Skip to main content

Gaussian Processes for Slice-Based Super-Resolution MR Images

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9475))

Abstract

Magnetic resonance imaging (MRI) is a medical technique used in radiology to obtain anatomical images of healthy and pathological tissues. Due to hardware limitations and clinical protocols, MRI data are often acquired with low-resolution. For this reason, the scientific community has been developing super-resolution (SR) methodologies in order to enhance spatial resolution through post-processing of 2D multi-slice images. The enhancement of spatial resolution in magnetic resonance (MR) images improves clinical procedures such as tissue segmentation, registration and disease diagnosis. Several methods to perform SR-MR images have been proposed. However, they present different drawbacks: sensitivity to noise, high computational cost, and complex optimization algorithms. In this paper, we develop a supervised learning methodology to perform SR-MR images using a patch-based Gaussian process regression (GPR) method. We compare our approach with nearest-neighbor interpolation, B-splines and a SR-GPR scheme based on nearest-neighbors. We test our SR-GPR algorithm in MRI-T1 and MRI-T2 studies, evaluating the performance through error metrics and morphological validation (tissue segmentation). Results obtained with our methodology outperform the other alternatives for all validation protocols.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hollingworth, W., Todd, C., Bell, M., Arafat, Q., Girling, S., Karia, K., Dixon, A.K.: The diagnostic and therapeutic impact of MRI: an observational multi-centre study. Clin. Radiol. 55, 825–831 (2000)

    Article  Google Scholar 

  2. Isaac, J., Kulkarni, J.: Super resolution techniques for medical image processing. In: International Conference on Technologies for Sustainable Development (ICTSD), pp. 1–6 (2015)

    Google Scholar 

  3. Hefnawy, A.: An efficient super-resolution approach for obtaining isotropic 3-D imaging using 2-D multi-slice MRI. Egypt. Inf. J. 14, 117–123 (2013)

    Article  Google Scholar 

  4. Malczewski, K.: Inter-K-space motion based strategy for super-resolution in MRI. In: 17th European Signal Processing Conference, pp. 30–34 (2009)

    Google Scholar 

  5. Carmi, E., Liu, S., Alon, N., Fiat, A., Fiat, D.: Resolution enhancement in MRI. Magn. Reson. Imaging 24, 133–154 (2006)

    Article  Google Scholar 

  6. Huang, T., Tsai, R.: Multi-frame image restoration and registration. In: Advances in Computer Vision and Image Processing, vol. 1, pp. 317–339 (1984)

    Google Scholar 

  7. Kim, S., Bose, N., Valenzuela, H.: Recursive reconstruction of high resolution image from noisy undersampled frames. IEEE Trans. Acoust. Speech Sig. Process. 38, 1013–1027 (1990)

    Article  Google Scholar 

  8. Patti, A., Sezan, M., Teklap, A.: High-resolution image reconstruction from a low-resolution image sequence in the presence of time-varying motion blur. In: Proceedings of ICIP, pp. 343–337 (1994)

    Google Scholar 

  9. Greenspan, H., Oz, G., Kiryati, N., Peled, S.: MRI inter-slice reconstruction using super resolution. Magn. Reson. Imaging 20, 437–446 (2002)

    Article  Google Scholar 

  10. Aguena, M., Mascarenhas, N., Anacleto, J., Fels, S.: MRI iterative super resolution with Wiener filter regularization. In: XXVI Conference on Graphics, Patterns and Images, pp. 155–162 (2013)

    Google Scholar 

  11. Jafari-Khouzani, K.: MRI upsampling using feature-based nonlocal means approach. IEEE Trans. Med. Imaging 30, 1969–1985 (2014)

    Article  Google Scholar 

  12. Lu, Y., Yang, R.: Super-resolution reconstruction of dynamic MRI by patch learning. In: 12th International Conference on Control, Automation, Robotics and Vision, pp. 1443–1448 (2012)

    Google Scholar 

  13. Rousseau, F., Studholme, C.: A supervised patch-based image reconstruction technique: application to brain MRI super-resolution. In: 10th International Symposium on Biomedical Imaging, pp. 346–349 (2013)

    Google Scholar 

  14. Rueda, A., Malpica, N., Romero, E.: Single-image super-resolution of brain MR images using overcomplete dictionaries. Med. Image Anal. 17, 113–132 (2012)

    Article  Google Scholar 

  15. Wang, Y., Qiao, J., Jun-bao, L., Ping-Fu, A., Shu-Chuan, C., Rodd, J.: Sparse representation-based MRI super-resolution reconstruction. Meas. 47, 946–953 (2012)

    Article  Google Scholar 

  16. Jog, A., Carass, A., Prince, J.: Improving magnetic resonance resolution with supervised learning. In: IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 987–990 (2014)

    Google Scholar 

  17. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2005)

    Google Scholar 

  18. Murphy, K.P.: Machine Learning: A Probabilistic Perspective (Adaptive Computation And Machine Learning Series). The MIT Press, Cambridge (2012)

    Google Scholar 

  19. He, H., Siu, W.C.: Single image super-resolution using Gaussian process regression. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 449–456 (2011)

    Google Scholar 

  20. Barmpoutis, A., Vemuri, B., Shepherd, T., Forder, J.: Tensor splines for interpolation and approximation of DT-MRI with applications to segmentation of isolated rat hippocampi. IEEE Trans. Med. Imaging 26, 1537–1546 (2007)

    Article  Google Scholar 

  21. Kikinis, R., Pieper, S.D., Vosburgh, K.G.: 3D slicer: a platform for subject-specific image analysis, visualization, and clinical support. In: Jolesz, F.A. (ed.) Intraoperative Imaging and Image-Guided Therapy, pp. 277–289. Springer, New York (2014)

    Chapter  Google Scholar 

Download references

Acknowledgments

H.D. Vargas Cardona is funded by Colciencias under the program: formación de alto nivel para la ciencia, la tecnología y la innovación - Convocatoria 617 de 2013. This research has been developed under the project: Estimación de los parámetros de neuro modulación con terapia de estimulación cerebral profunda en pacientes con enfermedad de Parkinson a partir del volumen de tejido activo planeado, financed by Colciencias with code 1110-657-40687.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán Darío Vargas Cardona .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Cardona, H.D.V., López-Lopera, A.F., Orozco, Á.A., Álvarez, M.A., Tamames, J.A.H., Malpica, N. (2015). Gaussian Processes for Slice-Based Super-Resolution MR Images. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2015. Lecture Notes in Computer Science(), vol 9475. Springer, Cham. https://doi.org/10.1007/978-3-319-27863-6_65

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27863-6_65

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27862-9

  • Online ISBN: 978-3-319-27863-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics