Skip to main content

Deep Feature Extraction from Trajectories for Transportation Mode Estimation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9652))

Abstract

This paper addresses the problem of feature extraction for estimating users’ transportation modes from their movement trajectories. Previous studies have adopted supervised learning approaches and used engineers’ skills to find effective features for accurate estimation. However, such hand-crafted features cannot always work well because human behaviors are diverse and trajectories include noise due to measurement error. To compensate for the shortcomings of hand-crafted features, we propose a method that automatically extracts additional features using a deep neural network (DNN). In order that a DNN can easily handle input trajectories, our method converts a raw trajectory data structure into an image data structure while maintaining effective spatio-temporal information. A classification model is constructed in a supervised manner using both of the deep features and hand-crafted features. We demonstrate the effectiveness of the proposed method through several experiments using two real datasets, such as accuracy comparisons with previous methods and feature visualization.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.google.com/landing/now/.

  2. 2.

    https://play.google.com/store/apps/details?id=com.protogeo.moves.

References

  1. Arel, I., Rose, D.C., Karnowski, T.P.: Deep machine learning - a new Frontier in artificial intelligence research. IEEE Comput. Int. Mag. 5(4), 13–18 (2010)

    Article  Google Scholar 

  2. Bengio, Y., Lamblin, P., Popovici, D., Larochelle, H.: Greedy layer-wise training of deep networks. In: NIPS, pp. 153–160 (2006)

    Google Scholar 

  3. Bengio, Y.: Learning deep architectures for AI. FTML 2(1), 1–127 (2009)

    MathSciNet  MATH  Google Scholar 

  4. Dahl, G.E., Yu, D., Deng, L., Acero, A.: Context-dependent pre-trained deep neural networks for large-vocabulary speech recognition. TASLP 20(1), 30–42 (2012)

    Google Scholar 

  5. Ermes, M., Parkka, J., Mantyjarvi, J., Korhonen, I.: Detection of daily activities and sports with wearable sensors in controlled and uncontrolled conditions. IEEE Trans. Inform. Tech. Biomed. 12(1), 20–26 (2006)

    Article  Google Scholar 

  6. Hinton, G.E., Salakhutdinov, R.: Reducing the dimensionality of data with neural networks. Science 313(5786), 504–507 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hung, C.-C., Peng, W.C., Lee, W.C.: Clustering and aggregating clues of trajectories for mining trajectory patterns and routes. VLDB J. 24(2), 169–192 (2015)

    Article  Google Scholar 

  8. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional neural networks. In: NIPS. pp. 1106–1114 (2012)

    Google Scholar 

  9. Le, Q.V., Ngiam, J., Coates, A., Lahiri, A., Prochnow, B., Ng, A.Y.: On optimization methods for deep learning. In: ICML, pp. 265–272 (2011)

    Google Scholar 

  10. Liao, L., Fox, D., Kautz, H.: Learning and inferring transportation routines. In: AAAI 2004, pp. 348–353 (2004)

    Google Scholar 

  11. Parker, J.A., Kenyon, R.V., Troxel, D.: Comparison of interpolating methods for image resampling. IEEE Trans. Med. Imaging 2(1), 31–39 (1983)

    Article  Google Scholar 

  12. Parkka, J., Ermes, M., Korpippa, P., Mantyjarvi, J., Peltola, J.: Activity classification using realistic data from wearable sensors. IEEE Trans. Inform. Technol. Biomed. 10(1), 119–128 (2006)

    Article  Google Scholar 

  13. Patterson, D., Liao, L., Fox, D., Kautz, H.: Inferring high-level behavior from low-level sensors. In: UbiComp, pp. 73–89 (2003)

    Google Scholar 

  14. Shah, R.C., Wan, C.-Y., Lu, H., Nachman, L.: Classifying the mode of transportation on mobile phones using GIS information. In: UbiComp, pp. 225–229 (2014)

    Google Scholar 

  15. Shaw, B., Shea, J., Sinha, S., Hogue, A.: Learning to rank for spatiotemporal search. In: WSDM, pp. 717–726 (2013)

    Google Scholar 

  16. Song, X., Zhang, Q., Sekimoto, Y., Shibasaki, R.: Prediction of human emergency behavior and their mobility following large-scale disaster. In: KDD, pp. 5–14 (2014)

    Google Scholar 

  17. Toda, H., Yasuda, N., Matsuura, Y., Kataoka, R.: Geographic information retrieval to suit immediate surroundings. In: GIS, pp. 452–455 (2009)

    Google Scholar 

  18. Vedaldi, A., Fulkerson, B.: VLFeat: an open and portable library of computer vision algorithms. In: MM. pp. 1469–1472 (2010)

    Google Scholar 

  19. Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.-A.: Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. JMLR 11, 3371–3408 (2010)

    MathSciNet  MATH  Google Scholar 

  20. Zheng, Y.: Trajectory data mining: an overview. ACM TIST 6(3), 29 (2015)

    Google Scholar 

  21. Zheng, Y., Liu, L., Wang, L., Xie, X.: Learning transportation mode from raw GPS data for geographic applications on the web. In: WWW, pp. 247–256 (2008)

    Google Scholar 

  22. Zheng, Y., Li, Q., Chen, Y., Xie, X., Ma, W.-Y.: Understanding mobility based on GPS data. In: Ubicomp, pp. 312–321 (2008)

    Google Scholar 

  23. Zheng, Y., Chen, Y., Li, Q., Xie, X., Ma, W.-Y.: Understanding transportation modes based on GPS data for web applications. TWEB. 4(1), 1 (2010)

    Article  Google Scholar 

  24. Zheng, Y., Zhou, X. (eds.): Computing with Spatial Trajectories. Springer, New York (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuki Endo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Endo, Y., Toda, H., Nishida, K., Kawanobe, A. (2016). Deep Feature Extraction from Trajectories for Transportation Mode Estimation. In: Bailey, J., Khan, L., Washio, T., Dobbie, G., Huang, J., Wang, R. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2016. Lecture Notes in Computer Science(), vol 9652. Springer, Cham. https://doi.org/10.1007/978-3-319-31750-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-31750-2_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-31749-6

  • Online ISBN: 978-3-319-31750-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics