Skip to main content

Quantum Computer Simulation on Multi-GPU Incorporating Data Locality

  • Conference paper
  • First Online:
Book cover Algorithms and Architectures for Parallel Processing (ICA3PP 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9528))

Abstract

Quantum computer simulation (QCS) provides an effective platform for the development and validation of quantum algorithms. The exponential runtime overhead limits the simulation scale on classical computers which makes advisable the use of Graphics Processing Units. However, simulating quantum computers on multi-GPU has poor performance due to low data locality and frequent data transfer. Here, we propose a novel implemental scheme for QCS on multi-GPU. Our implementation addresses the aforementioned challenges by (i) an efficient data distribution method enhancing high data locality on each GPU global memory and (ii) an assignment function for the threads mapping to each GPU memory space achieving high bandwidth and data reuse for multiple quantum gates. Experimental results show that the simulation of 29-qubit Quantum Fourier Transform algorithm using four NVIDIA K20c GPUs gains a performance ratio of 358, compared to the sequential implementation of released libquantum, along with a parallel efficiency of 0.92.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Steane, A.: Quantum computing. Rep. Prog. Phys. 61(2), 117 (1998)

    Article  MathSciNet  Google Scholar 

  2. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  3. Glendinning, I., Ömer, B.: Parallelization of the QC-Lib quantum computer simulator library. In: Wyrzykowski, R., Dongarra, J., Paprzycki, M., Waśniewski, J. (eds.) PPAM 2004. LNCS, vol. 3019, pp. 461–468. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  4. De Raedt, K., Michielsen, K., De Raedt, H., et al.: Massively parallel quantum computer simulator. Comput. Phys. Commun. 176(2), 121–136 (2007)

    Article  MATH  Google Scholar 

  5. Gutiérrez, E., Romero, S., Trenas, M.A., et al.: Quantum computer simulation using the CUDA programming model. Comput. Phys. Commun. 181(2), 283–300 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Amariutei A, Caraiman S.: Parallel quantum computer simulation on the GPU. In: Proceedings of the 15th International Conference on System Theory, Control, and Computing, ICSTCC 2011, Sinaia, Romania, 14–16 October 2011, pp. 1-6. IEEE (2011)

    Google Scholar 

  7. Moore, R., Baru, C., Marciano, R., et al.: Data-intensive computing. In: Foster, I., Kesselman, C. (eds.) The Grid: Blueprint for a New Computing Infrastructure, pp. 105–129. Morgan Kaufmann, San Francisco (1999)

    Google Scholar 

  8. NVIDIA CUDA: programming guide, and SDK. http://www.nvidia.com/cuda

  9. Henkel, M.: Quantum computer simulation: New world record on JUGENE, June 2010. http://archive.hpcwire.com/hpcwire/2010-06-28/quantum_computer_simulation_new_world_record_on_jugene.html

  10. Smith, A., Khavari. K.: Quantum Computer Simulation Using CUDA, University of Toronto (2009). http://www.eecg.toronto.edu/~moshovos/CUDA08/arx/QFT_report.pdf

  11. Lu, X., Yuan, J., Zhang, W.: Workflow of the Grover algorithm simulation incorporating CUDA and GPGPU. Comput. Phys. Commun. 184(9), 2035–2041 (2013)

    Article  MATH  Google Scholar 

  12. Butscher. B., Weimer. H.: Libquantum library. http://www.libquantum.de

  13. Deutsch, D.: Quantum computational networks. Proc. Roy. Soc. Lond. A Math. Phys. Sci. 42(1868), 73–90 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  14. DiVincenzo, D.P.: Quantum computation. Science 270(5234), 255–261 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  15. Barenco, A., Bennett, C.H., Cleve, R., DiVincenzo, D.P., Margolus, N., Shor, P., et al.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457 (1995)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pei Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhang, P., Yuan, J., Lu, X. (2015). Quantum Computer Simulation on Multi-GPU Incorporating Data Locality. In: Wang, G., Zomaya, A., Martinez, G., Li, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2015. Lecture Notes in Computer Science(), vol 9528. Springer, Cham. https://doi.org/10.1007/978-3-319-27119-4_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-27119-4_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-27118-7

  • Online ISBN: 978-3-319-27119-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics