Skip to main content

Magnetic Properties of Conjugated Hydrocarbons from Topological Hamiltonians

  • Chapter
  • First Online:
Applications of Topological Methods in Molecular Chemistry

Abstract

The present chapter shows first that the topological Hückel Hamiltonian provides an analytical expression of both the singly occupied Molecular Orbitals and the spin density distribution of mono- and poly-radical conjugated hydrocarbons. It permits a new derivation of the Ovchinnikov’s rule (first established from a magnetic model Hamiltonian), which predicts the preferred ground state spin multiplicity from the topology of the molecule. From the Hubbard simplified representation of the bi-electronic Hamiltonian one obtains directly, without any matrix diagonalization, a reasonable evaluation of the singlet-triplet energy difference. For singlet di-radicals the method enables one to predict whether the Ms = 0 single-determinant solution is subject to a spin-symmetry breaking. The spin polarization of the closed shells, which is a different phenomenon, of bi-electronic origin, increases the value of the magnetic coupling in these systems, contrasts the spin densities between negative and positive values and spatially extends the spin distribution. Numerical Unrestricted Density Functional Theory calculations illustrate the relevance of the predictions of the topological model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 349.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 449.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 449.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gatteschi D, Kahn O, Miller JS, Palacio F (eds) (1991) Magnetic molecular materials. Kluwer, Dordrecht

    Google Scholar 

  2. Kahn O (1993) Molecular magnetism. VCH, Weinheim

    Google Scholar 

  3. Gatteschi D (1994) Adv Mater 6:635–645

    Article  CAS  Google Scholar 

  4. Miller JS, Epstein AJ (1994) Angew Chem Int Ed Engl 33:385–415

    Article  Google Scholar 

  5. (1996) Molecule-based magnetic materials. ACS Symposium series, vol 644

    Google Scholar 

  6. Itoh K, Kinoshita M (2000) Molecular magnetism. Gordon and Breach, Tokyo

    Google Scholar 

  7. Long J (2003) In: Yang P (ed) Chemistry of nanostructured materials. World Scientific Publishing, Hong Kong

    Google Scholar 

  8. (2005) Coord Chem Rev 249. Special issue “Molecular magnetism”

    Google Scholar 

  9. Gatteschi D, Bogani L, Cornia A, Mannini M, Sorace L, Sessoli R (2008) Solid State Sci 10:1701–1709

    Article  CAS  Google Scholar 

  10. Malrieu J-P, Caballol R, Calzado CJ, de Graaf C, Guihéry N (2014) Chem Rev 114:429

    Article  CAS  Google Scholar 

  11. Moreira I de PR, Illas F (2006) Phys Chem Chem Phys 8:1645

    Google Scholar 

  12. Bencini V (2008) Inorg Chim Acta 361:3820

    Article  CAS  Google Scholar 

  13. Neese F (2009) Coord Chem Rev 253:526

    Article  CAS  Google Scholar 

  14. Iwamura H (2013) Polyhedron 66:3–14

    Article  CAS  Google Scholar 

  15. Makarova TL, Palacio F (eds) (2006) Carbon-based magnetism: an overview of metal-free carbon-based compounds and materials. Elsevier, Amsterdam

    Google Scholar 

  16. Nakano M, Fukui H, Minami T, Yoneda K, Shigeta Y, Kishi R, Champagne B, Botek E, Kubo T, Ohta K, Kamada K (2011) Theor Chem Acc 130:711–724

    Article  CAS  Google Scholar 

  17. Motomura S, Nakano M, Fukui H, Yoneda K, Kubo T, Carion R, Champagne B (2011) Phys Chem Chem Phys 13:20575–20583 and references therein

    Article  CAS  Google Scholar 

  18. Landolt-Bornstein (2005) Nitroxide radicals and nitroxide based high-spin systems, vol 26. Springer, Berlin

    Google Scholar 

  19. Rajca S, Rajca A, Wongsriratanakul J, Butler P, Choi S-M (2004) J Am Chem Soc 126:6972–6986

    Article  CAS  Google Scholar 

  20. Salem L (1966) The molecular orbital theory of conjugated systems. Benjamin Inc, New York

    Google Scholar 

  21. Ovchinnikov AA (1978) Theor Chim Acta 47:297–304

    Article  CAS  Google Scholar 

  22. Malrieu J-P, Maynau D (1982) J Amer Chem Soc 104:3021–3029

    Article  CAS  Google Scholar 

  23. Malrieu J-P (1982) D Maynau J Amer Chem Soc 104:3029–3034

    Article  Google Scholar 

  24. Said M, Maynau D, Malrieu J-P, Garcia-Bach M-A (1984) J Am Chem Soc 106:571–579

    Article  CAS  Google Scholar 

  25. Longuet-Higgins HC (1950) J Chem Phys 18:265

    Article  CAS  Google Scholar 

  26. Borden WT (1982) Diradicals. Wiley-Interscience, New York

    Google Scholar 

  27. Du P, Borden WT (1987) J Am Chem Soc 109:930–931

    Article  CAS  Google Scholar 

  28. Nicolaides A, Borden WT (1993) J Am Chem Soc 115:11951–11957

    Article  CAS  Google Scholar 

  29. Borden WT, Iwamura H, Berson JA (1994) Acc Chem Res 27:109–116

    Article  CAS  Google Scholar 

  30. Hrovat DA, Borden WT (1994) J Am Chem Soc 116:6327–6331

    Article  CAS  Google Scholar 

  31. Fang S, Lee M-S, Hrovat DA, Borden WT (1995) J Am Chem Soc 117:6727–6731

    Article  CAS  Google Scholar 

  32. Bally T, Borden WT (1993) In: Lipkowitz KB, Boyd DB (eds) Reviews in computational chemistry, vol 13. Wiley-VCH, New York, pp 1–97

    Google Scholar 

  33. Lineberger WC, Borden WT (2011) Phys Chem Chem Phys 13:11792–11813

    Article  Google Scholar 

  34. Trinquier G, Suaud N, Malrieu J-P (2010) Chem Eur J 16:8762–8772

    Article  CAS  Google Scholar 

  35. Said M, Maynau D, Malrieu J-P (1984) J Am Chem Soc 106:580

    Article  CAS  Google Scholar 

  36. Lieb EH (1989) Phys Rev Lett 62:1201–1204

    Article  Google Scholar 

  37. Caballol R, Castell O, Illas F, de Moeira IPR, Malrieu J-P (1997) J Phys Chem A 101:7860–7866

    Google Scholar 

  38. Thiele J, Balhorn H (1904) Chem Ber 37:1463–1470

    Article  Google Scholar 

  39. Chichibabin AE (1907) Chem Ber 40:1810–1819

    Article  Google Scholar 

  40. Montgomery LK, Huffman JC, Jurczak EA, Grendze MP (1986) J Am Chem Soc 108:6004–6011

    Article  CAS  Google Scholar 

  41. Muller E, Pfanz H (1941) Chem Ber 74:1051

    Article  Google Scholar 

  42. Shishlov NM, Asfandiarov NL (2000) Russ Chem Bull Int Ed 40:1676–1681

    Article  Google Scholar 

  43. For a recent theoretical study of the series see, Trinquier G, Malrieu J-P (2015) Chem Eur J 21:814–828

    Google Scholar 

  44. Abe M (2013) Chem Rev 113:7011–7088

    Article  CAS  Google Scholar 

  45. Filatov M, Shaik S (1999) J Phys Chem A 103:8885–8889

    Article  CAS  Google Scholar 

  46. Rodríguez E, Reguero M, Caballol R (2000) J Phys Chem A 104:6253–6258

    Article  Google Scholar 

  47. Pozun ZD, Su X, Jordan KD (2013) J Am Chem Soc 135:13862–13869

    Article  CAS  Google Scholar 

  48. McConnell HM (1956) J Chem Phys 24:764

    Article  CAS  Google Scholar 

  49. Bernsohn R (1956) J Chem Phys 24:1066

    Article  Google Scholar 

  50. Yamaguchi K, Takahara Y, Fueno T (1986) In: Smith VH (ed) Applied quantum chemistry. Reidel, Dordrecht, p 155

    Google Scholar 

  51. Soda T, Kitagawa Y, Onishi T, Takano T, Shigeta Y, Nagao H, Yoshioka Y, Yamaguchi K (2000) Chem Phys Lett 319:223–230

    Article  CAS  Google Scholar 

  52. Malrieu J-P, Ferré N, Guihéry N (2015) Phys Chem Chem Phys 17:14375

    Google Scholar 

  53. De Loth P, Cassoux P, Daudey J-P, Malrieu J-P (1981) J Amer Chem Soc 103:4007

    Article  Google Scholar 

  54. Calzado CJ, Cabrero J, Malrieu J-P, Caballol R (2002) J Chem Phys 116:2728

    Article  CAS  Google Scholar 

  55. Coulaud E, Guihéry N, Malrieu J-P, Hagenbaum-Reignier D, Siri D, Ferré N (2012) J Chem Phys 137:114106

    Article  Google Scholar 

  56. Coulaud E, Malrieu J-P, Guihéry N, Ferré N (2013) J Comput Theory Chem 9:3429

    Article  CAS  Google Scholar 

  57. Borden WT, Davidson ER, Feller D (1982) Tetraedron 38:737–739

    Article  CAS  Google Scholar 

  58. Borden WT, Davidson ER (1996) Acc Chem Res 29:67–75

    Article  CAS  Google Scholar 

  59. Suaud N, Ruamps R, Guihéry N, Malrieu J-P (2012) J Chem Theory Comput 8:4127–4137

    Article  CAS  Google Scholar 

  60. Suaud N, Ruamps R, Malrieu J-P, Guihéry N (2014) J Phys Chem A 118:5876

    CAS  Google Scholar 

  61. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian 09 Revision A.02. (2009) Gaussian Inc. Wallingford CT

    Google Scholar 

  62. Mayou D, Zhou Y, Ernzerhof M (2013) J Phys Chem C 117:7870

    Google Scholar 

  63. Bendikov M, Duong HM, Starkey K, Houk KN, Carter EA, Wudl F (2004) J Am Chem Soc 126:7416–7417

    Article  CAS  Google Scholar 

  64. Dos Santos MC (2006) Phys Rev B 74:045426–045429

    Article  Google Scholar 

  65. Jiang D, Dai S (2008) J Phys Chem A 112:332–335

    Google Scholar 

  66. Hachmann J, Dorando JJ, Avilés M, Chan GK-L (2007) J Chem Phys 127:134309

    Article  Google Scholar 

  67. Hajgato B, Huzak M, Deleuze MS (2011) J Phys Chem A 115:9282

    Article  CAS  Google Scholar 

  68. Ali ME, Datta SN (2006) J Phys Chem A 110:2776, 13232

    Google Scholar 

  69. Lahti PM, Ichimura S, Sanborn JA (2001) J Phys Chem A 105:151

    Article  Google Scholar 

  70. Pardo E, Carrasco R, Ruiz-Garcia R, Julve M, Lloret F, Munoz MC, Journaux Y, Ruiz E, Cano J (2008) J Amer Chem Soc 130:576

    Google Scholar 

  71. Ferrando-Soria J, Castellano M, Yuste C, Lloret F, Julve M, Fabelo O, Ruiz-Perez C, Stiriba SE, Ruiz-Garcıa R, Cano J (2010) Inorg Chim Acta 363:1666

    Article  CAS  Google Scholar 

  72. Terencio T, Bastardis R, Suaud N, Maynau D, Bonvoisin J, Calzado CJ, Malrieu J-P, Guihéry N (2011) Phys Chem Chem Phys 13:12314

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Malrieu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Malrieu, JP., Ferré, N., Guihéry, N. (2016). Magnetic Properties of Conjugated Hydrocarbons from Topological Hamiltonians. In: Chauvin, R., Lepetit, C., Silvi, B., Alikhani, E. (eds) Applications of Topological Methods in Molecular Chemistry. Challenges and Advances in Computational Chemistry and Physics, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-319-29022-5_14

Download citation

Publish with us

Policies and ethics