  Google Scholar 

  • Olesen, J.E., T.R. Carter, C.H. Diaz-Ambrona, et al. 2007. Uncertainties in projected impacts of climate change on European agriculture and terrestrial ecosystems based on scenarios from regional climate models. Climatic Change 81: 123–143.

    Article  Google Scholar 

  • Olesen, J.E., M. Trnka, K.C. Kersebaum, A.O. Skjelvag, B. Seguin, P. Peltonen-Sainio, F. Rossi, J. Kozyra, and F. Micale. 2011. Impacts and adaptation of European crop production systems to climate change. European Journal of Agronomy 34: 96–112.

    Article  Google Scholar 

  • Ortiz, R., K.D. Sayre, B. Govaerts, R. Gupta, G.V. Subbarao, T. Ban, D. Hodson, J.M. Dixon, J.I. Ortiz-Monasterio, and M. Reynolds. 2008. Climate change: Can wheat beat the heat? Agriculture Ecosystems and Environment 126: 46–58.

    Article  Google Scholar 

  • Ortiz, R., D. Edwards, S. Mayes, F.C. Ogbonnaya, and C. Kole. 2014. Agro-biodiversity, climate change challenges and potential genomics-led plant breeding solutions, pp 3–12. In ‘Application of Genomics to the Production of Climate Resilient Crops: Challenges and opportunities’. International Climate Resilient Crops Genomics Consortium (ICRCGC) White Paper, ed. D. Edwards, R. Henry, and C. Kole. Available for download at http://www.climatechangegenomics.org/.

  • Otter-Nacke, S., D.C. Godwin, and J.T. Ritchie. 1987. Testing and validating the CERES-Wheat model in diverse environments, AgRISTARS Publication no. YM-15‐00407. Springfield: NTIS.

    Google Scholar 

  • Ozdogan, M. 2011. Modeling the impacts of climate change on wheat yields in Northwestern Turkey. Agriculture Ecosystems and Environment 141: 1–12.

    Article  Google Scholar 

  • Palosuo, T., K.C. Kersebaum, C. Angulo, P. Hlavinka, M. Moriondo, J.E. Olesen, R.H. Patil, F. Ruget, C. Rumbaur, J. Takác, M. Trnka, M. Bindi, B. Caldag, F. Ewert, R. Ferrise, W. Mirschel, L. Saylan, B. Siskak, and R. Rötter. 2011. Simulation of winter wheat yield and its variability in different climates of Europe: A comparison of eight crop growth models. European Journal of Agronomy 35: 103–114.

    Article  Google Scholar 

  • Pangga, I.B., J. Hanan, and S. Chakraborty. 2012. Climate change impacts on plant canopy architecture: Implications for pest and pathogen management. European Journal of Plant Pathology 135(3): 595–610.

    Article  Google Scholar 

  • Pannkuk, C.D., C.O. Stockle, and R.I. Papendick. 1998. Evaluating CropSyst simulations of wheat management in a wheat-fallow region of the US pacific northwest. Agricultural Systems 57(2): 121–134.

    Article  Google Scholar 

  • Parry, M.L., J.H. Porter, and T.R. Carter. 1990. Agriculture: Climatic change and its implications. Trends in Ecology and Evolution 5: 318–322.

    Article  CAS  Google Scholar 

  • Passioura, J.B. 1996. Drought and drought tolerance. In Drought tolerance in higher plants: Genetical, physiological and molecular biological analysis, ed. E. Belhassen, 3–12. Dordrecht: Kluwer.

    Google Scholar 

  • Patterson, D.T. 1993. Implications of global climate change for impact of weeds, insects, and plant diseases. In International crop science, vol. I, 273–280. Madison: Crop Science Society of America.

    Google Scholar 

  • Patterson, D.T. 1995. Weeds in a changing climate. Review of Weed Science 43(4): 685–701.

    CAS  Google Scholar 

  • Patterson, D.T., and E.P. Flint. 1990. Implications of increasing carbon dioxide and climate change for plant communities and competition in natural and managed ecosystems. In Impact of CO 2 , trace gases, and climate change on global agriculture, Special publication 53, ed. B.A. Kimball, N.J. Rosenberg, and L.H. Allen Jr., 83–110. Madison: American Society of Agronomy.

    Google Scholar 

  • Patterson, D.T., A.E. Russell, D.A. Mortensen, R.D. Coffin, and E.P. Flint. 1986. Effects of temperature and photoperiod on Texas panicum (Panicum texanum) and wild proso millet (Panicum miliaceum). Weed Science 34: 876–882.

    Google Scholar 

  • Patterson, D.T., J.K. Westbrook, R.J.V. Joyce, P.D. Lingren, and J. Rogasik. 1999. Weeds, insects, and disease. Climatic Change 43: 711–727.

    Article  CAS  Google Scholar 

  • Pautasso, M., T.F. Döring, M. Garbelotto, L. Pellis, and M.J. Jeger. 2012. Impacts of climate change on plant diseases-opinions and trends. European Journal of Plant Pathology 133: 295–313.

    Article  Google Scholar 

  • Pavlova, V.N., S.E. Varcheva, R. Bokusheva, and P. Calanca. 2014. Modelling the effects of climate variability on spring wheat productivity in the steppe zone of Russia and Kazakhstan. Ecological Modelling 277: 57–67.

    Article  Google Scholar 

  • Peterson, G.A., D.G. Westfall, and C.V. Cole. 1993. Agroecosystem approach to soil and crop management research. Soil Science Society of America Journal 57: 1354–1360.

    Article  Google Scholar 

  • Pinto, R.S., M.P. Reynolds, K.L. Mathews, C.L. McIntyre, J.J. Olivares-Villegas, and S.C. Chapman. 2010. Heat and drought adaptive QTL in a wheat population designed to minimize confounding agronomic effects. Theoretical and Applied Genetics 121: 1001–1021.

    Article  Google Scholar 

  • Plaut, Z., B.J. Butow, C.S. Blumenthal, and C.W. Wrigley. 2004. Transport of dry matter into developing wheat kernels and its contribution to grain yield under post-anthesis water deficit and elevated temperature. Field Crops Research 86: 185–298.

    Article  Google Scholar 

  • Porter, J.R. 1984. A model of canopy development in winter wheat. Journal of Agricultural Science 102: 383–392.

    Article  Google Scholar 

  • Porter, J.R. 1993. AFRCWHEAT2: A model of the growth and development of wheat incorporating responses to water and nitrogen. European Journal of Agronomy 2: 69–82.

    Article  Google Scholar 

  • Porter, J.R., and D.J. Moot. 1998. Research beyond the means climatic variability and plant growth. COST Symposium on Applied Agrometeorology and Agroclimatology.

    Google Scholar 

  • Porter, J.R., P.D. Jamieson, and D.R. Wilson. 1993. Comparison of the wheat simulation models AFRCWHEAT2, CERES-wheat and SWHEAT for non-limiting conditions of crop growth. Field Crops Research 33(1–2): 131–157.

    Article  Google Scholar 

  • Porter, J.R., and M.A. Semenov. 2005. Crop responses to climatic variation. Philosophical Transactions of the Royal Society B 360: 2021–2035.

    Article  Google Scholar 

  • Porter, J.H., M.L. Parry, and T.R. Carter. 1991. The potential effects of climatic change on agricultural insect pests. Agricultural Forest Meteorology 57: 221–240.

    Article  Google Scholar 

  • Pradhan, G.P., P.V.V. Prasad, A.K. Fritz, M.B. Kirkham, and B.S. Gill. 2012. Effects of drought and high temperature stress on synthetic hexaploid wheat. Functional Plant Biology 39: 90–198.

    Google Scholar 

  • Prasad, M., R.K. Varshney, A. Kumar, H.S. Balyan, P.C. Sharma, K.J. Edwards, H. Singh, H.S. Dhaliwal, J.K. Roy, and P.K. Gupta. 1999. A microsatellite marker associated with a QTL for grain protein content on chromosome arm 2DL of bread wheat. Theoretical and Applied Genetics 99: 341–345.

    Article  Google Scholar 

  • Pritchard, S.G., and H.H. Rogers. 2000. Spatial and temporal deployment of crop roots in CO2-enriched environments. The New Phytologist 147: 55–71.

    Article  CAS  Google Scholar 

  • Qaderi, M.M., and D.M. Reid. 2009. Crop responses to elevated carbon dioxide and temperature. In Climate change and crop, ed. S.N. Singh. Berlin: Springer. doi:10.1007/978-3-540-88246-61.

    Google Scholar 

  • Qin, Z., Q. Zhuang, and M. Chen. 2012. Impacts of land use change due to biofuel crops on carbon balance, bioenergy production, and agricultural yield, in the conterminous United States. GCB Bioenergy 4: 277–288.

    Article  Google Scholar 

  • Rainey, R.C. 1989. Migration and meteorology: Flight behavior and the atmospheric environment of migrant pests. New York: Oxford University Press. 314 pp.

    Google Scholar 

  • Rawson, H.M. 1992. Plant responses to temperature under conditions of elevated CO2. Australian Journal of Botany 40: 473–490.

    Article  CAS  Google Scholar 

  • Rawson, H.M. 1995. Yield responses of two wheat genotypes to carbon dioxide and temperature in field studies using temperature gradient tunnels. Australian Journal of Plant Physiology 22: 23–32.

    Article  Google Scholar 

  • Reddy, V.R., and Y.A. Pachepsky. 2000. Predicting crop yields under climate change conditions from monthly GCM weather projections. Environmental Modelling & Software 15: 79–86.

    Article  Google Scholar 

  • Reddy, A.R., K.R. Reddy, and H.F. Hodges. 1998. Interactive effects of elevated carbon dioxide and growth temperature on photosynthesis in cotton leaves. Plant Growth Regulation 26: 33–40.

    Article  CAS  Google Scholar 

  • Reidsma, P., F. Ewert, Lansink A. Oude, and R. Leemans. 2010. Adaptation to climate change and climate variability in European agriculture: The importance of farm level responses. European Journal of Agronomy 32: 91–102.

    Article  Google Scholar 

  • Reilly, J., W. Baethgen, F.E. Chege, S.C. van de Geijn, L. Erda, A. Iglesias, G. Kenny, D. Patterson, J. Rogasik, R. Rötter, C. Rosenzweig, W. Sombroek, and J. Westbrook. 1996. Agriculture in a changing climate: Impacts and adaptation. In Climate change 1995: Impacts, adoption, and mitigation of climate change: Scientific and technical analysis, ed. R.T. Watson, M.C. Zinyowera, and R.H. Moss, 427–467. Cambridge: Cambridge University Press.

    Google Scholar 

  • Reyenga, P.J., S.M. Howden, H. Meinke, and G.M. Mckeon. 1999a. Modelling global change impacts on wheat cropping in south-east Queensland, Australia. Environmental Modelling and Software 14: 297–306.

    Article  Google Scholar 

  • Reyenga, P.J., S.M. Howden, H. Meinke, and W.B. Hall. 1999b. Global change impacts on the wheat production along an environmental gradient in South Australia. In MODSIM 99 Proceedings of the international congress on modeling and simulation, 6–9 December 1997, Hamilton, New Zealand, ed. L. Oxley and F. Scrimgeour. Perth: Modelling and Simulation Society of Australia and New Zealand.

    Google Scholar 

  • Reynolds, M., and R. Tuberosa. 2008. Translational research impacting on crop productivity in drought-prone environments. Current Opinion in Plant Biology 11: 171–179.

    Article  Google Scholar 

  • Reynolds, M.P., J. Pietragalla, and H.-J. Braun. 2008. International symposium on wheat yield potential: Challenges to international wheat breeding. Mexico: CIMMYT.

    Google Scholar 

  • Reynolds, M., Y. Manes, A. Izanloo, and P. Langridge. 2009. Phenotyping approaches for physiological breeding and gene discovery in wheat. The Annals of Applied Biology 155: 309–320.

    Article  Google Scholar 

  • Reynolds, M.P., D. Hays, and S. Chapman. 2010. Breeding for adaptation to heat and drought stress. In Climate change and crop production, ed. M.P. Reynolds, 447–454. London: CABI.

    Chapter  Google Scholar 

  • Rharrabtia, Y., C. Royo, D. Villegas, N. Aparicio, and L.F. García del Moral. 2003a. Durum wheat quality in Mediterranean environments I. Quality expression under different zones, latitudes and water regimes across Spain. Field Crops Research 80: 123–131.

    Article  Google Scholar 

  • Rharrabtia, Y., D. Villegas, C. Royo, V. Martos-Nunez, and L.F. García del Moral. 2003b. Durum wheat quality in Mediterranean environments II. Influence of climatic variables and relationships between quality parameters. Field Crops Research 80: 133–140.

    Article  Google Scholar 

  • Ribas-Carbo, M., N.L. Taylor, L. Giles, et al. 2005. Effects of water stress on respiration in soybean leaves. Plant Physiology 139(1): 466–473.

    Article  CAS  Google Scholar 

  • Richards, R.A. 1991. Crop improvement for temperate Australia: Future opportunities. Field Crops Research 26: 141–169.

    Article  Google Scholar 

  • Richards, R.A. 2006. Physiological traits used in the breeding of new cultivars for water-scarce environments. Agricultural Water Management 80: 197–211.

    Article  Google Scholar 

  • Richter, G.M., and M.A. Semenov. 2005. Modelling impacts of climate change on wheat yields in England and Wales: Assessing drought risks. Agricultural Systems 84: 77–97.

    Article  Google Scholar 

  • Ritchie, J.T., and S. Otter. 1985. Description and performance of CERES-Wheat: A user-riented wheat yield model. In ARS wheat yield project, ARS-38, ed. W.O. Willis, 159–175. Washington, DC: Department of Agriculture, Agricultural Research Service.

    Google Scholar 

  • Ritchie, J.T., D.C. Godwin, and S. Otter-Nacke. 1988. CERES-Wheat: A simulation model of wheat growth and development. College Station: Texas A&M University Press.

    Google Scholar 

  • Rizhsky, L., H. Liang, and R. Mittler. 2002. The combined effect of drought stress and heat shock on gene expression in tobacco. Plant Physiology 130(3): 1143–1151.

    Article  CAS  Google Scholar 

  • Rizza, F., F.W. Badeck, L. Cattivelli, O. Lidestri, N. di Fonzo, and A.M. Stanca. 2004. Use of a water stress index to identify barley genotypes adapted to rainfed and irrigated conditions. Crop Science 44(6): 2127–2137.

    Article  Google Scholar 

  • Robinson, E.A., G.D. Ryan, and J.A. Newman. 2012. A meta-analytical review of the effects of elevated CO2 on plant-arthropod interactions highlights the importance of interacting environmental and biological variables. New Phytologist 194: 321–336.

    Article  CAS  Google Scholar 

  • Roelfs, A.P. 1990. Epidemiology of the cereal rusts in north America. Canadian Journal of Plant Pathology 11: 86–90.

    Article  Google Scholar 

  • Rosenzweig, C., and D. Hillel. 1998. Climate change and the global harvest. New York: Oxford University Press.

    Google Scholar 

  • Rosenzweig, C., and F.N. Tubiello. 2007. Adaptation and mitigation strategies in agriculture: An analysis of potential synergies. Mitigation and Adaptation Strategies for Global Change 12: 855–873. doi:10.1007/s11027-007-9103-8.

    Article  Google Scholar 

  • Roy, J.K., M. Prasad, R.K. Varshney, H.S. Balyan, T.K. Blake, H.S. Dhaliwal, H. Singh, K.J. Edwards, and P.K. Gupta. 1999. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with pre-harvest sprouting tolerance. Theoretical and Applied Genetics 99: 336–340.

    Article  Google Scholar 

  • Royle, D.J., M.W. Shaw, and R.J. Cook. 1986. Patterns of development of Septoria nodorume and S. tritici in some winter wheat crops in western Europe, 1981-1983. Plant Pathology 35: 466–476.

    Article  Google Scholar 

  • Rucker, K.S., C.K. Kevin, C.C. Holbrook, and J.E. Hook. 1995. Identification of peanut genotypes with improved drought avoidance traits. Peanut Science 22: 14–18.

    Article  Google Scholar 

  • Saini, H.S., and D. Aspinall. 1982. Abnormal sporogenesis in wheat (Triticum aestivum L.) induced by short periods of high temperature. Annals of Botany 49: 835–846.

    Google Scholar 

  • Saini, H.S., and M.E. Westgate. 1999. Reproductive development in grain crops during drought. Advances in Agronomy 68: 59–96.

    Article  Google Scholar 

  • Saini, H.S., M. Sedgley, and D. Aspinall. 2010. Effect of Heat stress during floral development on pollen tube growth and ovary anatomy in wheat (Triticum aestivum L.). Australian Journal of Plant Physiology 10: 137–144.

    Article  Google Scholar 

  • Salekdeh, G.H., H.J. Siopongco, L.J. Wade, B. Ghareyazie, and J. Bennett. 2002. A proteomic approach to analyzing drought- and salt-responsiveness in rice. Field Crops Research 76(2-3): 199–219.

    Article  Google Scholar 

  • Sanchez, A.C., P.K. Subudhi, D.T. Rosenow, and H.T. Nguyen. 2002. Mapping of QTLs associated with drought resistance in sorghum (Sorghum bicolor L. Moench). Plant Molecular Biology 48: 713–726.

    Article  CAS  Google Scholar 

  • Savin, R., and M.E. Nicolas. 1996. Effects of short periods of drought and high temperature on grain growth and starch accumulation of two malting barley cultivars. Australian Journal of Plant Physiology 23: 201–210.

    Article  Google Scholar 

  • Schapendonk, A.H.C.M., H.Y. Xu, P.E.L.V.D. Putten, and J.H.J. Spiertz. 2007. Heat-shock effects on photosynthesis and sink-source dynamics in wheat (Triticum aestivum L.). NJAS-Wageningen Journal of Life Sciences 55: 37–54.

    Article  Google Scholar 

  • Schneekloth, J., T. Bauder, and N. Hansen. 2012. Limited irrigation management: Principles and practices. Colorado State University Extension. 4/03. Fact Sheet No. 4.720. http://www.ext.colostate.edu/pubs/crops/04720.html.

  • Semenov, M.A., and N.G. Halford. 2009. Identifying target traits and molecular mechanisms for wheat breeding under a changing climate. Journal of Experimental Botany 60(10): 2791–2804.

    Article  CAS  Google Scholar 

  • Semenov, M.A., and J.R. Porter. 1995. Climatic variability and the modelling of crop yields. Agricultural and Forest Meteorology 73: 265–283.

    Article  Google Scholar 

  • Semenov, M.A., and P.R. Shewry. 2011. Modelling predicts that heat stress, not drought, will increase vulnerability of wheat in Europe. Science Reports 1: 66.

    CAS  Google Scholar 

  • Semenov, M.A., J. Wolf, L.G. Evans, H. Eckerstern, and A. Iglesias. 1996. Comparison of wheat simulation models under climate change. II. Application of climate change scenarios. Climate Research 7: 271–281.

    Article  Google Scholar 

  • Semenov, M.A., P.D. Jamieson, and P. Martre. 2007. Deconvoluting nitrogen use efficiency in wheat: A simulation study. European Journal of Agronomy 26: 283–294.

    Article  CAS  Google Scholar 

  • Semenov, M.A., R.A.C. Mitchell, A.P. Whitmore, M.J. Hawkesford, M.A.J. Parry, and P.R. Shewry. 2012. Shortcomings in wheat yield predictions. Nature Climate Change 2: 380–382.

    Article  Google Scholar 

  • Semenov, M.A., P. Stratonovitch, F. Alghabari, and M.J. Gooding. 2014. Adapting wheat in Europe for climate change, review. Journal of Cereal Science 59: 245–256.

    Article  Google Scholar 

  • Sinclair, T.R., and R.C. Muchow. 2001. System analysis of plant traits to increase grain yield on limited water supplies. Agronomy Journal 93: 263–270.

    Article  Google Scholar 

  • Sinclair, T.R., and N. Seligman. 2000. Criteria for publishing papers on crop modeling. Field Crops Research 68: 165–172.

    Article  Google Scholar 

  • Sinha, S.K., N. H. Rao, and M.S. Swaminathan. 1988. Food security in the changing global climate. In the conference proceedings for the changing atmosphere: Implications for global security, 27–30 June 1988, in Toronto, Canada, 167-192. WMO-No. 170. Geneva: World Meteorological Organization.

    Google Scholar 

  • Sivamani, E., A. Bahieldin, J.M. Wraith, et al. 2000. Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Science 155(1): 1–9.

    Article  CAS  Google Scholar 

  • Smale, M., P. Aquino, J. Crossa, E. del Toro, J. Dubin, T. Fischer, P. Fox, M. Khairallah, A. Mujeeb-Kazi, K.J. Nightingale, I. Ortiz-Monasterio, S. Rajaram, R. Singh, B. Skovmand, M. van Ginkel, G. Varughese, and R. Ward. 1996. Understanding global trends in the use of wheat diversity and international flows of wheat genetic resources, Economics working paper 96-02. Mexico: CIMMYT.

    Google Scholar 

  • Smirnoff, N. 1993. The role of active oxygen in the response of plants to water deficit and desiccation. New Phytologist 125: 27–58.

    Article  CAS  Google Scholar 

  • Sobhkhizi, A., Mf Rayni, H.B. Barzin, and M. Noori. 2014. Influence of drought stress on photosynthetic enzymes, chlorophyll, protein and relative water content in crop plants. International Journal of Biosciences 5(7): 89–100.

    Article  CAS  Google Scholar 

  • Soddu, A., R. Deidda, M. Marrocu, R. Meloni, C. Paniconi, R. Ludwig, M. Sodde, G. Mascaro, and E. Perra. 2013. Climate variability and durum wheat adaptation using the AquaCrop model in southern Sardinia. Procedia Environmental Sciences 19: 830–835.

    Article  Google Scholar 

  • Soltani, A., and T.R. Sinclair. 2012. Modeling physiology of crop development, growth and yield. Wallingford: CABI Publication. 322 pp.

    Book  Google Scholar 

  • Soltani, A., and T.R. Sinclair. 2015. A comparison of four wheat models with respect to robustness and transparency: Simulation in a temperate, sub-humid environment. Field Crops Research 175: 37–46.

    Article  Google Scholar 

  • Soltani, A., V. Maddah, and T.R. Sinclair. 2013. SSM-wheat: A simulation model for wheatdevelopment, growth and yield. International Journal of Plant Production 7: 711–740.

    Google Scholar 

  • Sommer, R., M. Glazirina, T. Yuldashev, A. Otarov, M. Ibraev, L. Martynovac, M. Bekenov, B. Kholov, Kobilov R. Ibragimov, S. Karaev, M. Sultonov, F. Khasanova, M. Esanbekov, D. Mavlyanov, S. Isaev, S. Abdurahimov, R. Ikramov, L. Shezdyukova, and E. de Pauw. 2013. Impact of climate change on wheat productivity in Central Asia. Agriculture Ecosystems and Environment 178: 78–99.

    Article  Google Scholar 

  • Southworth, J., R.A. Pfeifer, M. Habeck, J.C. Randolph, O.C. Doering, and D.G. Rao. 2002. Sensitivity of winter wheat yields in the Midwestern United States to future changes in climate, climate variability, and CO2 fertilization. Climate Research 22: 73–86.

    Article  Google Scholar 

  • Steduto, P., T.C. Hsiao, D. Raes, and E. Fereres. 2009. AquaCrop: The FAO crop model to simulate yield response to water: I. Concepts and underlying principles. Agronomy Journal 112: 426–437.

    Article  Google Scholar 

  • Stitt, M. 1991. Rising CO2 levels and their potential significance for carbon flow in photosynthetic cells. Plant, Cell and Environment 14: 311–317.

    Article  Google Scholar 

  • Stockle, C.O., S. Martin, and G.S. Campbell. 1994. CropSyst, a cropping systems model: Water/nitrogen budgets and crop yield. Agricultural Systems 46: 335–359.

    Article  Google Scholar 

  • Stockle, C.O., M. Donatellib, and R. Nelsona. 2003. CropSyst, a cropping systems simulation model. European Journal of Agronomy 18(3–4): 289–307.

    Article  Google Scholar 

  • Sultana, H., N. Ali, M.M. Iqbal, and A.M. Khan. 2009. Vulnerability and adaptability of wheat production in different climatic zones of Pakistan under climate change scenarios. Climatic Change 94: 123–142.

    Article  CAS  Google Scholar 

  • Supit, I., C.A. Van Diepen, A.J.W. De Wit, P. Kabat, B. Baruth, and F. Ludwig. 2010. Recent changes in the climatic yield potential of various crops in Europe. Agricultural Systems 103: 683–694.

    Article  Google Scholar 

  • Supit, I., C.A. van Diepen, A.J.W. de Wit, J. Wolf, P. Kabat, B. Baruth, and F. Ludwig. 2012. Assessing climate change effects on European crop yields using the crop growth monitoring system and a weather generator. Agricultural and Forest Meteorology 164: 96–111.

    Article  Google Scholar 

  • Sutherst, R.W. 1991. Pest risk analysis and the greenhouse effect. Review of Agricultural Entomology 79: 1177–1187.

    Google Scholar 

  • Sutherst, R.W., G.F. Maywald, and D.B. Skarrate. 1995. Predicting insect distributions in a changed climate. In Insects in a changing environment, ed. R. Harrington and N.E. Stork, 59–91. London: Academic.

    Google Scholar 

  • Sutherst, R.W., F. Constable, K.J. Finlay, R. Harrington, J. Luck, and M.P. Zalucki. 2011. Adapting to crop pest and pathogen risks under a changing climate. Wiley Interdisciplinary Reviews – Climate Change 2: 220–237.

    Article  Google Scholar 

  • Szegletes, Z.S., L. Erdei, I. Tari, and L. Cseuz. 2000. Accumulation of osmoprotectants in wheat cultivars of different drought tolerance. Cereal Research Communications 28(4): 403–410.

    CAS  Google Scholar 

  • Talukdar, A., and P. Talukdar. 2013. Emerging concepts and strategies for genomics and breeding. In Genomics and breeding for climate-resilient crops, vol. I: Concepts and strategies, ed. C. Kole. Berlin/Heidelberg: Springer. doi:10.1007/978-3-642-37045-8.

    Google Scholar 

  • Talukder, A., G. Gill, G. McDonald, P. Hayman, B. Alexander. 2010. Field evaluation of sensitivity of wheat to high temperature stress near flowering and early grain set. In 15th Australian agronomy conference, Christchurch, New Zealand. http://www.agronomy.org.au/.

  • Tardieu, F. 2003. Virtual plants: Modelling as a tool for genomics of tolerance to water deficit. Trends in Plant Science 8: 9–14.

    Article  CAS  Google Scholar 

  • Tashiro, T., and I.F. Wardlaw. 1989. A comparison of the effect of high temperature on grain development in wheat and rice. Annals of Botany 64: 59–65.

    Google Scholar 

  • Tester, M., and M. Bacic. 2005. Abiotic stress tolerance in grasses. From model plants to crop plants. Plant Physiology 137: 791–793.

    Article  CAS  Google Scholar 

  • Tewolde, H., C.J. Fernandez, and C.A. Erickson. 2006. Wheat cultivars adapted to post-heading high temperature stress. Journal of Agronomy and Crop Science 192: 111–120.

    Article  Google Scholar 

  • Therond, O., H. Hengsdijk, E. Casellas, D. Wallach, M. Adam, H. Belhouchette, R. Oomen, G. Russell, F. Ewert, J.-E. Bergez, S. Janssen, J. Wery, and M.K. Van Ittersum. 2011. Using a cropping system model at regional scale: Low-data approaches for crop management information and model calibration. Agriculture Ecosystems and Environment 142(1-2): 85–94.

    Article  Google Scholar 

  • Thompson, G.B., and F.J. Woodward. 1994. Some influences of CO2 enrichment, nitrogen nutrition and competition on grain yield and quality in spring wheat and barley. Journal of Experimental Botany 45: 937–942.

    Article  CAS  Google Scholar 

  • Thomson, A.M., R.A. Brown, S.J. Ghan, R.C. Izaurralde, N.J. Rosenberg, and L.R. Leung. 2002. Elevation dependence of winter wheat production in Eastern Washington State with climate change: A methodological study. Climatic Change 54: 141–164.

    Article  CAS  Google Scholar 

  • Todorovska, E., N. Christov, S. Slavov, P. Christova, and D. Vassilev. 2009. Biotic stress resistance in wheat—Breeding and genomic selection implications. Biotechnology & Biotechnological Equipment 23(4): 1417–1426. doi:10.2478/V10133-009-0006-6.

    Article  CAS  Google Scholar 

  • Torriani, D.S., P. Calanca, S. Schmid, M. Beniston, and J. Fuhrer. 2007. Potential effects of changes in mean climate and climate variability on the yield of winter and spring crops in Switzerland. Climate Research 34: 59–69.

    Article  Google Scholar 

  • Toscano, P., R. Ranieri, A. Matese, F.P. Vaccari, B. Gioli, A. Zaldei, M. Silvestri, C. Ronchi, P. La Cava, J.R. Porter, and F. Miglietta. 2012. Durum wheat modeling: The Delphi system, 11 years of observations in Italy. European Journal of Agronomy 43: 108–118.

    Article  Google Scholar 

  • Toumi, J., S. Er-Raki, J. Ezzaharc, S. Khabba, L. Jarland, and A. Chehbounid. 2016. Performance assessment of AquaCrop model for estimating evapotranspiration, soil water content and grain yield of winter wheat in Tensift Al Haouz (Morocco): Application to irrigation management. Agricultural Water Management 163: 219–235.

    Article  Google Scholar 

  • Treharne, K. 1989. The implications of the “greenhouse effect” for fertilizers and agrochemicals. In The “Greenhouse Effect” and UK Agriculture, No. 19, ed. R.M. Bennet, 67–78. Reading: Center for Agricultural Strategy, University of Reading.

    Google Scholar 

  • Trethowan Mvan Ginkel, M., and S. Rajaram. 2002. Progress in breeding wheat for yield and adaptation in global drought affected environments. Crop Science 42: 1441–1446.

    Article  Google Scholar 

  • Trnka, M., M. Dubrovsky, D. Semeradova, and Z. Zalud. 2004. Projections of uncertainties in climate change scenarios into expected winter wheat yields. Theoretical and Applied Climatology 77: 229–249.

    Article  Google Scholar 

  • Trnka, M., R.P. Rötter, M. Ruiz-Ramos, K.C. Kersebaum, J.E. Olesen, Z. Žalud, and M.A. Semenov. 2014. Adverse weather conditions for European wheat production will become more frequent with climate change. Nature Climate Change 4: 637–643.

    Article  Google Scholar 

  • Tsvetsinskaya, E.A., L.O. Mearns, T. Mavromatis, W. Gao, L. McDaniel, and M.W. Downton. 2003. The effect of spatial scale of climatic change scenarios on simulated maize, winter wheat, and rice production in the southeastern United States. Climatic Change 60: 37–71.

    Article  CAS  Google Scholar 

  • Tuba, Z., K. Szente, and J. Koch. 1994. Response of photosynthesis, stomatal conductance, water use efficiency and production to long-term elevated CO2 in winter wheat. Journal of Plant Physiology 144: 661–668.

    Article  CAS  Google Scholar 

  • Tuba, Z., K. Szente, Z. Nagy, Z. Csintalan, and J. Koch. 1996. Responses of CO2 assimilation, transpiration and water use efficiency to long term elevated CO2 in perennial C3 xeric loess steppe species. J. Plant Physiology 148: 356–361.

    Article  CAS  Google Scholar 

  • Tuberosa, R., and S. Salvi. 2006. Genomics-based approaches to improve drought tolerance of crops. Trends in Plant Science 11(8): 405–412.

    Article  CAS  Google Scholar 

  • Tubiello, F.N., and F. Ewert. 2002. Modeling the effects of elevated CO2 on crop growth and yield: A review. European Journal of Agronomy 18(1–2): 57–74.

    Article  Google Scholar 

  • Tubiello, F.N., M. Donatelli, C. Rosenzweig, and C.O. Stockle. 2000. Effects of climate change and elevated CO2 on cropping systems: Model predictions at two Italian locations. European Journal of Agronomy 13: 179–189.

    Article  Google Scholar 

  • Turner, N.C. 2004. Sustainable production of crops and pastures under drought in a Mediterranean environment. The Annals of Applied Biology 144: 139–147.

    Article  Google Scholar 

  • UN, United Nations. 2013. World population prospects: The 2012 revision, highlights and advance tables, ESA/P/WP.228. New York: Department of Economic and Social Affairs, Population Division.

    Google Scholar 

  • USDA, United States Department of Agriculture. 2015. World agricultural production, Foreign agricultural service circular series WAP 7-15. Washington, DC: USDA.

    Google Scholar 

  • Valizadeh, J., S.M. Ziaei, and S.M. Mazloumzadeh. 2014. Assessing climate change impacts on wheat production (a case study). Journal of the Saudi Society of Agricultural Sciences 13(2): 107–115.

    Article  Google Scholar 

  • Van Diepen, C.A., J. Wolf, H. van Keulen, and C. Rappoldt. 1989. WOFOST: A simulation model of crop production. Soil Use Manage 5: 16–24.

    Article  Google Scholar 

  • Van Keulen, H., and N.G. Seligman. 1987. Simulation of water use, nitrogen nutrition and growth of a spring wheat crop, Simulation monographs. Wageningen: Pudoc. 310 pp.

    Google Scholar 

  • van Laar, H.H., J. Goudriaan, and H. van Keulen. 1992. Simulation of crop growth for potential and water limited production situations (as applied to spring wheat). Simulation Reports CABO-TT, 27, CABO-DLO/TPE-WAU, Wageningen, 78 pp.

    Google Scholar 

  • Vanaja, M., S.K. Yadav, G. Archana, N.J. Lakshmi, P.R. Ram Reddy, P. Vagheera, S.K. Abdul Razak, M. Maheswari, and B. Venkateswarlu. 2011. Response of C4 (maize) and C3 (sunflower) crop plants to drought stress and enhanced carbon dioxide concentration. Plant, Soil and Environment 57(5): 207–215.

    Google Scholar 

  • Varga, B., K. Balla, S. Bencze, and O. Veisz. 2010. Combined effect of the drought duration and elevated atmospheric co2 level on physiological and yield parameters of winter wheat. Acta Agronomica Hungarica 58(4): 323–331. doi:10.1556/AAgr.58.2010.4.1.

    Article  Google Scholar 

  • Volaire, F. 2003. Seedling survival under drought differs between an annual (Hordeum vulgare) and a perennial grass (Dactylis glomerata). New Phytologist 160: 501–510.

    Article  Google Scholar 

  • Vu, J.C.V. 2005. Acclimation of peanut (Arachis hypogaea L.) leaf photosynthesis to elevated growth CO2 and temperature. Environmental and Experimental Botany 53: 85–95.

    Article  CAS  Google Scholar 

  • Wahid, A., S. Gelani, M. Ashraf, and R. Foolad. 2007. Heat tolerance in plants: An overview. Environmental and Experimental Botany 61: 199–223.

    Article  Google Scholar 

  • Wall, G.W. 2001. Elevated atmospheric CO2 alleviates drought stress in wheat. Agriculture Ecosystems and Environment 87: 261–271.

    Article  CAS  Google Scholar 

  • Wall, G.W., N.R. Adam, T.J. Brooks, B.A. Kimball, P.J. Pinter Jr., R.L. LaMorte, F.J. Adamsen, D.J. Hunsaker, G. Wechsung, F. Wechsung, S. Grossman-Clarke, S.W. Leavitt, A.D. Matthias, and A.N. Webber. 2000. Acclimation response of spring wheat in a free-air CO2 enrichment (FACE) atmosphere with variable soil nitrogen regimes. 2. Net assimilation and stomatal conductance of leaves. Photosynthesis Research 66: 79–95.

    Article  CAS  Google Scholar 

  • Wallach, D., D. Makowski, J.W. Jones, and F. Brun. 2014. Working with dynamic crop models, 2nd ed, 394. London: Academic.

    Google Scholar 

  • Wang, Z., and B. Huang. 2004. Physiological recovery of Kentucky bluegrass from simultaneous drought and heat stress. Crop Science 44: 1729–1736.

    Article  CAS  Google Scholar 

  • Wang, X., J. Cai, D. Jiang, F. Liu, T. Dai, and W. Cao. 2011. Pre-anthesis high-temperature acclimation alleviates damage to the flag leaf caused by post-anthesis heat stress in wheat. Journal of Plant Physiology 168: 585–593.

    Article  CAS  Google Scholar 

  • Wang, L., Z. Feng, and J.K. Schjoerring. 2013. Effects of elevated atmospheric CO2 on physiology and yield of wheat (Triticum aestivum L.): A meta-analytic test of current hypotheses. Agriculture Ecosystems and Environment 178: 57–63.

    Article  CAS  Google Scholar 

  • Wang, Y., W. Hu, X. Zhang, L. Li, G. Kang, W. Feng, Y. Zhu, C. Wang, and T. Guo. 2014. Effects of cultivation patterns on winter wheat root growth parameters and grain yield. Field Crops Research 156: 208–218.

    Article  Google Scholar 

  • Watson, R.T., M.C. Zinyowera, and R.H. Moss. 1996. Climate change 1995: Impacts, adaptations and mitigation of climate change scientific-technical analyses. Cambridge: Cambridge University Press.

    Google Scholar 

  • Webber, H., P. Martre, S. Asseng, B. Kimball, J. White, M. Ottman, G.W. Wall, G. De Sanctis, J. Doltra, R. Grant, B. Kassie, A. Maiorano, J.E. Olesen, D. Ripoche, E.E. Rezaei, M.A. Semenov, P. Stratonovitch, F. Ewert. 2015. Canopy temperature for simulation of heat stress in irrigated wheat in a semi-arid environment: A multi-model comparison. Field Crops Research In Press.

    Google Scholar 

  • Weir, A.H., P.L. Bragg, J.R. Porter, and J.H. Rayner. 1984. A winter wheat crop simulation model without water or nutrient limitations. Journal of Agricultural Science 102: 371–382.

    Article  Google Scholar 

  • West, J.S., S. Holdgate, J.A. Townsend, S.G. Edwards, P. Jennings, and B.D.L. Fitt. 2012. Impacts of changing climate and agronomic factors on fusarium ear blight of wheat in the UK. Fungal Ecology 5: 53–61.

    Article  Google Scholar 

  • Wheeler, T.R., G.R. Batts, R.H. Ellis, P. Hardley, and J.I.L. Mortison. 1996a. Growth and yield of winter wheat (Triticum aestivum) crops in response to CO2 and temperature. The Journal of Agricultural Science 127: 37–48.

    Article  Google Scholar 

  • Wheeler, T.R., T.D. Hong, R.H. Ellis, G.R. Batts, J.I.L. Morison, and P. Hadley. 1996b. The duration and rate of grain growth, and harvest index, of wheat (Triticum aestivum L) in response to temperature and CO2. Journal of Experimental Botany 47: 623–630.

    Article  CAS  Google Scholar 

  • White, J.W., G. Hoogenboom, B.A. Kimball, and G.W. Wall. 2011. Methodologies for simulating impacts of climate change on crop production. Field Crops Research 124(3): 357–368.

    Article  Google Scholar 

  • Wilcoxa, J., and D. Makowskia. 2014. A meta-analysis of the predicted effects of climate change on wheat yields using simulation studies. Field Crops Research 156: 180–190.

    Article  Google Scholar 

  • Wilks, D.S., and S.J. Riha. 1996. High-frequency climate variability and crop yields. Climatic Change 32(3): 231–235.

    Article  Google Scholar 

  • Williams, J.R., C.A. Jones, and P.T. Dyke. 1984. A modeling approach to determining the relationship between erosion and soil productivity. Transactions of ASAE 27: 129–144.

    Article  Google Scholar 

  • Williams, M., P.R. Shewry, and J.L. Harwood. 1994. The influence of the ‘greenhouse effect’ on wheat (Triticum aestivum L.) grain lipids. Journal of Experimental Botany 45: 1379–1385.

    Article  CAS  Google Scholar 

  • Witcombe, J.R., P.A. Hollington, C.J. Howarth, S. Reader, and K.A. Steele. 2008. Breeding for abiotic stresses for sustainable agriculture. Philosophical Transactions of the Royal Society, Series B, Biological Sciences 363: 703–716.

    Article  CAS  Google Scholar 

  • Wittwer, S.H. 1990. Implications of greenhouse effect on crop productivity. HortScience 25: 1560–1567.

    Google Scholar 

  • Wolf, J., and C. Kempenaar. 1998. Results from Wageningen. In Model evaluation of experimental variability to improve predictability of crop yields under climate change, ed. J. Wolf (Compilator). Final report of the EU MODEXCROP project, pp. 3.1–3.106. Essex/Copenhagen/Wageningen: University of Essex/Royal Veterinary and Agricultural University/Wageningen University and Research Center.

    Google Scholar 

  • Wolf, J., M. van Oijen, and C. Kempenaar. 2002. Analysis of the experimental variability in wheat responses to elevated CO2 and temperature Agriculture. Ecosystems and Environment 93: 227–247.

    Article  Google Scholar 

  • Wolfe, D.W., and J.D. Erickson. 1993. Carbon dioxide effects on plants: Uncertainties and implications for modelling crop response to climate change. In Agricultural dimensions of global climate change, ed. H.M. Kaiser and T.E. Drennen, 153–178. Delray Beach: St. Lucie Press.

    Google Scholar 

  • Wollenweber, B., J.R. Porter, and J. Schellberg. 2003. Lack of interaction between extreme high-temperature events at vegetative and reproductive growth stages in wheat. Journal of Agronomy and Crop Science 189: 142–150.

    Article  Google Scholar 

  • Wong, S.C. 1990. Elevated atmospheric partial pressure of CO2 and plant growth. II. Non-structural carbohydrate content in cotton plants and its effect on growth parameters. Photosynthesis Research 23: 171–180.

    Article  CAS  Google Scholar 

  • Woodward, F.I., and F.A. Bazzaz. 1988. The responses of stomatal density to CO2 partial pressure. Journal of Experimental Botany 39: 1771–1781.

    Article  Google Scholar 

  • World Bank. 2008. World development report 2008: Agriculture for development. Washington, DC: The world Bank. 365pp.

    Book  Google Scholar 

  • Xiao, G.J., Q. Zhang, Y.B. Yao, H. Zhao, R.Y. Wang, H.Z. Bai, and F.J. Zhang. 2008. Impact of recent climatic change on the yield of winter wheat at low and high altitudes in semi-arid northwestern China. Agriculture Ecosystems and Environment 127: 37–42.

    Article  Google Scholar 

  • Xu, Y. 2010. Molecular plant breeding. Wallingford/Cambridge, MA: CAB International.

    Book  Google Scholar 

  • Yang, J., and J. Zhang. 2006. Grain filling of cereals under soil drying. New Phytologist 169: 223–236.

    Article  CAS  Google Scholar 

  • Yang, J.C., J.H. Zhang, Z.Q. Wang, G.W. Xu, and Q.S. Zhu. 2004. Activities of key enzymes in sucrose-to-starch conversion in wheat grains subjected to water deficit during grain filling. Plant Physiology 135: 1621–1629.

    Article  CAS  Google Scholar 

  • Yang, Y., D.L. Liu, M.R. Anwar, H. Zuo, and Y. Yang. 2014. Impact of future climate change on wheat production in relation to plant-available water capacity in a semiarid environment. Theoretical and Applied Climatology 115: 391–410.

    Article  Google Scholar 

  • Yano, T., M. Aydin, and T. Haraguchi. 2007. Impact of climate change on irrigation demand and crop growth in a Mediterranean environment of Turkey. Sensors 7: 2297–2315.

    Article  Google Scholar 

  • Yordanov, I., V. Velikova, and T. Tsonev. 2003. Plant responses to drought and stress tolerance. Bulgarian Journal of Plant Physiology Special Issue: 187–206.

    Google Scholar 

  • Zhang, X.C. 2005. Spatial downscaling of global climate model output for site specific assessment of crop production and soil erosion. Agricultural and Forest Meteorology 135: 215–229.

    Article  Google Scholar 

  • Zhang, H.P., and T. Oweis. 1998. Water yield relation and optimal irrigation scheduling of wheat in Mediterranean regions. Agriculture Water Management 3: 195–211.

    Google Scholar 

  • Zhao, G., B.A. Bryana, and X. Songa. 2014. Sensitivity and uncertainty analysis of the APSIM-wheat model: Interactions between cultivar, environmental, and management parameters. Ecological Modelling 279: 1–11.

    Article  CAS  Google Scholar 

  • Zhao, Z., X. Qin, E. Wang, P. Carberry, Y. Zhang, S. Zhou, X. Zhang, C. Hu, and Z. Wang. 2015. Modelling to increase the eco-efficiency of a wheat–maize double cropping system. Agriculture Ecosystems & Environment 210: 36–46.

    Article  Google Scholar 

  • Zhu, J.K. 2002. Salt and drought stress signal transduction in plants. Annual Review of Plant Biology 53: 243–273.

    Article  CAS  Google Scholar 

  • Ziska, L.H., C.F. Morris, and E.W. Goins. 2004. Quantitative and qualitative evaluation of selected wheat varieties released since 1903 to increasing atmospheric carbon dioxide: Can yield sensitivity to carbon dioxide be a factor in wheat performance? Global Change Biology 10: 1810–1819.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem Alhajj Ali .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Ali, S.A., Tedone, L., De Mastro, G. (2017). Climate Variability Impact on Wheat Production in Europe: Adaptation and Mitigation Strategies. In: Ahmed, M., Stockle, C. (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer, Cham. https://doi.org/10.1007/978-3-319-32059-5_12

Download citation

Publish with us

Policies and ethics