Skip to main content

Internal Annular Flow Condensation and Flow Boiling: Context, Results, and Recommendations

  • Reference work entry
  • First Online:
Handbook of Thermal Science and Engineering

Abstract

This chapter reviews in-tube boiling and condensing flows, a subset of the area of phase-change heat transfer, with emphasis on their annular regime realizations in innovative devices. This review, in the light of numerous and excellent existing books and reviews, is also relevant because of recently reported experimental and technological approaches that make it feasible for annular/stratified regimes to cover the entire lengths of millimeter-scale flow-boilers and flow-condensers. The review chapter’s content also relates to new ways of addressing challenges that have emerged in the area of high heat-flux (500–1000 W/cm2 or greater) cooling of data centers, super computers, laser weapons, and other devices. The chapter summarizes current knowledge base and provides a design example each for steady annular operations of flow-boilers and flow-condensers. Furthermore, the chapter deals with some recent breakthroughs in the simulation of annular boiling/condensing flows and how such approaches can be extended – in conjunction with well-planned and parallel experiments – to further develop the science and innovative applications associated with steady or pulsatile operations of annular flow-boilers and flow-condensers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 1,299.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 1,599.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

A:

Cross-sectional area (m2)

Bl:

Boiling number \( \left({\overline{\mathrm{q}}}_{\mathrm{w}}^{"}/\mathrm{G}{\mathrm{h}}_{\mathrm{fg}}\right) \)

\( \tilde{\mathrm{Bl}} \) :

Alternate boiling number \( \left({\mathrm{q}}_{\mathrm{w}}^{"}\cdot {\mathrm{D}}_{\mathrm{h}}/\left({\upmu}_{\mathrm{L}}\cdot {\mathrm{h}}_{\mathrm{fg}}\right)\right) \)

Bo:

Bond number (g(ρL − ρV)D2/σ)

C:

Lockhart-Martinelli constant

Cp:

Specific heat (J/kg-K)

CHF:

Critical heat-flux

Dh:

Hydraulic diameter (m)

f:

Friction factor

frP:

Heated perimeter fraction (PH/PF)

Frx:

Froude number in x-direction (|gx| Dh/U2)

Fry:

Froude number in y-direction (|gy| Dh/U2)

G:

Mass flux (kg/m2s)

gx:

Gravity component in x-direction (m/s2)

gy:

Gravity component in y-direction (m/s2)

h:

Height of the channel (m)

hfg:

Heat of vaporization (J/kg)

Ja:

Liquid Jakob number (CpLΔT/hfg)

k:

Conductivity (W/m-K)

L:

Length of the channel or test section (m)

\( {\dot{\mathrm{M}}}_{\mathrm{in}} \) :

Total mass flow rate (kg/m2-s)

\( {\dot{\mathrm{M}}}_{\mathrm{L}} \) :

Liquid mass flow rate (kg/m2-s)

\( {\dot{\mathrm{M}}}_{\mathrm{v}} \) :

Vapor mass flow rate (kg/m2-s)

p0 or pin:

Steady inlet pressure (also pin) (kPa)

P:

Mechanical power (W)

PrL:

Liquid Prandtl number (μLCpL/kL)

\( {\overline{\mathrm{q}}}_{\mathrm{w}}^{"} \) :

Mean wall heat-flux (W/m2)

ReT:

Reynolds number representing nondimensional (GDhV)

S:

Suppression factor

Su:

Suratman number (\( \upsigma {\uprho}_{\mathrm{V}}{\mathrm{D}}_{\mathrm{h}}/{\upmu}_{\mathrm{V}}^2 \))

t:

Time

\( {\overline{\mathrm{T}}}_{\mathrm{w}} \) :

Mean wall temperature (°C)

Tsat(p0):

Saturation temperature at pressure p0 (°C)

u:

Velocity (m/s)

We:

Liquid Weber number (ρLU2Dh/σ)

X:

Vapor quality

\( \widehat{\mathrm{x}} \) :

Nondimensional distance (≡x/Dh)

xA:

Nondimensional length of the annular regime

Xtt:

Lockhart-Martinelli parameter

μ:

Viscosity (kg/m-s)

ρ:

Density (kg/m3)

ϵ:

Void fraction

Φg:

Two-phase multiplier

σ:

Surface tension (kg/s2)

Δ:

Physical value of liquid film thickness (m)

Ψq:

Nondimensional heat-flux

θw:

Nondimensional temperature

cb:

Represents macroscale convective boiling

CHF1:

Represents dry-out instability

CHF2:

Represents inverted annular flow related instability

cr:

Represents “critical value”

L:

Represents liquid phase of the flow variable

nb:

Represents macro-scale nucleate boiling

V:

Represents vapor phase of the flow variable

References

  • Agostini B, Bontemps A (2005) Vertical flow boiling of refrigerant R134a in small channels. Int J Heat Fluid Flow 26(2):296–306

    Article  Google Scholar 

  • Agostini B, Fabbri M, Park JE, Wojtan L, Thome JR, Michel B (2007) State of the art of high heat flux cooling technologies. Heat Transf Eng 28(4):258–281

    Article  Google Scholar 

  • Akers W, Rosson H (1960) Condensation inside a horizontal tube. Chem Eng Prog Symp Ser 56(30):145–150

    Google Scholar 

  • Avedisian CT (1985) The homogeneous nucleation limits of liquids. J Phys Chem Ref Data Monogr 14(3):695–729

    Article  Google Scholar 

  • Baker O (1953) Design of pipelines for the simultaneous flow of oil and gas. Fall Meeting of the Petroleum Branch of AIME. Society of Petroleum Engineers

    Google Scholar 

  • Ball P (2012) Computer engineering: feeling the heat. Nature 492(7428):174–176

    Article  Google Scholar 

  • Basu S, Ndao S, Michna GJ, Peles Y, Jensen MK (2011) Flow boiling of R134a in circular microtubes—part II: study of critical heat flux condition. J Heat Transf 133(5):051503

    Article  Google Scholar 

  • Bergles A (1988) Fundamentals of boiling and evaporation. Two-phase flow heat exchangers. Springer, Dordrecht, The Netherlands

    Chapter  Google Scholar 

  • Bergman TL, Incropera FP, Dewitt DP, Lavine AS (2011) Fundamentals of heat and mass transfer. John Wiley & Sons, New York

    Google Scholar 

  • Bertsch SS, Groll EA, Garimella SV (2009) A composite heat transfer correlation for saturated flow boiling in small channels. Int J Heat Mass Transf 52(7–8):2110–2118

    Article  Google Scholar 

  • Bohdal T, Charun H, Sikora M (2011) Comparative investigations of the condensation of R134a and R404A refrigerants in pipe minichannels. Int J Heat Mass Transf 54(9–10):1963–1974

    Article  Google Scholar 

  • Bowring R (1972) Simple but accurate round tube, uniform heat flux, dryout correlation over the pressure range 0.7 TO 17 MN/m $ sup 2$(100 TO 2500 PSIA). Atomic Energy Establishment, Winfrith (England)

    Google Scholar 

  • Carey VP (1992) Liquid-vapor phase-change phenomena. Series in chemical and mechanical engineering. Hemisphere Publishing Corporation, New York

    Google Scholar 

  • Cavallini A, Zecchin R (1974) A dimensionless correlation for heat transfer in forced convection condensation. In: Proceedings of the sixth international heat transfer conference, pp 309–313

    Google Scholar 

  • Cavallini A, Del Col D, Doretti L, Matkovic M, Rossetto L, Zilio C, Censi G (2006) Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design. Heat Transf Eng 27(8):31–38

    Article  Google Scholar 

  • Chen JC (1966) Correlation for boiling heat transfer to saturated fluids in convective flow. Ind Eng Chem Process Des Dev 5(3):322–329

    Article  Google Scholar 

  • Cole R (1960) A photographic study of pool boiling in the region of the critical heat flux. AICHE J 6(4):533–538

    Article  Google Scholar 

  • Coleman JW, Garimella S (2003) Two-phase flow regimes in round, square and rectangular tubes during condensation of refrigerant R134a. Int J Refrig Rev Int Du Froid 26(1):117–128

    Article  Google Scholar 

  • Collier JG, Thome JR (1994) Convective boiling and condensation. Oxford University Press, Oxford

    Google Scholar 

  • Cooper M (1984a) Heat flow rates in saturated nucleate pool boiling-a wide-ranging examination using reduced properties. Adv Heat Transf 16:157–239

    Article  Google Scholar 

  • Cooper M (1984b) Saturation nucleate pool boiling—a simple correlation. Inst Chem Eng Symp Ser 86(2):785–793

    Google Scholar 

  • Cooper M (1989) Flow boiling—the ‘apparently nucleate’regime. Int J Heat Mass Transf 32(3):459–464

    Article  MATH  Google Scholar 

  • Dalkilic AS, Wongwises S (2009) Intensive literature review of condensation inside smooth and enhanced tubes. Int J Heat Mass Transf 52(15–16):3409–3426

    Article  Google Scholar 

  • Das PK, Chakraborty S, Bhaduri S (2012) Critical heat flux during flow boiling in mini and microchannel-a state of the art review. Front Heat Mass Transf 3(1)

    Google Scholar 

  • Dhillon NS, Buongiorno J (2017) Effect of surface roughness on the behavior of bubbles growing and departing from a heated surface. In: Summer heat transfer conference SHTC, Bellevue, 9–14 July 2017

    Google Scholar 

  • Dhir V (1998) Boiling heat transfer. Annu Rev Fluid Mech 30(1):365–401

    Article  Google Scholar 

  • Dhir V, Liaw S (1989) Framework for a unified model for nucleate and transition pool boiling. J Heat Transf 111(3):739–746

    Article  Google Scholar 

  • Dobson MK, Chato JC (1998) Condensation in smooth horizontal tubes. J Heat Transf Trans ASME 120(1):193–213

    Article  Google Scholar 

  • Ducoulombier M, Colasson S, Bonjour J, Haberschill P (2011) Carbon dioxide flow boiling in a single microchannel–part II: heat transfer. Exp Thermal Fluid Sci 35(4):597–611

    Article  Google Scholar 

  • Egorov Y, Menter F (2004) Experimental implementation of the RPI wall boiling model in CFX-5.6. Staudenfeldweg 12:83624

    Google Scholar 

  • Faghri A (1995) Heat pipe science and technology. Taylor and Francis, Washington DC

    Google Scholar 

  • Fluent (2015) Version 16.2. Theory guide. ANSYS Inc., Canonsburg

    Google Scholar 

  • Forster HK, Zuber N (1954) Growth of a vapor bubble in a superheated liquid. J Appl Phys 25(4):474–478

    Article  MathSciNet  MATH  Google Scholar 

  • Forster H, Zuber N (1955) Dynamics of vapor bubbles and boiling heat transfer. AICHE J 1(4):531–535

    Article  Google Scholar 

  • Friedel L (1979) Improved friction pressure drop correlations for horizontal and vertical two-phase pipe flow. European two-phase flow group meeting, Paper E

    Google Scholar 

  • Gerardi C, Buongiorno J, Hu L-W, Mckrell T (2009) Measurement of nucleation site density, bubble departure diameter and frequency in pool boiling of water using high-speed infrared and optical cameras. In: ECI International conference on boiling heat transfer, Florianópolis

    Google Scholar 

  • Gerardi C, Buongiorno J, Hu L-W, Mckrell T (2010) Study of bubble growth in water pool boiling through synchronized, infrared thermometry and high-speed video. Int J Heat Mass Transf 53(19–20):4185–4192

    Article  Google Scholar 

  • Ghiaasiaan SM (2007) Two-phase flow, boiling, and condensation: in conventional and miniature systems. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Gorenflo D (1993) Pool boiling, VDI–heat atlas. VDI–Verlag, Düsseldorf. (English version)

    Google Scholar 

  • Gorgitrattanagul P (2017) Temperature controlled flow-boiling of FC-72 under innovative operations that lead to experimental realization of annular flows in millimeter scale ducts – investigation of steady and pulsatile cases. Ph. D, Michigan Technological University

    Google Scholar 

  • Grönnerud R (1972) Investigation of liquid hold-up, flow-resistance and heat transfer in circulation type evaporators, part IV: two-phase flow resistance in boiling refrigerants. Bull De l’Inst Du Froid, Annexe 1 533–542

    Google Scholar 

  • Gungor KE, Winterton R (1986) A general correlation for flow boiling in tubes and annuli. Int J Heat Mass Transf 29(3):351–358

    Article  MATH  Google Scholar 

  • Haraguchi H, Koyama S, Fujii T (1994) Condensation of refrigerants HCFC22, HFC134a and HCFC123 in a horizontal smooth tube (2nd report). Trans JSME (B) 60(574):245–252

    Google Scholar 

  • Haramura Y, Katto Y (1983) A new hydrodynamic model of critical heat flux, applicable widely to both pool and forced convection boiling on submerged bodies in saturated liquids. Int J Heat Mass Transf 26(3):389–399

    Article  MATH  Google Scholar 

  • Harirchian T, Garimella SV (2012) Flow regime-based modeling of heat transfer and pressure drop in microchannel flow boiling. Int J Heat Mass Transf 55(4):1246–1260

    Article  MATH  Google Scholar 

  • Hewitt GF, Roberts D (1969) Studies of two-phase flow patterns by simultaneous X-ray and flash photography. Atomic Energy Research Establishment, Harwell

    Google Scholar 

  • Huang X, Ding G, Hu H, Zhu Y, Peng H, Gao Y, Deng B (2010) Influence of oil on flow condensation heat transfer of R410A inside 4.18 mm and 1.6 mm inner diameter horizontal smooth tubes. Int J Refrig 33(1):158–169

    Article  Google Scholar 

  • Jones BJ, Mchale JP, Garimella SV (2009) The influence of surface roughness on nucleate pool boiling heat transfer. J Heat Transf 131(12):121009

    Article  Google Scholar 

  • Kandlikar SG, Grande WJ (2003) Evolution of microchannel flow passages–thermohydraulic performance and fabrication technology. Heat Transf Eng 24(1):3–17

    Article  Google Scholar 

  • Kandlikar SG, Hayner CN (2009) Liquid cooled cold plates for industrial high-power electronic devices—thermal design and manufacturing considerations. Heat Transf Eng 30(12):918–930

    Article  Google Scholar 

  • Katto Y (1994) Critical heat flux. Int J Multiphase Flow 20:53–90

    Article  MATH  Google Scholar 

  • Katto Y, Ohno H (1984) An improved version of the generalized correlation of critical heat flux for the forced convective boiling in uniformly heated vertical tubes. Int J Heat Mass Transf 27(9):1641–1648

    Article  Google Scholar 

  • Kenning D, Cooper M (1989) Saturated flow boiling of water in vertical tubes. Int J Heat Mass Transf 32(3):445–458

    Article  Google Scholar 

  • Kim S-M, Mudawar I (2013a) Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow. Int J Heat Mass Transf 56(1–2):238–250

    Article  Google Scholar 

  • Kim S-M, Mudawar I (2013b) Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – part I. Dryout incipience quality. Int J Heat Mass Transf 64:1226–1238

    Article  Google Scholar 

  • Kim S-M, Mudawar I (2013c) Universal approach to predicting saturated flow boiling heat transfer in mini/micro-channels – part II. Two-phase heat transfer coefficient. Int J Heat Mass Transf 64:1239–1256

    Article  Google Scholar 

  • Kim S-M, Mudawar I (2013d) Universal approach to predicting two-phase frictional pressure drop for mini/micro-channel saturated flow boiling. Int J Heat Mass Transf 58(1–2):718–734

    Article  Google Scholar 

  • Kim S-M, Mudawar I (2014) Review of databases and predictive methods for pressure drop in adiabatic, condensing and boiling mini/micro-channel flows. Int J Heat Mass Transf 77:74–97

    Article  Google Scholar 

  • Kim SJ, Bang IC, Buongiorno J, Hu LW (2006) Effects of nanoparticle deposition on surface wettability influencing boiling heat transfer in nanofluids. Appl Phys Lett 89(15):153107

    Article  Google Scholar 

  • Kim S, Bang IC, Buongiorno J, Hu L (2007) Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux. Int J Heat Mass Transf 50(19):4105–4116

    Article  Google Scholar 

  • Kivisalu MT (2015) Experimental investigation of certain internal condensing and boiling flows: their sensitivity to pressure fluctuations and heat transfer enhancements. Ph. D, Michigan Technological University

    Google Scholar 

  • Kivisalu MT, Gorgitrattanagul P, Narain A (2014) Results for high heat-flux flow realizations in innovative operations of milli-meter scale condensers and boilers. Int J Heat Mass Transf 75:381–398

    Article  Google Scholar 

  • Kosky PG, Staub FW (1971) Local condensing heat transfer coefficients in the annular flow regime. AICHE J 17(5):1037–1043

    Article  Google Scholar 

  • Koyama S, Kuwahara K, Nakashita K, Yamamoto K (2003) An experimental study on condensation of refrigerant R134a in a multi-port extruded tube. Int J Refrig 26(4):425–432

    Article  Google Scholar 

  • Kumar R, Kadam ST (2016) Development of new critical heat flux correlation for microchannel using energy-based bubble growth model. J Heat Transf 138(6):061502

    Article  Google Scholar 

  • Kunkelmann C, Ibrahem K, Schweizer N, Herbert S, Stephan P, Gambaryan-Roisman T (2012) The effect of three-phase contact line speed on local evaporative heat transfer: experimental and numerical investigations. Int J Heat Mass Transf 55(7–8):1896–1904

    Article  Google Scholar 

  • Kuo C-J, Peles Y (2009) Flow boiling of coolant (HFE-7000) inside structured and plain wall microchannels. J Heat Transf 131(12):121011

    Article  Google Scholar 

  • Kurul N, Podowski M (1991) On the modeling of multidimensional effects in boiling channels. In: ANS proceeding of the 27th national heat transfer conference. American Society of Mechanical Engineers, New York

    Google Scholar 

  • Lavieville J, Quemerais E, Mimouni S, Boucker M, Mechitoua N (2006) NEPTUNE CFD V1. 0 theory manual. NEPTUNE report Nept_2004_L1, 2 (3).

    Google Scholar 

  • Lazarek G, Black S (1982) Evaporative heat transfer, pressure drop and critical heat flux in a small vertical tube with R-113. Int J Heat Mass Transf 25(7):945–960

    Article  Google Scholar 

  • Ledinegg M (1938) Instability of flow during natural and forced circulation. Die Warme 61(8):891–898

    Google Scholar 

  • Lee J, Mudawar I (2009) Critical heat flux for subcooled flow boiling in micro-channel heat sinks. Int J Heat Mass Transf 52(13–14):3341–3352

    Article  Google Scholar 

  • Lemmert M, Chawla J (1977) Influence of flow velocity on surface boiling heat transfer coefficient. Heat Transf Boil 237:247

    Google Scholar 

  • Li W, Wu Z (2010) A general correlation for evaporative heat transfer in micro/mini-channels. Int J Heat Mass Transf 53(9–10):1778–1787

    Article  Google Scholar 

  • Li W, Qu X, Alam T, Yang F, Chang W, Khan J, Li C (2017) Enhanced flow boiling in microchannels through integrating multiple micro-nozzles and reentry microcavities. Appl Phys Lett 110(1):014104

    Article  Google Scholar 

  • Linehard J, Dhir VK (1973) Extended hydrodynamic theory of the peak and minimum pool boiling heat fluxes. National Aeronautics and Space Administration, Washington, DC

    Google Scholar 

  • Liu Z, Winterton R (1991) A general correlation for saturated and subcooled flow boiling in tubes and annuli, based on a nucleate pool boiling equation. Int J Heat Mass Transf 34(11):2759–2766

    Article  Google Scholar 

  • Lockhart R, Martinelli R (1949) Proposed correlation of data for isothermal two-phase, two-component flow in pipes. Chem Eng Prog 45(1):39–48

    Google Scholar 

  • Mandhane J, Gregory G, Aziz K (1974) A flow pattern map for gas—liquid flow in horizontal pipes. Int J Multiphase Flow 1(4):537–553

    Article  Google Scholar 

  • Manglik RM (2006) On the advancements in boiling, two-phase flow heat transfer, and interfacial phenomena. J Heat Transf 128(12):1237–1242

    Article  Google Scholar 

  • Mchale JP, Garimella SV (2010) Bubble nucleation characteristics in pool boiling of a wetting liquid on smooth and rough surfaces. Int J Multiphase Flow 36(4):249–260

    Article  Google Scholar 

  • Mehendale S, Jacobi A, Shah R (2000) Fluid flow and heat transfer at micro-and meso-scales with application to heat exchanger design. Appl Mech Rev 53(7):175–193

    Article  Google Scholar 

  • Mogaji TS, Kanizawa FT, Bandarra Filho EP, Ribatski G (2013) Experimental study of the effect of twisted-tape inserts on flow boiling heat transfer enhancement and pressure drop penalty. Int J Refrig 36(2):504–515

    Article  Google Scholar 

  • Moser K, Webb R, Na B (1998) A new equivalent Reynolds number model for condensation in smooth tubes. J Heat Transf 120(2):410–417

    Article  Google Scholar 

  • Naik RR, Narain A (2016) Steady and unsteady simulations for annular internal condensing flows, part II: instability and flow regime transitions. Numer Heat Transf Part B Fundam:1–16

    Google Scholar 

  • Naik RR, Narain A, Mitra S (2016) Steady and unsteady simulations for annular internal condensing flows, part I: algorithm and its accuracy. Numer Heat Transf Part B Fundam:1–22

    Google Scholar 

  • Narain A, Kivisalu M, Naik R, Gorgitrattanagul N, Mitra S, Hasan MM (2012) Comparative experimental and computational studies for annular condensing and boiling flows in milli-meter scale horizontal ducts. In: Proceedings of ASME 2012 summer heat transfer conference, Rio Grande, Puerto Rico. ASME

    Google Scholar 

  • Narain A, Naik RR, Ravikumar S, Bhasme SS (2015) Fundamental assessments and new enabling proposals for heat transfer correlations and flow regime maps for shear driven condensers in the annular/stratified regime. J Therm Eng 1(4):307–321

    Article  Google Scholar 

  • Oh H-K, Son C-H (2011) Evaporation flow pattern and heat transfer of R-22 and R-134a in small diameter tubes. Heat Mass Transf 47(6):703–717

    Article  Google Scholar 

  • Park JE, Vakili-Farahani F, Consolini L, Thome JR (2011) Experimental study on condensation heat transfer in vertical minichannels for new refrigerant R1234ze (E) versus R134a and R236fa. Exp Thermal Fluid Sci 35(3):442–454

    Article  Google Scholar 

  • Phan HT, Caney N, Marty P, Colasson S, Gavillet J (2009) Surface wettability control by nanocoating: the effects on pool boiling heat transfer and nucleation mechanism. Int J Heat Mass Transf 52(23–24):5459–5471

    Article  Google Scholar 

  • Plesset M, Zwick SA (1954) The growth of vapor bubbles in superheated liquids. J Appl Phys 25(4):493–500

    Article  MathSciNet  MATH  Google Scholar 

  • Prosperetti A, Plesset MS (1978) Vapour-bubble growth in a superheated liquid. J Fluid Mech 85(02):349–368

    Article  Google Scholar 

  • Qu W, Mudawar I (2004) Measurement and correlation of critical heat flux in two-phase micro-channel heat sinks. Int J Heat Mass Transf 47(10–11):2045–2059

    Article  Google Scholar 

  • Raghupathi PA, Kandlikar SG (2016) Contact line region heat transfer mechanisms for an evaporating interface. Int J Heat Mass Transf 95:296–306

    Article  Google Scholar 

  • Ranga Prasad H, Narain A, Bhasme SS, Naik RR (2017) Shear-driven annular flow-boiling in millimeter-scale channels: direct numerical simulations for convective component of the overall heat transfer coefficient. Int J Transp Phenom 15(1):1–35

    Google Scholar 

  • Ross H, Radermacher R (1987) Suppression of nucleate boiling of pure and mixed refrigerants in turbulent annular flow. Int J Multiphase Flow 13(6):759–772

    Article  Google Scholar 

  • Rouhani SZ, Axelsson E (1970) Calculation of void volume fraction in the subcooled and quality boiling regions. Int J Heat Mass Transf 13(2):383–393

    Article  Google Scholar 

  • Rykaczewski K, Paxson AT, Anand S, Chen X, Wang Z, Varanasi KK (2013) Multimode multidrop serial coalescence effects during condensation on hierarchical superhydrophobic surfaces. Langmuir 29(3):881–891

    Article  Google Scholar 

  • Saha SK, Celata GP (2016) Instability in flow boiling in microchannels. Springer, Cham

    Book  Google Scholar 

  • Sepahyar S (2018) Flow-boiling of water under innovative operations that lead to experimental realization of annular flows in millimeter scale ducts. Ph.D, Michigan Technological University.

    Google Scholar 

  • Shah MM (1982) Chart correlation for saturated boiling heat transfer: equations and further study. ASHRAE Trans; (United States) 88 (CONF-820112-) 185–196

    Google Scholar 

  • Shah MM (2015a) A general correlation for critical heat flux in horizontal channels. Int J Refrig 59:37–52

    Article  Google Scholar 

  • Shah MM (2015b) A method for predicting heat transfer during boiling of mixtures in plain tubes. Appl Therm Eng 89:812–821

    Article  Google Scholar 

  • Steiner D (1993) Heat transfer to boiling saturated liquids VDI-Wärmeatlas (VDI heat atlas). VDI-Gesellschaft Verfahrenstechnik und Chemieingenieurswesen (GCV), Düsseldorf

    Google Scholar 

  • Steiner D, Taborek J (1992) Flow boiling heat transfer in vertical tubes correlated by an asymptotic model. Heat Transf Eng 13(2):43–69

    Article  Google Scholar 

  • Thome JR (2004) Engineering data book III. Wolverine Tube Inc, Huntsville

    Google Scholar 

  • Tibiriçá CB, Ribatski G, Thome JR (2012) Saturated flow boiling heat transfer and critical heat flux in small horizontal flattened tubes. Int J Heat Mass Transf 55(25–26):7873–7883

    Article  Google Scholar 

  • Tolubinsky V, Kostanchuk D (1970) Vapour bubbles growth rate and heat transfer intensity at subcooled water boiling. In: International heat transfer conference 4. Begel House Inc

    Google Scholar 

  • Tran T, Wambsganss M, France D (1996) Small circular-and rectangular-channel boiling with two refrigerants. Int J Multiphase Flow 22(3):485–498

    Article  MATH  Google Scholar 

  • Wang W-WW, Radcliff TD, Christensen RN (2002) A condensation heat transfer correlation for millimeter-scale tubing with flow regime transition. Exp Thermal Fluid Sci 26(5):473–485

    Article  Google Scholar 

  • Warrier GR, Dhir VK, Momoda LA (2002) Heat transfer and pressure drop in narrow rectangular channels. Exp Thermal Fluid Sci 26(1):53–64

    Article  Google Scholar 

  • White FM (2003) Fluid mechanics. McGraw-Hill, Boston

    Google Scholar 

  • Wojtan L, Revellin R, Thome JR (2006) Investigation of saturated critical heat flux in a single, uniformly heated microchannel. Exp Thermal Fluid Sci 30(8):765–774

    Article  Google Scholar 

  • Wu Z, Wu Y, Sundén B, Li W (2013) Convective vaporization in micro-fin tubes of different geometries. Exp Thermal Fluid Sci 44:398–408

    Article  Google Scholar 

  • Yu W, France D, Wambsganss M, Hull J (2002) Two-phase pressure drop, boiling heat transfer, and critical heat flux to water in a small-diameter horizontal tube. Int J Multiphase Flow 28(6):927–941

    Article  MATH  Google Scholar 

  • Zeng L, Klausner J, Bernhard D, Mei R (1993a) A unified model for the prediction of bubble detachment diameters in boiling systems—II. Flow boiling. Int J Heat Mass Transf 36(9):2271–2279

    Article  Google Scholar 

  • Zeng LZ, Klausner JF, Mei R (1993b) A unified model for the prediction of bubble detachment diameters in boiling systems— I. Pool boiling. Int J Heat Mass Transf 36(9):2261–2270

    Article  Google Scholar 

  • Zhang W, Hibiki T, Mishima K, Mi Y (2006) Correlation of critical heat flux for flow boiling of water in mini-channels. Int J Heat Mass Transf 49(5–6):1058–1072

    Article  Google Scholar 

  • Zhu Y, Antao DS, Chu K-H, Chen S, Hendricks TJ, Zhang T, Wang EN (2016) Surface structure enhanced microchannel flow boiling. J Heat Transf 138(9):091501

    Article  Google Scholar 

  • Zivi S (1964) Estimation of steady-state void fraction by means of principle of minimum energy production. ASME J Heat Transf 86(2):247–252

    Article  Google Scholar 

  • Zuber N (1959) Hydrodynamic aspects of boiling heat transfer (thesis). California University, Los Angeles/Ramo-Wooldridge Corp., Los Angeles

    Google Scholar 

Download references

Acknowledgment

This work was supported by NSF grant CBET-1402702. All figures, which are schematics in their nature, are contributions of Mr. Patcharapol Gorgitrattanagul, a graduate student at MTU.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitabh Narain .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Narain, A., Ranga Prasad, H.P., Koca, A. (2018). Internal Annular Flow Condensation and Flow Boiling: Context, Results, and Recommendations. In: Handbook of Thermal Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-319-26695-4_51

Download citation

Publish with us

Policies and ethics