Skip to main content

Improving MRI Brain Image Classification with Anatomical Regional Kernels

  • Conference paper
  • First Online:
Machine Learning Meets Medical Imaging (MLMMI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9487))

Included in the following conference series:

Abstract

Classification of brain images is frequently done using kernel based methods, such as the support vector machine. These lend themselves to improvement via multiple kernel learning, where a number of different kernels are linearly combined to integrate different sources of information and increase accuracy. Previous applications made use of a small number of kernels representing different image modalities or kernel functions. Here, the kernels instead represent 83 anatomically meaningful brain regions. To find the optimal combination of kernels and perform classification, we use a Gaussian Process framework to infer the maximum likelihood weights. The resulting formulation successfully combines voxel level features with prior anatomical knowledge. This gives an improvement in classification accuracy of MRI images of Alzheimer’s disease patients and healthy controls from the ADNI database to almost 88 %, compared to less than 86 % using a single kernel representing the whole brain. Moreover, interpretability of the classifier is also improved, as the optimal kernel weights are sparse and give an indication of the importance of each brain region in separating the two groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 34.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 44.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://adni.loni.ucla.edu/.

  2. 2.

    http://www.gaussianprocess.org/gpml/code/matlab/doc/.

References

  1. Klöppel, S., Stonnington, C.M., Chu, C., Draganski, B., Scahill, R.I., Rohrer, J.D., Fox, N.C., Jack, C.R., Ashburner, J., Frackowiak, R.S.J.: Automatic classification of MR scans in Alzheimerss disease. Brain: J. Neurol. 131(Pt 3), 681–689 (2008)

    Article  Google Scholar 

  2. Zhang, D., Wang, Y., Zhou, L., Yuan, H., Shen, D.: Multimodal classification of Alzheimer’s disease and mild cognitive impairment. NeuroImage 55(3), 856–867 (2011)

    Article  Google Scholar 

  3. Fan, Y., Shen, D., Gur, R.C., Gur, R.E., Davatzikos, C.: COMPARE: classification of morphological patterns using adaptive regional elements. IEEE Trans. Med. Imaging 26(1), 93–105 (2007)

    Article  Google Scholar 

  4. Cuingnet, R., Gerardin, E., Tessieras, J., Auzias, G., Lehricy, S., Habert, M.O., Chupin, M., Benali, H., Colliot, O.: Automatic classification of patients with Alzheimer’s disease from structural MRI: a comparison of ten methods using the ADNI database. NeuroImage 56(2), 766–781 (2011)

    Google Scholar 

  5. Young, J., Modat, M., Cardoso, M.J., Mendelson, A., Cash, D., Ourselin, S.: Accurate multimodal probabilistic prediction of conversion to Alzheimer’s disease in patients with mild cognitive impairment. NeuroImage: Clin. 2, 735–745 (2013)

    Article  Google Scholar 

  6. Hinrichs, C., Singh, V., Xu, G., Johnson, S.C.: Predictive markers for AD in a multi-modality framework: an analysis of MCI progression in the ADNI population. NeuroImage 55(2), 574–589 (2011)

    Article  Google Scholar 

  7. Chu, C., Bandettini, P., Ashburner, J., Marquand, A., Kloeppel, S.: Classification of neurodegenerative diseases using Gaussian process classification with automatic feature determination. In: 2010 First Workshop on Brain Decoding: Pattern Recognition Challenges in Neuroimaging (WBD), pp. 17–20. IEEE (2010)

    Google Scholar 

  8. Liu, F., Zhou, L., Shen, C., Yin, J.: Multiple kernel learning in the primal for multi-modal Alzheimer’s disease classification (2013). arXiv e-print 1310.0890

  9. Gramfort, A., Thirion, B., Varoquaux, G.: Identifying predictive regions from fMRI with TV-L1 prior. In: Proceedings of the 2013 International Workshop on Pattern Recognition in Neuroimaging. PRNI 2013, pp. 17–20. IEEE Computer Society, Washington, DC (2013)

    Google Scholar 

  10. Cuingnet, R., Glaunès, J.A., Chupin, M., Benali, H., Colliot, O.: Spatial and anatomical regularization of SVM: a general framework for neuroimaging data. IEEE Trans. Pattern Anal. Mach. Intell. 35(3), 682–696 (2013)

    Article  Google Scholar 

  11. Sabuncu, M.R., Leemput, K.V.: The relevance voxel machine (RVoxM): a self-tuning Bayesian model for informative image-based prediction. IEEE Trans. Med. Imaging 31(12), 2290–2306 (2012)

    Article  Google Scholar 

  12. Neal, R.M.: Bayesian Learning for Neural Networks. Springer, New York (1996)

    Book  MATH  Google Scholar 

  13. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  14. Modat, M., Ridgway, G.R., Taylor, Z.A., Lehmann, M., Barnes, J., Hawkes, D.J., Fox, N.C., Ourselin, S.: Fast free-form deformation using graphics processing units. Comput. Methods Programs Biomed. 98(3), 278–284 (2010)

    Article  Google Scholar 

  15. Cardoso, M., Modat, M., Ourselin, S., Keihaninejad, S., Cash, D.: Multi-STEPS: multi-label similarity and truth estimation for propagated segmentations. In: 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis (MMBIA), pp. 153–158 (2012)

    Google Scholar 

  16. Gousias, I.S., Rueckert, D., Heckemann, R.A., Dyet, L.E., Boardman, J.P., Edwards, A.D., Hammers, A.: Automatic segmentation of brain MRIs of 2-year-olds into 83 regions of interest. NeuroImage 40(2), 672–684 (2008)

    Article  Google Scholar 

  17. Minka, T.: Expectation propagation for approximate bayesian inference. In: Proceedings of the Seventeenth Conference Annual Conference on Uncertainty in Artificial Intelligence (UAI 2001), pp. 362–369. Morgan Kaufmann, San Francisco (2001)

    Google Scholar 

  18. Braak, H., Braak, E.: Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 16(3), 271–278 (1995)

    Article  MathSciNet  Google Scholar 

  19. Madsen, S., Ho, A., Hua, X., Saharan, P., Toga Jr, A., Jack, C., Weiner, M., Thompson, P.: 3D maps localize caudate nucleus atrophy in 400 Alzheimers disease, mild cognitive impairment, and healthy elderly subjects. Neurobiol. Aging 31(8), 1312–1325 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jonathan Young .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Young, J., Mendelson, A., Cardoso, M.J., Modat, M., Ashburner, J., Ourselin, S. (2015). Improving MRI Brain Image Classification with Anatomical Regional Kernels. In: Bhatia, K., Lombaert, H. (eds) Machine Learning Meets Medical Imaging. MLMMI 2015. Lecture Notes in Computer Science(), vol 9487. Springer, Cham. https://doi.org/10.1007/978-3-319-27929-9_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27929-9_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27928-2

  • Online ISBN: 978-3-319-27929-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics