Skip to main content

Value Based Imaging for Coronary Artery Disease: Implications for Nuclear Cardiology and Cardiac CT

  • Chapter
  • First Online:
Cardiac CT Imaging

Abstract

Technology in cardiac computed tomography (CT) and nuclear cardiology is constantly improving. In single photon emission CT (SPECT), new cameras, reconstruction methods, and protocols have dramatically reduced radiation doses to patients. In positron emission tomography (PET), application of quantitative measurements of myocardial perfusion reserve is improving assessment of prognosis. PET/CT is routinely performed in conjunction with coronary artery calcium (CAC) scanning in many centers, extending the ability of myocardial perfusion imaging (MPI) studies to impact patient management. In cardiac CT, marked improvements in equipment and reconstruction software have also dramatically reduced the patient radiation associated with cardiac testing, and have reduced the frequency of non-diagnostic studies. New methods for combining anatomic and functional assessment with CT—CT perfusion and FFRCT measurements—are beginning to be used clinically. With the expanding capabilities of each technology, their opportunities to provide value increases. Given the changing reimbursement paradigm from a volume-based to a value-based system, the applications of each technology that will survive are those that improve relationship between outcomes and costs. With respect to coronary artery disease (CAD), a growing body of evidence exists regarding the value of specific tests in the various clinical settings in which CAD is considered. For prevention, data is strong in that CAC scanning can provide value by improving outcomes. In the patient with acute chest pain, CCTA appears to be able to shorten time in the hospital and reduce costs. In patients with suspected stable ischemic heart disease and an intermediate pre-test likelihood of CAD, the use of CCTA appears to be valuable. In patients who have known CAD or in whom a nondiagnostic CCTA is likely, improvement in outcomes based on CCTA is less likely and testing for ischemia may be preferred. In patients with a very high likelihood of CAD or known CAD, registry data suggests that ischemia testing, such as that provided by SPECT- or PET-MPI studies, may improve outcomes by improving selection of patients for revascularization. The ISCHEMIA trial will test whether a strategy basing decisions for revascularization on noninvasive assessment of ischemia improves outcomes. Test selection is highly dependent on accurate pretest risk assessment. An updated method for assessment of pre-test risk has developed which may lead to improved utilization of cardiac imaging procedures. In all of the applications of noninvasive imaging, value can only be achieved if the appropriate patients are selected for testing and if the test result changes management, such that outcomes can be improved or costs reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mahmarian JJ, Cerqueira MD, Iskandrian AE, Bateman TM, Thomas GS, Hendel RC, Moye LA, Olmsted AW. Regadenoson induces comparable left ventricular perfusion defects as adenosine: a quantitative analysis from the advance MPI 2 trial. JACC Cardiovasc Imaging. 2009;2:959–68.

    Article  PubMed  Google Scholar 

  2. Xu Y, Hayes S, Ali I, Ruddy TD, Wells RG, Berman DS, Germano G, Slomka PJ. Automatic and visual reproducibility of perfusion and function measures for myocardial perfusion SPECT. J Nucl Cardiol. 2010;17:1050–7.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Berman DS, Kang X, Gransar H, Gerlach J, Friedman JD, Hayes SW, Thomson LE, Hachamovitch R, Shaw LJ, Slomka PJ, Yang LD, Germano G. Quantitative assessment of myocardial perfusion abnormality on SPECT myocardial perfusion imaging is more reproducible than expert visual analysis. J Nucl Cardiol. 2009;16:45–53.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Arsanjani R, Xu Y, Dey D, Vahistha V, Shalev A, Nakanishi R, Hayes S, Fish M, Berman D, Germano G, Slomka PJ. Improved accuracy of myocardial perfusion SPECT for detection of coronary artery disease by machine learning in a large population. J Nucl Cardiol. 2013;20:553–62.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Slomka PJ, Pan T, Berman DS, Germano G. Advances in SPECT and pet hardware. Prog Cardiovasc Dis. 2015;57:566–78.

    Article  PubMed  Google Scholar 

  6. Sharir T, Slomka PJ, Hayes SW, DiCarli MF, Ziffer JA, Martin WH, Dickman D, Ben-Haim S, Berman DS. Multicenter trial of high-speed versus conventional single-photon emission computed tomography imaging: quantitative results of myocardial perfusion and left ventricular function. J Am Coll Cardiol. 2010;55:1965–74.

    Article  PubMed  Google Scholar 

  7. Nakazato R, Berman DS, Hayes SW, Fish M, Padgett R, Xu Y, Lemley M, Baavour R, Roth N, Slomka PJ. Myocardial perfusion imaging with a solid-state camera: simulation of a very low dose imaging protocol. J Nucl Med. 2013;54:373–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Einstein AJ, Blankstein R, Andrews H, Fish M, Padgett R, Hayes SW, Friedman JD, Qureshi M, Rakotoarivelo H, Slomka P, Nakazato R, Bokhari S, Di Carli M, Berman DS. Comparison of image quality, myocardial perfusion, and left ventricular function between standard imaging and single-injection ultra-low-dose imaging using a high-efficiency spect camera: the Millisievert study. J Nucl Med. 2014;55:1430–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Nakazato R, Slomka PJ, Fish M, Schwartz RG, Hayes SW, Thomson LE, Friedman JD, Lemley Jr M, Mackin ML, Peterson B, Schwartz AM, Doran JA, Germano G, Berman DS. Quantitative high-efficiency cadmium-zinc-telluride SPECT with dedicated parallel-hole collimation system in obese patients: results of a multi-center study. J Nucl Cardiol. 2015;22:266–75.

    Article  PubMed  Google Scholar 

  10. Slomka PJ, Dey D, Duvall WL, Henzlova MJ, Berman DS, Germano G. Advances in nuclear cardiac instrumentation with a view towards reduced radiation exposure. Curr Cardiol Rep. 2012;14:208–16.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Dey D, Slomka PJ, Berman DS. Achieving very-low-dose radiation exposure in cardiac computed tomography, single-photon emission computed tomography, and positron emission tomography. Circ Cardiovasc Imaging. 2014;7:723–34.

    Article  PubMed  Google Scholar 

  12. Arsanjani R, Hayes SW, Fish M, Shalev A, Nakanishi R, Thomson LE, Friedman JD, Germano G, Berman DS, Slomka P. Two-position supine/prone myocardial perfusion SPECT imaging improves visual inter-observer correlation and agreement. J Nucl Cardiol. 2014;21:703–11.

    Google Scholar 

  13. Slomka PJ, Nishina H, Abidov A, Hayes SW, Friedman JD, Berman DS, Germano G. Combined quantitative supine-prone myocardial perfusion SPECT improves detection of coronary artery disease and normalcy rates in women. J Nucl Cardiol. 2007;14:44–52.

    Article  PubMed  Google Scholar 

  14. Chang SM, Nabi F, Xu J, Raza U, Mahmarian JJ. Normal stress-only versus standard stress/rest myocardial perfusion imaging: similar patient mortality with reduced radiation exposure. J Am Coll Cardiol. 2010;55:221–30.

    Article  PubMed  Google Scholar 

  15. Duvall WL, Wijetunga MN, Klein TM, Razzouk L, Godbold J, Croft LB, Henzlova MJ. The prognosis of a normal stress-only Tc-99m myocardial perfusion imaging study. J Nucl Cardiol. 2010;17:370–7.

    Article  PubMed  Google Scholar 

  16. Dekemp RA, Declerck J, Klein R, Pan XB, Nakazato R, Tonge C, Arumugam P, Berman DS, Germano G, Beanlands RS, Slomka PJ. Multisoftware reproducibility study of stress and rest myocardial blood flow assessed with 3d dynamic PET/CT and a 1-tissue-compartment model of 82-Rb kinetics. J Nucl Med. 2013;54:571–7.

    Google Scholar 

  17. Slomka PJ, Alexanderson E, Jacome R, Jimenez M, Romero E, Meave A, Le Meunier L, Dalhbom M, Berman DS, Germano G, Schelbert H. Comparison of clinical tools for measurements of regional stress and rest myocardial blood flow assessed with 13N-ammonia PET/CT. J Nucl Med. 2012;53:171–81.

    Article  CAS  PubMed  Google Scholar 

  18. Murthy VL, Naya M, Foster CR, Hainer J, Gaber M, Di Carli G, Blankstein R, Dorbala S, Sitek A, Pencina MJ, Di Carli MF. Improved cardiac risk assessment with noninvasive measures of coronary flow reserve. Circulation. 2011;124:2215–24.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ziadi MC, Dekemp RA, Williams KA, Guo A, Chow BJ, Renaud JM, Ruddy TD, Sarveswaran N, Tee RE, Beanlands RS. Impaired myocardial flow reserve on rubidium-82 positron emission tomography imaging predicts adverse outcomes in patients assessed for myocardial ischemia. J Am Coll Cardiol. 2011;58:740–8.

    Article  PubMed  Google Scholar 

  20. Gould KL, Johnson NP. Physiologic stenosis severity, binary thinking, revascularization, and “hidden reality”. Circ Cardiov Imag. 2015;8:e002970.

    Google Scholar 

  21. Gould KL, Johnson NP, Bateman TM, Beanlands RS, Bengel FM, Bober R, Camici PG, Cerqueira MD, Chow BJ, Di Carli MF, Dorbala S, Gewirtz H, Gropler RJ, Kaufmann PA, Knaapen P, Knuuti J, Merhige ME, Rentrop KP, Ruddy TD, Schelbert HR, Schindler TH, Schwaiger M, Sdringola S, Vitarello J, Williams Sr KA, Gordon D, Dilsizian V, Narula J. Anatomic versus physiologic assessment of coronary artery disease. Role of coronary flow reserve, fractional flow reserve, and positron emission tomography imaging in revascularization decision-making. J Am Coll Cardiol. 2013;62:1639–53.

    Article  PubMed  Google Scholar 

  22. Yu M, Guaraldi MT, Mistry M, Kagan M, McDonald JL, Drew K, Radeke H, Azure M, Purohit A, Casebier DS, Robinson SP. Bms-747158-02: a novel PET myocardial perfusion imaging agent. J Nucl Cardiol. 2007;14:789–98.

    Article  CAS  PubMed  Google Scholar 

  23. Maddahi J. Properties of an ideal PET perfusion tracer: new PET tracer cases and data. J Nucl Cardiol. 2012;19 Suppl 1:S30–7.

    Article  PubMed  Google Scholar 

  24. Berman DS, Maddahi J, Tamarappoo BK, Czernin J, Taillefer R, Udelson JE, Gibson CM, Devine M, Lazewatsky J, Bhat G, Washburn D. Phase II safety and clinical comparison with single-photon emission computed tomography myocardial perfusion imaging for detection of coronary artery disease: Flurpiridaz f 18 positron emission tomography. J Am Coll Cardiol. 2013;61:469–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Berman DS, Wong ND, Gransar H, Miranda-Peats R, Dahlbeck J, Hayes SW, Friedman JD, Kang X, Polk D, Hachamovitch R, Shaw L, Rozanski A. Relationship between stress-induced myocardial ischemia and atherosclerosis measured by coronary calcium tomography. J Am Coll Cardiol. 2004;44:923–30.

    Article  CAS  PubMed  Google Scholar 

  26. Berman DS, Hachamovitch R, Shaw LJ, Friedman JD, Hayes SW, Thomson L, Fieno DS, Germano G, Slomka P, Wong ND, Kang X, Rozanski A. Roles of nuclear cardiology, cardiac computed tomography, and cardiac magnetic resonance: assessment of patients with suspected coronary artery disease. J Nucl Med. 2006;47:74–82.

    PubMed  Google Scholar 

  27. Schenker MP, Dorbala S, Hong EC, Rybicki FJ, Hachamovitch R, Kwong RY, Di Carli MF. Interrelation of coronary calcification, myocardial ischemia, and outcomes in patients with intermediate likelihood of coronary artery disease: a combined positron emission tomography/computed tomography study. Circulation. 2008;117:1693–700.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Berman DS. Fourth annual Mario s. Verani, md memorial lecture: noninvasive imaging in coronary artery disease: changing roles, changing players. J Nucl Cardiol. 2006;13:457–73.

    Article  PubMed  Google Scholar 

  29. Rudd JH, Warburton EA, Fryer TD, Jones HA, Clark JC, Antoun N, Johnstrom P, Davenport AP, Kirkpatrick PJ, Arch BN, Pickard JD, Weissberg PL. Imaging atherosclerotic plaque inflammation with [18f]-fluorodeoxyglucose positron emission tomography. Circulation. 2002;105:2708–11.

    Article  CAS  PubMed  Google Scholar 

  30. Rudd JH, Myers KS, Bansilal S, Machac J, Rafique A, Farkouh M, Fuster V, Fayad ZA. 18-fluorodeoxyglucose positron emission tomography imaging of atherosclerotic plaque inflammation is highly reproducible: implications for atherosclerosis therapy trials. J Am Coll Cardiol. 2007;50:892–6.

    Article  PubMed  Google Scholar 

  31. Tawakol A, Fayad ZA, Mogg R, Alon A, Klimas MT, Dansky H, Subramanian SS, Abdelbaky A, Rudd JH, Farkouh ME, Nunes IO, Beals CR, Shankar SS. Intensification of statin therapy results in a rapid reduction in atherosclerotic inflammation: results of a multicenter fluorodeoxyglucose-positron emission tomography/computed tomography feasibility study. J Am Coll Cardiol. 2013;62:909–17.

    Article  CAS  PubMed  Google Scholar 

  32. Burke AP, Farb A, Malcom GT, Liang Y, Smialek JE, Virmani R. Plaque rupture and sudden death related to exertion in men with coronary artery disease. JAMA. 1999;281:921–6.

    Article  CAS  PubMed  Google Scholar 

  33. Moreno PR, Narula J. Thinking outside the lumen: fractional flow reserve versus intravascular imaging for major adverse cardiac event prediction. J Am Coll Cardiol. 2014;63:1141–4.

    Article  PubMed  Google Scholar 

  34. Dweck MR, Chow MW, Joshi NV, Williams MC, Jones C, Fletcher AM, Richardson H, White A, McKillop G, van Beek EJ, Boon NA, Rudd JH, Newby DE. Coronary arterial 18F-sodium fluoride uptake: a novel marker of plaque biology. J Am Coll Cardiol. 2012;59:1539–48.

    Article  CAS  PubMed  Google Scholar 

  35. Joshi NV, Vesey AT, Williams MC, Shah AS, Calvert PA, Craighead FH, Yeoh SE, Wallace W, Salter D, Fletcher AM, van Beek EJ, Flapan AD, Uren NG, Behan MW, Cruden NL, Mills NL, Fox KA, Rudd JH, Dweck MR, Newby DE. 18F-fluoride positron emission tomography for identification of ruptured and high-risk coronary atherosclerotic plaques: a prospective clinical trial. Lancet. 2014;383:705–13.

    Article  PubMed  Google Scholar 

  36. Motoyama S, Kondo T, Sarai M, Sugiura A, Harigaya H, Sato T, Inoue K, Okumura M, Ishii J, Anno H, Virmani R, Ozaki Y, Hishida H, Narula J. Multislice computed tomographic characteristics of coronary lesions in acute coronary syndromes. J Am Coll Cardiol. 2007;50:319–26.

    Article  PubMed  Google Scholar 

  37. Motoyama S, Sarai M, Harigaya H, Anno H, Inoue K, Hara T, Naruse H, Ishii J, Hishida H, Wong ND, Virmani R, Kondo T, Ozaki Y, Narula J. Computed tomographic angiography characteristics of atherosclerotic plaques subsequently resulting in acute coronary syndrome. J Am Coll Cardiol. 2009;54:49–57.

    Article  PubMed  Google Scholar 

  38. Shmilovich H, Cheng VY, Tamarappoo BK, Dey D, Nakazato R, Gransar H, Thomson LE, Hayes SW, Friedman JD, Germano G, Slomka PJ, Berman DS. Vulnerable plaque features on coronary CT angiography as markers of inducible regional myocardial hypoperfusion from severe coronary artery stenoses. Atherosclerosis. 2011;219:588–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Nakazato R, Shalev A, Doh JH, Koo BK, Gransar H, Gomez MJ, Leipsic J, Park HB, Berman DS, Min JK. Aggregate plaque volume by coronary computed tomography angiography is superior and incremental to luminal narrowing for diagnosis of ischemic lesions of intermediate stenosis severity. J Am Coll Cardiol. 2013;62:460–7.

    Article  PubMed  Google Scholar 

  40. Park HB, Heo R, o Hartaigh B, Cho I, Gransar H, Nakazato R, Leipsic J, Mancini GB, Koo BK, Otake H, Budoff MJ, Berman DS, Erglis A, Chang HJ, Min JK. Atherosclerotic plaque characteristics by CT angiography identify coronary lesions that cause ischemia: a direct comparison to fractional flow reserve. JACC Cardiovasc Imaging. 2015;8:1–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Dey D, Schepis T, Marwan M, Slomka PJ, Berman DS, Achenbach S. Automated three-dimensional quantification of noncalcified coronary plaque from coronary CT angiography: comparison with intravascular us. Radiology. 2010;257:516–22.

    Article  PubMed  Google Scholar 

  42. Diaz-Zamudio M, Dey D, Schuhbaeck A, Nakazato R, Gransar H, Slomka PJ, Narula J, Berman DS, Achenbach S, Min JK, Doh JH, Koo BK. Automated quantitative plaque burden from coronary CT angiography noninvasively predicts hemodynamic significance by using fractional flow reserve in intermediate coronary lesions. Radiology. 2015;276(2):408–15.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rochitte CE, George RT, Chen MY, Arbab-Zadeh A, Dewey M, Miller JM, Niinuma H, Yoshioka K, Kitagawa K, Nakamori S, Laham R, Vavere AL, Cerci RJ, Mehra VC, Nomura C, Kofoed KF, Jinzaki M, Kuribayashi S, de Roos A, Laule M, Tan SY, Hoe J, Paul N, Rybicki FJ, Brinker JA, Arai AE, Cox C, Clouse ME, Di Carli MF, Lima JA. Computed tomography angiography and perfusion to assess coronary artery stenosis causing perfusion defects by single photon emission computed tomography: the core320 study. Eur Heart J. 2014;35:1120–30.

    Article  PubMed  Google Scholar 

  44. Cury RC, Kitt TM, Feaheny K, Blankstein R, Ghoshhajra BB, Budoff MJ, Leipsic J, Min JK, Akin J, George RT. A randomized, multicenter, multivendor study of myocardial perfusion imaging with regadenoson CT perfusion vs single photon emission CT. J Cardiovasc Comput Tomogr. 2015;9:103–12.e101–2.

    Article  PubMed  Google Scholar 

  45. Min JK, Leipsic J, Pencina MJ, Berman DS, Koo BK, van Mieghem C, Erglis A, Lin FY, Dunning AM, Apruzzese P, Budoff MJ, Cole JH, Jaffer FA, Leon MB, Malpeso J, Mancini GB, Park SJ, Schwartz RS, Shaw LJ, Mauri L. Diagnostic accuracy of fractional flow reserve from anatomic CT angiography. JAMA. 2012;308:1237–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Koo BK, Erglis A, Doh JH, Daniels DV, Jegere S, Kim HS, Dunning A, DeFrance T, Lansky A, Leipsic J, Min JK. Diagnosis of ischemia-causing coronary stenoses by noninvasive fractional flow reserve computed from coronary computed tomographic angiograms. Results from the prospective multicenter discover-flow (diagnosis of ischemia-causing stenoses obtained via noninvasive fractional flow reserve) study. J Am Coll Cardiol. 2011;58:1989–97.

    Article  PubMed  Google Scholar 

  47. Nørgaard BL, Leipsic J, Gaur S, Seneviratne S, Ko BS, Ito H, Jensen JM, Mauri L, De Bruyne B, Bezerra H, Osawa K, Marwan M, Naber C, Erglis A, Park SJ, Christiansen EH, Kaltoft A, Lassen JF, Bøtker HE, Achenbach S, NXT Trial Study Group. Diagnostic performance of non-invasive fractional flow reserve derived from coronary ct angiography in suspected coronary artery disease: the nxt trial. J Am Coll Cardiol. 2014;63(12):1145–55.

    Article  PubMed  Google Scholar 

  48. Stone NJ, Robinson JG, Lichtenstein AH, Bairey Merz CN, Blum CB, Eckel RH, Goldberg AC, Gordon D, Levy D, Lloyd-Jones DM, McBride P, Schwartz JS, Shero ST, Smith Jr SC, Watson K, Wilson PW. 2013 ACC/AHA guideline on the treatment of blood cholesterol to reduce atherosclerotic cardiovascular risk in adults: a report of the American College of Cardiology/American Heart Assocication task force on practice guidelines. J Am Coll Cardiol. 2014;63:2889–934.

    Google Scholar 

  49. Kavousi M, Leening MJ, Nanchen D, Greenland P, Graham IM, Steyerberg EW, Ikram MA, Stricker BH, Hofman A, Franco OH. Comparison of application of the ACC/AHA guidelines, adult treatment panel iii guidelines, and European Society of Cardiology guidelines for cardiovascular disease prevention in a European cohort. JAMA. 2014;311:1416–23.

    Article  PubMed  CAS  Google Scholar 

  50. DeFilippis AP, Young R, Carrubba CJ, McEvoy JW, Budoff MJ, Blumenthal RS, Kronmal RA, McClelland RL, Nasir K, Blaha MJ. An analysis of calibration and discrimination among multiple cardiovascular risk scores in a modern multiethnic cohort. Ann Intern Med. 2015;162:266–75.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G, Folsom AR, Liu K, Shea S, Szklo M, Bluemke DA, O’Leary DH, Tracy R, Watson K, Wong ND, Kronmal RA. Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med. 2008;358:1336–45.

    Article  CAS  PubMed  Google Scholar 

  52. Erbel R, Möhlenkamp S, Moebus S, Schmermund A, Lehmann N, Stang A, Dragano N, Grönemeyer D, Seibel R, Kälsch H, Bröcker-Preuss M, Mann K, Siegrist J, Jöckel KH, Group HNRSI. Coronary risk stratification, discrimination, and reclassification improvement based on quantification of subclinical coronary atherosclerosis: the Heinz Nixdorf recall study. J Am Coll Cardiol. 2010;56:1397–406.

    Article  PubMed  Google Scholar 

  53. Yeboah J, McClelland RL, Polonsky TS, Burke GL, Sibley CT, O’Leary D, Carr JJ, Goff DC, Greenland P, Herrington DM. Comparison of novel risk markers for improvement in cardiovascular risk assessment in intermediate-risk individuals. JAMA. 2012;308:788–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Miedema MD, Duprez DA, Misialek JR, Blaha MJ, Nasir K, Silverman MG, Blankstein R, Budoff MJ, Greenland P, Folsom AR. Use of coronary artery calcium testing to guide aspirin utilization for primary prevention: estimates from the multi-ethnic study of atherosclerosis. Circ Cardiovasc Qual Outcomes. 2014;7:453–60.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Roberts ET, Horne A, Martin SS, Blaha MJ, Blankstein R, Budoff MJ, Sibley C, Polak JF, Frick KD, Blumenthal RS, Nasir K. Cost-effectiveness of coronary artery calcium testing for coronary heart and cardiovascular disease risk prediction to guide statin allocation: the multi-ethnic study of atherosclerosis (mesa). PLoS One. 2015;10:e0116377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  56. Rozanski A, Gransar H, Shaw LJ, Kim J, Miranda-Peats L, Wong ND, Rana JS, Orakzai R, Hayes SW, Friedman JD, Thomson LE, Polk D, Min J, Budoff MJ, Berman DS. Impact of coronary artery calcium scanning on coronary risk factors and downstream testing the eisner (early identification of subclinical atherosclerosis by noninvasive imaging research) prospective randomized trial. J Am Coll Cardiol. 2011;57:1622–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Nasir K, McClelland RL, Blumenthal RS, Goff Jr DC, Hoffmann U, Psaty BM, Greenland P, Kronmal RA, Budoff MJ. Coronary artery calcium in relation to initiation and continuation of cardiovascular preventive medications: the multi-ethnic study of atherosclerosis (mesa). Circ Cardiovasc Qual Outcomes. 2010;3:228–35.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Orakzai RH, Nasir K, Orakzai SH, Kalia N, Gopal A, Musunuru K, Blumenthal RS, Budoff MJ. Effect of patient visualization of coronary calcium by electron beam computed tomography on changes in beneficial lifestyle behaviors. Am J Cardiol. 2008;101:999–1002.

    Article  CAS  PubMed  Google Scholar 

  59. Taylor AJ, Bindeman J, Feuerstein I, Le T, Bauer K, Byrd C, Wu H, O’Malley PG. Community-based provision of statin and aspirin after the detection of coronary artery calcium within a community-based screening cohort. J Am Coll Cardiol. 2008;51:1337–41.

    Article  PubMed  Google Scholar 

  60. Ahmed HM, Blaha MJ, Nasir K, Jones SR, Rivera JJ, Agatston A, Blankstein R, Wong ND, Lakoski S, Budoff MJ, Burke GL, Sibley CT, Ouyang P, Blumenthal RS. Low-risk lifestyle, coronary calcium, cardiovascular events, and mortality: results from mesa. Am J Epidemiol. 2013;178:12–21.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Malik S, Budoff MJ, Katz R, Blumenthal RS, Bertoni AG, Nasir K, Szklo M, Barr RG, Wong ND. Impact of subclinical atherosclerosis on cardiovascular disease events in individuals with metabolic syndrome and diabetes: the multi-ethnic study of atherosclerosis. Diabetes Care. 2011;34:2285–90.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Wackers FJ, Young LH, Inzucchi SE, Chyun DA, Davey JA, Barrett EJ, Taillefer R, Wittlin SD, Heller GV, Filipchuk N, Engel S, Ratner RE, Iskandrian AE. Detection of silent myocardial ischemia in asymptomatic diabetic subjects: the diad study. Diabetes Care. 2004;27:1954–61.

    Article  PubMed  Google Scholar 

  63. Zellweger MJ, Maraun M, Osterhues HH, Keller U, Muller-Brand J, Jeger R, Pfister O, Burkard T, Eckstein F, von Felten S, Osswald S, Pfisterer M. Progression to overt or silent cad in asymptomatic patients with diabetes mellitus at high coronary risk: main findings of the prospective multicenter bardot trial with a pilot randomized treatment substudy. JACC Cardiovasc Imaging. 2014;7:1001–10.

    Article  PubMed  Google Scholar 

  64. Muhlestein JB, Lappe DL, Lima JA, Rosen BD, May HT, Knight S, Bluemke DA, Towner SR, Le V, Bair TL, Vavere AL, Anderson JL. Effect of screening for coronary artery disease using CT angiography on mortality and cardiac events in high-risk patients with diabetes: the factor-64 randomized clinical trial. JAMA. 2014;312:2234–43.

    Article  CAS  PubMed  Google Scholar 

  65. Budoff MJ, Dowe D, Jollis JG, Gitter M, Sutherland J, Halamert E, Scherer M, Bellinger R, Martin A, Benton R, Delago A, Min JK. Diagnostic performance of 64-multidetector row coronary computed tomographic angiography for evaluation of coronary artery stenosis in individuals without known coronary artery disease: results from the prospective multicenter accuracy (assessment by coronary computed tomographic angiography of individuals undergoing invasive coronary angiography) trial. J Am Coll Cardiol. 2008;52:1724–32.

    Article  PubMed  Google Scholar 

  66. Meijboom WB, Meijs MF, Schuijf JD, Cramer MJ, Mollet NR, van Mieghem CA, Nieman K, van Werkhoven JM, Pundziute G, Weustink AC, de Vos AM, Pugliese F, Rensing B, Jukema JW, Bax JJ, Prokop M, Doevendans PA, Hunink MG, Krestin GP, de Feyter PJ. Diagnostic accuracy of 64-slice computed tomography coronary angiography: a prospective, multicenter, multivendor study. J Am Coll Cardiol. 2008;52:2135–44.

    Article  PubMed  Google Scholar 

  67. Miller JM, Rochitte CE, Dewey M, Arbab-Zadeh A, Niinuma H, Gottlieb I, Paul N, Clouse ME, Shapiro EP, Hoe J, Lardo AC, Bush DE, de Roos A, Cox C, Brinker J, Lima JA. Diagnostic performance of coronary angiography by 64-row CT. N Engl J Med. 2008;359:2324–36.

    Article  CAS  PubMed  Google Scholar 

  68. Neglia D, Rovai D, Caselli C, Pietila M, Teresinska A, Aguade-Bruix S, Pizzi MN, Todiere G, Gimelli A, Schroeder S, Drosch T, Poddighe R, Casolo G, Anagnostopoulos C, Pugliese F, Rouzet F, Le Guludec D, Cappelli F, Valente S, Gensini GF, Zawaideh C, Capitanio S, Sambuceti G, Marsico F, Perrone Filardi P, Fernandez-Golfin C, Rincon LM, Graner FP, de Graaf MA, Fiechter M, Stehli J, Gaemperli O, Reyes E, Nkomo S, Maki M, Lorenzoni V, Turchetti G, Carpeggiani C, Marinelli M, Puzzuoli S, Mangione M, Marcheschi P, Mariani F, Giannessi D, Nekolla S, Lombardi M, Sicari R, Scholte AJ, Zamorano JL, Kaufmann PA, Underwood SR, Knuuti J. Detection of significant coronary artery disease by noninvasive anatomical and functional imaging. Circ Cardio Imag. 2015;8:e002179.

    Google Scholar 

  69. Amsterdam EA, Kirk JD, Bluemke DA, Diercks D, Farkouh ME, Garvey JL, Kontos MC, McCord J, Miller TD, Morise A, Newby LK, Ruberg FL, Scordo KA, Thompson PD. Testing of low-risk patients presenting to the emergency department with chest pain: a scientific statement from the American heart association. Circulation. 2010;122:1756–76.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Pope JH, Aufderheide TP, Ruthazer R, Woolard RH, Feldman JA, Beshansky JR, Griffith JL, Selker HP. Missed diagnoses of acute cardiac ischemia in the emergency department. N Engl J Med. 2000;342:1163–70.

    Article  CAS  PubMed  Google Scholar 

  71. Udelson JE, Beshansky JR, Ballin DS, Feldman JA, Griffith JL, Handler J, Heller GV, Hendel RC, Pope JH, Ruthazer R, Spiegler EJ, Woolard RH, Selker HP. Myocardial perfusion imaging for evaluation and triage of patients with suspected acute cardiac ischemia: a randomized controlled trial. JAMA. 2002;288:2693–700.

    Article  PubMed  Google Scholar 

  72. Duvall WL, Savino JA, Levine EJ, Baber U, Lin JT, Einstein AJ, Hermann LK, Henzlova MJ. A comparison of coronary cta and stress testing using high-efficiency spect MPI for the evaluation of chest pain in the emergency department. J Nucl Cardiol. 2014;21:305–18.

    Article  PubMed  Google Scholar 

  73. Goldstein JA, Chinnaiyan KM, Abidov A, Achenbach S, Berman DS, Hayes SW, Hoffmann U, Lesser JR, Mikati IA, O’Neil BJ, Shaw LJ, Shen MY, Valeti US, Raff GL. The CT-STAT (coronary computed tomographic angiography for systematic triage of acute chest pain patients to treatment) trial. J Am Coll Cardiol. 2011;58:1414–22.

    Article  PubMed  Google Scholar 

  74. Litt HI, Gatsonis C, Snyder B, Singh H, Miller CD, Entrikin DW, Leaming JM, Gavin LJ, Pacella CB, Hollander JE. CT angiography for safe discharge of patients with possible acute coronary syndromes. N Engl J Med. 2012;366:1393–403.

    Article  CAS  PubMed  Google Scholar 

  75. Hoffmann U, Truong QA, Schoenfeld DA, Chou ET, Woodard PK, Nagurney JT, Pope JH, Hauser TH, White CS, Weiner SG, Kalanjian S, Mullins ME, Mikati I, Peacock WF, Zakroysky P, Hayden D, Goehler A, Lee H, Gazelle GS, Wiviott SD, Fleg JL, Udelson JE. Coronary CT angiography versus standard evaluation in acute chest pain. N Engl J Med. 2012;367:299–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Hamilton-Craig C, Fifoot A, Hansen M, Pincus M, Chan J, Walters DL, Branch KR. Diagnostic performance and cost of CT angiography versus stress ECG – a randomized prospective study of suspected acute coronary syndrome chest pain in the emergency department (ct-compare). Int J Cardiol. 2014;177:867–73.

    Google Scholar 

  77. Anthem. Coronary artery imaging: contrast-enhanced Coronary Computed Tomography Angiography (CCTA), Coronary Magnetic Resonance Angiography (MRA) and Cardiac Magnetic Resonance Imaging (MRI). Medical Policy #: RAD 00035; Current Effective Date: 04/077/2015; Last Review Date: 02/05/2015.

    Google Scholar 

  78. Min JK, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Cheng V, Chinnaiyan K, Chow BJ, Delago A, Hadamitzky M, Hausleiter J, Kaufmann P, Maffei E, Raff G, Shaw LJ, Villines T, Berman DS, Investigators C. Age- and sex-related differences in all-cause mortality risk based on coronary computed tomography angiography findings results from the international multicenter confirm (coronary ct angiography evaluation for clinical outcomes: an international multicenter registry) of 23,854 patients without known coronary artery disease. J Am Coll Cardiol. 2011;58:849–60.

    Article  PubMed  Google Scholar 

  79. Leipsic J, Taylor CM, Grunau G, Heilbron BG, Mancini GB, Achenbach S, Al-Mallah M, Berman DS, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Cheng VY, Chinnaiyan K, Chow BJ, Delago A, Hadamitzky M, Hausleiter J, Cury R, Feuchtner G, Kim YJ, Kaufmann PA, Lin FY, Maffei E, Raff G, Shaw LJ, Villines TC, Min JK. Cardiovascular risk among stable individuals suspected of having coronary artery disease with no modifiable risk factors: results from an international multicenter study of 5262 patients. Radiology. 2013;267:718–26.

    Article  PubMed  Google Scholar 

  80. Arsanjani R, Berman DS, Gransar H, Cheng VY, Dunning A, Lin FY, Achenbach S, Al-Mallah M, Budoff MJ, Callister TQ, Chang HJ, Cademartiri F, Chinnaiyan KM, Chow BJ, DeLago A, Hadamitzky M, Hausleiter J, Kaufmann P, LaBounty TM, Leipsic J, Raff G, Shaw LJ, Villines TC, Cury RC, Feuchtner G, Kim YJ, Min JK. Left ventricular function and volume with coronary ct angiography improves risk stratification and identification of patients at risk for incident mortality: results from 7758 patients in the prospective multinational confirm observational cohort study. Radiology. 2014;273:70–7.

    Article  PubMed  Google Scholar 

  81. Nakazato R, Arsanjani R, Achenbach S, Gransar H, Cheng VY, Dunning A, Lin FY, Al-Mallah M, Budoff MJ, Callister TQ, Chang HJ, Cademartiri F, Chinnaiyan K, Chow BJ, Delago A, Hadamitzky M, Hausleiter J, Kaufmann P, Raff G, Shaw LJ, Villines T, Cury RC, Feuchtner G, Kim YJ, Leipsic J, Berman DS, Min JK. Age-related risk of major adverse cardiac event risk and coronary artery disease extent and severity by coronary ct angiography: results from 15 187 patients from the international multisite CONFIRM study. Eur Heart J Cardiovasc Imag. 2014;15:586–94.

    Article  Google Scholar 

  82. The SCOT-HEART Investigators. CT coronary angiography in patients with suspected angina due to coronary heart disease (SCOT-HEART): an open-label, parallel-group, multicentre trial. Lancet. 2015;385:2383–91.

    Google Scholar 

  83. Douglas PS, Hoffmann U, Patel MR, Mark DB, Al-Khalidi HR, Cavanaugh B, Cole J, Dolor RJ, Fordyce CB, Huang M, Khan MA, Kosinski AS, Krucoff MW, Malhotra V, Picard MH, Udelson JE, Velazquez EJ, Yow E, Cooper LS, Lee KL. Outcomes of anatomical versus functional testing for coronary artery disease. N Engl J Med. 2015;372:1291–300.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Schuijf JD, Jukema JW, van der Wall EE, Bax JJ. The current status of multislice computed tomography in the diagnosis and prognosis of coronary artery disease. J Nucl Cardiol. 2007;14(4):604–12.

    Article  PubMed  Google Scholar 

  85. Zeb I, Abbas N, Nasir K, Budoff MJ. Coronary computed tomography as a cost-effective test strategy for coronary artery disease assessment – a systematic review. Atherosclerosis. 2014;234:426–35.

    Article  CAS  PubMed  Google Scholar 

  86. Abidov A, Gallagher MJ, Chinnaiyan KM, Mehta LS, Wegner JH, Raff GL. Clinical effectiveness of coronary computed tomographic angiography in the triage of patients to cardiac catheterization and revascularization after inconclusive stress testing: results of a 2-year prospective trial. J Nucl Cardiol. 2009;16:701–13.

    Article  PubMed  Google Scholar 

  87. Rozanski A, Cohen R, Uretsky S. The coronary calcium treadmill test: a new approach to the initial workup of patients with suspected coronary artery disease. J Nucl Cardiol. 2013;20:719–30.

    Article  PubMed  Google Scholar 

  88. Cremer P, Hachamovitch R. Assessing the prognostic implications of myocardial perfusion studies: identification of patients at risk vs patients who may benefit from intervention? Curr Cardiol Rep. 2014;16:472.

    Article  PubMed  Google Scholar 

  89. Shaw LJ, Hage FG, Berman DS, Hachamovitch R, Iskandrian A. Prognosis in the era of comparative effectiveness research: where is nuclear cardiology now and where should it be? J Nucl Cardiol. 2012;19:1026–43.

    Article  PubMed  Google Scholar 

  90. Bourque JM, Beller GA. Stress myocardial perfusion imaging for assessing prognosis: an update. JACC Cardiovasc Imaging. 2011;4:1305–19.

    Article  PubMed  Google Scholar 

  91. Dorbala S, Di Carli MF, Beanlands RS, Merhige ME, Williams BA, Veledar E, Chow BJ, Min JK, Pencina MJ, Berman DS, Shaw LJ. Prognostic value of stress myocardial perfusion positron emission tomography: results from a multicenter observational registry. J Am Coll Cardiol. 2013;61:176–84.

    Article  PubMed  PubMed Central  Google Scholar 

  92. Berman DS, Shaw LJ, Min JK, Hachamovitch R, Abidov A, Germano G, Hayes SW, Friedman JD, Thomson LE, Kang X, Slomka P, Rozanski A. SPECT/PET myocardial perfusion imaging versus coronary ct angiography in patients with known or suspected CAD. Q J Nucl Med Mol Imaging. 2010;54:177–200.

    CAS  PubMed  Google Scholar 

  93. Berman DS, Hachamovitch R, Shaw LJ, Hayes SW, Germano G. Nuclear cardiology. In: Fuster VAR, O’Rourke RA, Roberts R, King SB, Wellens HJJ, editors. Hurst’s the heart. New York: McGraw-Hill Companies; 2004. p. 563–97.

    Google Scholar 

  94. Boden WE, O’Rourke RA, Teo KK, Hartigan PM, Maron DJ, Kostuk WJ, Knudtson M, Dada M, Casperson P, Harris CL, Chaitman BR, Shaw L, Gosselin G, Nawaz S, Title LM, Gau G, Blaustein AS, Booth DC, Bates ER, Spertus JA, Berman DS, Mancini GB, Weintraub WS. Optimal medical therapy with or without PCI for stable coronary disease. N Engl J Med. 2007;356:1503–16.

    Article  CAS  PubMed  Google Scholar 

  95. Frye RL, August P, Brooks MM, Hardison RM, Kelsey SF, MacGregor JM, Orchard TJ, Chaitman BR, Genuth SM, Goldberg SH, Hlatky MA, Jones TL, Molitch ME, Nesto RW, Sako EY, Sobel BE, Group BDS. A randomized trial of therapies for type 2 diabetes and coronary artery disease. N Engl J Med. 2009;360:2503–15.

    Article  CAS  PubMed  Google Scholar 

  96. Tonino PA, De Bruyne B, Pijls NH, Siebert U, Ikeno F, van’ t Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, MacCarthy PA, Fearon WF, FAME Study Investigators. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention. N Engl J Med. 2009;360:213–24.

    Article  CAS  PubMed  Google Scholar 

  97. Pijls NH, Fearon WF, Tonino PA, Siebert U, Ikeno F, Bornschein B, van’t Veer M, Klauss V, Manoharan G, Engstrøm T, Oldroyd KG, Ver Lee PN, MacCarthy PA, De Bruyne B, Investigators FS. Fractional flow reserve versus angiography for guiding percutaneous coronary intervention in patients with multivessel coronary artery disease: 2-year follow-up of the fame (fractional flow reserve versus angiography for multivessel evaluation) study. J Am Coll Cardiol. 2010;56:177–84.

    Article  PubMed  Google Scholar 

  98. De Bruyne B, Pijls NH, Kalesan B, Barbato E, Tonino PA, Piroth Z, Jagic N, Mobius-Winkler S, Rioufol G, Witt N, Kala P, MacCarthy P, Engstrom T, Oldroyd KG, Mavromatis K, Manoharan G, Verlee P, Frobert O, Curzen N, Johnson JB, Juni P, Fearon WF. Fractional flow reserve-guided pci versus medical therapy in stable coronary disease. N Engl J Med. 2012;367:991–1001.

    Article  PubMed  CAS  Google Scholar 

  99. Li J, Elrashidi MY, Flammer AJ, Lennon RJ, Bell MR, Holmes DR, Bresnahan JF, Rihal CS, Lerman LO, Lerman A. Long-term outcomes of fractional flow reserve-guided vs. Angiography-guided percutaneous coronary intervention in contemporary practice. Eur Heart J. 2013;34:1375–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Hachamovitch R, Berman DS, Shaw LJ, Kiat H, Cohen I, Cabico JA, Friedman J, Diamond GA. Incremental prognostic value of myocardial perfusion single photon emission computed tomography for the prediction of cardiac death: differential stratification for risk of cardiac death and myocardial infarction. Circulation. 1998;97:535–43.

    Article  CAS  PubMed  Google Scholar 

  101. Hachamovitch R, Hayes SW, Friedman JD, Cohen I, Berman DS. Comparison of the short-term survival benefit associated with revascularization compared with medical therapy in patients with no prior coronary artery disease undergoing stress myocardial perfusion single photon emission computed tomography. Circulation. 2003;107:2900–7.

    Article  PubMed  Google Scholar 

  102. Hachamovitch R, Rozanski A, Shaw LJ, Stone GW, Thomson LE, Friedman JD, Hayes SW, Cohen I, Germano G, Berman DS. Impact of ischaemia and scar on the therapeutic benefit derived from myocardial revascularization vs. Medical therapy among patients undergoing stress-rest myocardial perfusion scintigraphy. Eur Heart J. 2011;32:1012–24.

    Article  PubMed  Google Scholar 

  103. Hachamovitch R, Kang X, Amanullah AM, Abidov A, Hayes SW, Friedman JD, Cohen I, Thomson LE, Germano G, Berman DS. Prognostic implications of myocardial perfusion single-photon emission computed tomography in the elderly. Circulation. 2009;120:2197–206.

    Article  PubMed  Google Scholar 

  104. Sorajja P, Chareonthaitawee P, Rajagopalan N, Miller TD, Frye RL, Hodge DO, Gibbons RJ. Improved survival in asymptomatic diabetic patients with high-risk SPECT imaging treated with coronary artery bypass grafting. Circulation. 2005;112:I311–6.

    PubMed  Google Scholar 

  105. Taqueti VR, Hachamovitch R, Murthy VL, Naya M, Foster CR, Hainer J, Dorbala S, Blankstein R, Di Carli MF. Global coronary flow reserve is associated with adverse cardiovascular events independently of luminal angiographic severity and modifies the effect of early revascularization. Circulation. 2015;131:19–27.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Gould KL, Johnson NP, Kaul S, Kirkeeide RL, Mintz GS, Rentrop KP, Sdringola S, Virmani R, Narula J. Patient selection for elective revascularization to reduce myocardial infarction and mortality: new lessons from randomized trials, coronary physiology, and statistics. Circ Cardio Imag. 2015;8:e003099.

    Google Scholar 

  107. Rozanski A, Gransar H, Hayes SW, Min J, Friedman JD, Thomson LE, Berman DS. Temporal trends in the frequency of inducible myocardial ischemia during cardiac stress testing: 1991 to 2009. J Am Coll Cardiol. 2013;61:1054–65.

    Article  PubMed  Google Scholar 

  108. Cheng VY, Berman DS, Rozanski A, Dunning AM, Achenbach S, Al-Mallah M, Budoff MJ, Cademartiri F, Callister TQ, Chang HJ, Chinnaiyan K, Chow BJ, Delago A, Gomez M, Hadamitzky M, Hausleiter J, Karlsberg RP, Kaufmann P, Lin FY, Maffei E, Raff GL, Villines TC, Shaw LJ, Min JK. Performance of the traditional age, sex, and angina typicality-based approach for estimating pretest probability of angiographically significant coronary artery disease in patients undergoing coronary computed tomographic angiography: results from the multinational coronary ct angiography evaluation for clinical outcomes: an international multicenter registry (CONFIRM). Circulation. 2011;124:2423–32.

    Article  PubMed  PubMed Central  Google Scholar 

  109. Tonino PA, Fearon WF, De Bruyne B, Oldroyd KG, Leesar MA, Ver Lee PN, MacCarthy PA, Van’t Veer M, Pijls NH. Angiographic versus functional severity of coronary artery stenoses in the FAME study: fractional flow reserve versus angiography in multivessel evaluation. J Am Coll Cardiol. 2010;55(25):2816–21.

    Article  PubMed  Google Scholar 

  110. Zhou T, Yang LF, Zhai JL, Li J, Wang QM, Zhang RJ, Wang S, Peng ZH, Li M, Sun G. SPECT myocardial perfusion versus fractional flow reserve for evaluation of functional ischemia: a meta analysis. Eur J Radiol. 2014;83:951–6.

    Article  PubMed  Google Scholar 

  111. Min JK, Dunning A, Gransar H, Achenbach S, Lin FY, Al-Mallah M, Budoff MJ, Callister TQ, Chang HJ, Cademartiri F, Maffei E, Chinnaiyan K, Chow BJ, D’Agostino R, DeLago A, Friedman J, Hadamitzky M, Hausleiter J, Hayes SW, Kaufmann P, Raff GL, Shaw LJ, Thomson L, Villines T, Cury RC, Feuchtner G, Kim YJ, Leipsic J, Berman DS, Pencina M. Medical history for prognostic risk assessment and diagnosis of stable patients with suspected coronary artery disease. Am J Med. 2015;128(8):871–8.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Levine A, Hecht HS. Cardiac CT angiography in congestive heart failure. J Nucl Med. 2015;56 Suppl 4:46s–51.

    Article  PubMed  Google Scholar 

  113. Hachamovitch R, Nutter B, Hlatky MA, Shaw LJ, Ridner ML, Dorbala S, Beanlands RS, Chow BJ, Branscomb E, Chareonthaitawee P, Weigold WG, Voros S, Abbara S, Yasuda T, Jacobs JE, Lesser J, Berman DS, Thomson LE, Raman S, Heller GV, Schussheim A, Brunken R, Williams KA, Farkas S, Delbeke D, Schoepf UJ, Reichek N, Rabinowitz S, Sigman SR, Patterson R, Corn CR, White R, Kazerooni E, Corbett J, Bokhari S, Machac J, Guarneri E, Borges-Neto S, Millstine JW, Caldwell J, Arrighi J, Hoffmann U, Budoff M, Lima J, Johnson JR, Johnson B, Gaber M, Williams JA, Foster C, Hainer J, Di Carli MF, SPARC Investigators. Patient management after noninvasive cardiac imaging results from sparc (study of myocardial perfusion and coronary anatomy imaging roles in coronary artery disease). J Am Coll Cardiol. 2012;59:462–74.

    Article  PubMed  Google Scholar 

  114. Beanlands RS, Nichol G, Huszti E, Humen D, Racine N, Freeman M, Gulenchyn KY, Garrard L, de Kemp R, Guo A, Ruddy TD, Benard F, Lamy A, Iwanochko RM. F-18-fluorodeoxyglucose positron emission tomography imaging-assisted management of patients with severe left ventricular dysfunction and suspected coronary disease: a randomized, controlled trial (parr-2). J Am Coll Cardiol. 2007;50:2002–12.

    Article  PubMed  Google Scholar 

  115. Abraham A, Nichol G, Williams KA, Guo A, deKemp RA, Garrard L, Davies RA, Duchesne L, Haddad H, Chow B, DaSilva J, Beanlands RS. 18F-FDG pet imaging of myocardial viability in an experienced center with access to 18f-fdg and integration with clinical management teams: the Ottawa-five substudy of the parr 2 trial. J Nucl Med. 2010;51:567–74.

    Article  PubMed  Google Scholar 

Download references

Acknowledgement

Supported in part by the Adelson Family Foundation and the Diane and Guilford Glazer Foundation

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel S. Berman MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Berman, D.S. et al. (2016). Value Based Imaging for Coronary Artery Disease: Implications for Nuclear Cardiology and Cardiac CT. In: Budoff, M., Shinbane, J. (eds) Cardiac CT Imaging. Springer, Cham. https://doi.org/10.1007/978-3-319-28219-0_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-28219-0_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-28217-6

  • Online ISBN: 978-3-319-28219-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics