Skip to main content

A Framework for the Automation of Multimodalbrain Connectivity Analyses

  • Conference paper
  • First Online:
Intelligent Distributed Computing IX

Part of the book series: Studies in Computational Intelligence ((SCI,volume 616))

Abstract

In neuroscience research, there has been an increasing interest in multimodal analysis, combining the strengths of unimodal analysis while reducing some of its drawbacks. However, this increases complexity in data processing and analysis, requiring a big amount of technical knowledge in image manipulation and a lot of iterative processes requiring user intervention. In this work we present a framework that incorporates some of this technical knowledge and enables the automation of most of the processing in the context of combined resting-state functional Magnetic Resonance Imaging (rs-fMRI) and Diffusion Tensor Imaging (DTI) data processing and analysis. The proposed framework presents an object-oriented architecture and its structure reflects the nature of three levels of data processing (i.e. acquisition level, subject level and study level). This framework opens the door to more intelligent and scalable systems for neuroimaging data processing and analysis that ultimately will lead to the dissemination of such advanced techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://mccauslancenter.sc.edu/mricron/dcm2nii.htlm.

  2. 2.

    http://fsl.fmrib.ox.ac.uk/fsl/fslwiki/.

  3. 3.

    http://icatb.sourceforge.net/.

  4. 4.

    https://surfer.nmr.mgh.harvard.edu/fswiki/Tracula.

  5. 5.

    http://www.icvs.uminho.pt/research-scientists/neurosciences/resources/braincat.

References

  1. Gong, G., He, Y., Concha, L., et al.: Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19(3), 524–536 (2009). doi:10.1093/cercor/bhn102

    Article  Google Scholar 

  2. Damoiseaux, J.S., Rombouts, S.A., Barkhof, F., et al.: Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. U.S.A. 103, 13848–13853 (2006). doi:10.1073/pnas.0601417103

    Article  Google Scholar 

  3. Basser, P.J., Pajevic, S., Pierpaoli, C., et al.: In vivo fiber tractography using DT? MRI data. Magn. Reson. Med. 44(4), 625–632 (2000)

    Article  Google Scholar 

  4. van den Heuvel, M.P., Mandl, R., Luigjes, J., et al.: Microstructural organization of the cingulum tract and the level of default mode functional connectivity. J. Neurosci. 28, 1084410851 (2008). doi:10.1523/JNEUROSCI.2964-08.2008

    Google Scholar 

  5. Hasan, K.M., Walimuni, I.S., Abid, H., et al.: A review of diffusion tensor magnetic resonance imaging computational methods and software tools. Comput. Biol. Med. 41, 10621072 (2011). doi:10.1016/j.compbiomed.2010.10.008

    Article  Google Scholar 

  6. Haller, S., Bartsch, A.J.: Pitfalls in FMRI. Eur. Radiol. 19, 2689–2706 (2009). doi:10.1007/s00330-009-1456-9

    Article  Google Scholar 

  7. Vasilakos, A., Witold, P.: Ambient Intelligence, Wireless Networking, and Ubiquitous Computing. Artech House, Inc (2006)

    Google Scholar 

  8. Rech, J., Klaus-Dieter, A.: Artificial intelligence and software engineering: Status and future trends. KI 18(3), 5–11 (2004)

    Google Scholar 

  9. Digital imaging and communications in medicine (DICOM): National Electrical Manufacturers Association (1998)

    Google Scholar 

  10. Cox, R.W., Ashburner, J., Breman, H., et al.: A (sort of) new image data format standard: nifti-1. Human Brain Mapp. 25, 33 (2004)

    Google Scholar 

  11. Penny, W.D., Friston, K.J., Ashburner, J.T. et al (2011) Statistical Parametric Mapping: The Analysis of Functional Brain Images: The Analysis of Functional Brain Images. Academic press

    Google Scholar 

  12. Smith, S.M., Jenkinson, M., Woolrich, M.W., et al.: Advances in functional and structural MR image analysis and implementation as FSL. NeuroImage 23, S208–S219 (2004)

    Article  Google Scholar 

  13. Cox, R.W.: AFNI: software for analysis and visualization of functional magnetic resonance neuroimages. Comput. Biomed. Res., Int. J. 29(3), 162–173 (1996)

    Article  Google Scholar 

  14. Goebel, R.: Brainvoyager: a program for analyzing and visualizing functional and structural magnetic resonance data sets. Neuroimage 3(3), S604 (1996)

    Article  Google Scholar 

  15. Jiang, H., van Zijl, P.C., Kim, J., et al.: DtiStudio:resource program for diffusion tensor computation and fiber bundle tracking. Comput. Methods Programs Biomed. 81(2), 106–116 (2006)

    Article  Google Scholar 

  16. Wang R, Benner T, Sorensen AG et al (2007) Diffusion toolkit: a software package for diffusion imaging data processing and tractography. Proc. Intl. Soc. Mag. Reson. Med. 15(3720)

    Google Scholar 

  17. Pieper S, Halle M, Kikinis R (2004) 3D Slicer. In: IEEE International Symposium on Biomedical Imaging: Nano to Macro, 2004, pp. 632–635. IEEE

    Google Scholar 

  18. Marques, P., Soares, J.M., Alves, V. et al. (2013) BrainCAT-a tool for automated and combined functional magnetic resonance imaging and diffusion tensor imaging brain connectivity analysis. Frontiers Human Neurosci. 7

    Google Scholar 

  19. Rorden, C., Brett, M.: Stereotaxic display of brain lesions. Behav. Neurol. 12, 191200 (2000)

    Article  Google Scholar 

Download references

Acknowledgments

This work has been supported by FCT—Fundao para a Cincia e Tecnologia within the Project Scope UID/CEC/00319/2013. PM was supported by the SWITCHBOX project through the grant SwitchBox-FP7-HEALTH-2010-grant 259772-2 and RM is supported by the Portuguese North Regional Operational Program (ON.2 O Novo Norte) under the National Strategic Reference Framework (QREN), through the European Regional Development Fund (FEDER) by a fellowship from the project FCT-ANR/NEU-OSD/0258/2012 funded by FCT/MEC (www.fct.pt) and by FEDER.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulo Marques .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this paper

Cite this paper

Marques, P., Soares, J.M., Magalhaes, R., Sousa, N., Alves, V. (2016). A Framework for the Automation of Multimodalbrain Connectivity Analyses. In: Novais, P., Camacho, D., Analide, C., El Fallah Seghrouchni, A., Badica, C. (eds) Intelligent Distributed Computing IX. Studies in Computational Intelligence, vol 616. Springer, Cham. https://doi.org/10.1007/978-3-319-25017-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-25017-5_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-25015-1

  • Online ISBN: 978-3-319-25017-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics