Skip to main content

Hydrocephalus in Achondroplasia and Venous Hypertension

  • Reference work entry
  • First Online:
  • 1494 Accesses

Abstract

The cause of hydrocephalus in achondroplasia is believed to be chronic venous hypertension, which in turn, is due to the anomalous neuroanatomy associated with this disorder. The venous anatomy in achondroplasia is now known to undergo substantial compensation during development, which could partly account for the benign nature of hydrocephalus in this population. The management is controversial, owing to inadequate understanding of the natural history and pathophysiology of this condition. This chapter recapitulates our current understanding of hydrocephalus in achondroplasia, with special emphasis on the role of venous hypertension, its impact on CSF circulation and management of hydrocephalus.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   899.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,099.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arnautovic KI, Al-Mefty O, Pait TG, Krisht AF, Husain MM (1997) The suboccipital cavernous sinus. J Neurosurg 86:252–262

    Article  CAS  Google Scholar 

  • Bagley CA, Pindrik JA, Bookland MJ, Camara-Quintana JQ, Carson BS (2006) Cervicomedullary decompression for foramen magnum stenosis in achondroplasia. J Neurosurg 104:166–172

    PubMed  Google Scholar 

  • Bateman GA (2007) Magnetic resonance imaging quantification of compliance and collateral flow in late-onset idiopathic aqueductal stenosis: venous pathophysiology revisited. J Neurosurg 107:951–958

    Article  Google Scholar 

  • Batson OV (1957) The vertebral vein system. Caldwell lecture, 1956. Am J Roentgenol Radium Therapy Nucl Med 78:195–212

    CAS  Google Scholar 

  • Bellus GA, Hefferon TW, De Luna RO, Hecht JT, Horton WA, Machado M, Kaitila I, McIntosh I, Francomano CA (1995) Achondroplasia is defined by recurrent G380R mutations of FGFR3. American journal of human genetics 56(2):368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bito LZ, Bradbury MW, Davson H (1966) Factors affecting the distribution of iodide and bromide in the central nervous system. J Physiol 185:323–354

    Article  CAS  Google Scholar 

  • Cserr HF, Cooper DN, Milhorat TH (1977) Flow of cerebral interstitial fluid as indicated by the removal of extracellular markers from rat caudate nucleus. Exp Eye Res 25:461–473

    Article  Google Scholar 

  • Dimario FJ Jr, Ramsby GR, Burleson JA, Greensheilds IR (1995) Brain morphometric analysis in achondroplasia. Neurology 45:519–524

    Article  Google Scholar 

  • Dandy WE (1921) Hydrocephalus in achondroplasia. Bull Johns Hopkins Hosp 32:5–10

    Google Scholar 

  • Eerdincler P, Dashti R, Kaynar MY, Canbaz B, Ciplak N, Kuday C (1997) Hydrocephalus and chronically increased intracranial pressure in achondroplasia. Childs Nerv Syst 13:345–348

    Article  Google Scholar 

  • Etus V, Ceylan S (2005) The role of endoscopic third ventriculostomy in the treatment of triventricular hydrocephalus seen in children with achondroplasia. J Neurosurg 103:260–265

    PubMed  Google Scholar 

  • Evans WA (1942) An encephalographic ratio for estimating the size of the cerebral ventricles: further experience with serial observations. Am J Dis Child 64:820–830

    Article  Google Scholar 

  • Friedman WA, Mickle JP (1980) Hydrocephalus in achondroplasia: a possible mechanism. Neurosurgery 7:150–153

    Article  CAS  Google Scholar 

  • Greitz D, Hannerz J (1996) A proposed model of cerebrospinal fluid circulation: observations with radionuclide cisternography. AJNR Am J Neuroradiol 17:431–438

    CAS  PubMed  Google Scholar 

  • Greitz D, Franck A, Nordell B (1993) On the pulsatile nature of intracranial and spinal CSF- circulation demonstrated by MR imaging. Acta Radiol 34:321–328

    Article  CAS  Google Scholar 

  • Greitz D, Greitz T, Hindmarsh T (1997) A new view on the CSF-circulation with the potential for pharmacological treatment of childhood hydrocephalus. Acta Paediatr 86:125–132

    Article  CAS  Google Scholar 

  • Guinane JE (1977) Why does hydrocephalus progress? J Neurol Sci 32:1–8

    Article  CAS  Google Scholar 

  • Hirabuki N, Watanabe Y, Mano T, Fujita N, Tanaka H, Ueguchi T, Nakamura H (2000) Quantitation of flow in the superior sagittal sinus performed with cine phase-contrast MR imaging of healthy and achondroplastic children. AJNR Am J Neuroradiol 21:1497–1501

    CAS  PubMed  Google Scholar 

  • Horton WA, Rotter JI, Rimoin DL, Scott CI, Hall JG (1978) Standard growth curves for achondroplasia. J Pediatr 93:435–438

    Article  CAS  Google Scholar 

  • Kaitila I, Mcintosh I, Francomano CA (1995) Achondroplasia is defined by recurrent G380R mutations of FGFR3. Am J Hum Genet 56:368–373

    PubMed  PubMed Central  Google Scholar 

  • King JA, Vachhrajani S, Drake JM, Rutka JT (2009) Neurosurgical implications of achondroplasia. J Neurosurg Pediatr 4:297–306

    Article  Google Scholar 

  • Landau K, Gloor BP (1994) Therapy-resistant papilledema in achondroplasia. J Neuroophthalmol 14:24–28

    Article  CAS  Google Scholar 

  • Lundar T, Bakke SJ, Nornes H (1990) Hydrocephalus in an achondroplastic child treated by venous decompression at the jugular foramen. Case report. J Neurosurg 73:138–140

    Article  CAS  Google Scholar 

  • Mitamoto J, Tatsuzara K, Sasajima H, Mineura K (2010) Usefulness of phase contrast cine mode magnetic resonance imaging for surgical decision making in patients with hydrocephalus combined with achondroplasia. Case report. Neurol Med Chir (Tokyo) 50:1116–1118

    Article  Google Scholar 

  • Moritani T, Aihara T, Oguma E, Makiyama Y, Nishimoto H, Smoker WR, Sato Y (2006) Magnetic resonance venography of achondroplasia: correlation of venous narrowing at the jugular foramen with hydrocephalus. Clin Imaging 30:195–200

    Article  Google Scholar 

  • Mukherjee D, Pressman BD, Krakow D, Rimoin DL, Danielpour M (2014) Dynamic cervicomedullary cord compression and alterations in cerebrospinal fluid dynamics in children with achondroplasia: review of an 11-year surgical case series. J Neurosurg Pediatr 14:238–244

    Article  Google Scholar 

  • O’hayon BB, Drake JM, Ossip MG, Tuli S, Clarke M (1998) Frontal and occipital horn ratio: a linear estimate of ventricular size for multiple imaging modalities in pediatric hydrocephalus. Pediatr Neurosurg 29:245–249

    Article  Google Scholar 

  • Pierre-Kahn A, Hirsch JF, Renier D, Metzger J, Maroteaux P (1980) Hydrocephalus and achondroplasia. A study of 25 observations. Childs Brain 7:205–219

    CAS  PubMed  Google Scholar 

  • Rollins N, Booth T, Shapiro K (2000) The use of gated cine phase contrast and MR venography in achondroplasia. Childs Nerv Syst 16:569–575; discussion 575–7

    Article  CAS  Google Scholar 

  • Ruiz-Garcia M, Tovar-Baudin A, Del Castillo-Ruiz V, Rodriguez HP, Collado MA, Mora TM, Rueda-Franco F, Gonzalez-Astiazaran A (1997) Early detection of neurological manifestations in achondroplasia. Childs Nerv Syst 13:208–213

    Article  CAS  Google Scholar 

  • Ryken TC, Menezes AH (1994) Cervicomedullary compression in achondroplasia. J Neurosurg 81:43–48

    Article  CAS  Google Scholar 

  • Sainte-Rose C, Lacombe J, Pierre-Kahn A, Renier D, Hirsch JF (1984) Intracranial venoussinus hypertension: cause or consequence of hydrocephalus in infants? J Neurosurg 60:727–736

    Article  CAS  Google Scholar 

  • San Millan Ruiz D, Gailloud P, Rufenacht DA, Delavette J, Henry F, Fasel JH (2002) The craniocervical venous system in relation to cerebral venous drainage. AJNR Am J Neuroradiol 23:1500–1508

    PubMed  Google Scholar 

  • Schaller B (2004) Physiology of cerebral venous blood flow: from experimental data in animals to normal function in humans. Brain Res Brain Res Rev 46:243–260

    Article  CAS  Google Scholar 

  • Schreiber SJ, Lurtzing F, Gotze R, Doepp F, Klingebiel R, Valdueza JM (2003) Extrajugular pathways of human cerebral venous blood drainage assessed by duplex ultrasound. J Appl Physiol (1985) 94:1802–1805

    Article  Google Scholar 

  • Shapiro K, Fried A, Marmarou A (1985) Biomechanical and hydrodynamic characterization of the hydrocephalic infant. J Neurosurg 63:69–75

    Article  CAS  Google Scholar 

  • Steinbok P, Hall J, Flodmark O (1989) Hydrocephalus in achondroplasia: the possible role of intracranial venous hypertension. J Neurosurg 71:42–48

    Article  CAS  Google Scholar 

  • Swift D, Nagy L, Robertson B (2012) Endoscopic third ventriculostomy in hydrocephalus associated with achondroplasia. J Neurosurg Pediatr 9:73–81

    Article  Google Scholar 

  • Thompson NM, Hecht JT, Bohan TP, Kramer LA, Davidson K, Brandt ME, Fletcher JM (1999) Neuroanatomic and neuropsychological outcome in school-age children with achondroplasia. Am J Med Genet 88:145–153

    Article  CAS  Google Scholar 

  • Tobinick E, Vega CP (2006) The cerebrospinal venous system: anatomy, physiology, and clinical implications. MedGenMed 8:53

    PubMed  Google Scholar 

  • Valdueza JM, Von Munster T, Hoffman O, Schreiber S, Einhaupl KM (2000) Postural dependency of the cerebral venous outflow. Lancet 355:200–201

    Article  CAS  Google Scholar 

  • Yamada H, Nakamura S, Tajima M, Kageyama N (1981) Neurological manifestations of pediatric achondroplasia. J Neurosurg 54:49–57

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Steinbok .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Ramachandran, S., Steinbok, P. (2019). Hydrocephalus in Achondroplasia and Venous Hypertension. In: Cinalli, G., Özek, M., Sainte-Rose, C. (eds) Pediatric Hydrocephalus. Springer, Cham. https://doi.org/10.1007/978-3-319-27250-4_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27250-4_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27248-1

  • Online ISBN: 978-3-319-27250-4

  • eBook Packages: MedicineReference Module Medicine

Publish with us

Policies and ethics