Skip to main content

Overcoming the Linearity of Ordinal Logistic Regression Adding Non-linear Covariates from Evolutionary Hybrid Neural Network Models

  • Conference paper
  • First Online:
Book cover Advances in Artificial Intelligence (CAEPIA 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9422))

Included in the following conference series:

  • 996 Accesses

Abstract

This paper proposes a non-linear ordinal logistic regression method based on the combination of a linear regression model and an evolutionary neural network with hybrid basis functions, combining Sigmoidal Unit and Radial Basis Functions neural networks. The process for obtaining the coefficients is carried out in several steps. Firstly we use an evolutionary algorithm to determine the structure of the hybrid neural network model, in a second step we augment the initial feature space (covariate space) adding the non-linear transformations of the input variables given by the hybrid hidden layer of the best individual of the evolutionary algorithm. Finally, we apply an ordinal logistic regression in the new feature space. This methodology is tested using 10 benchmark problems from the UCI repository. The hybrid model outperforms both the RBF and the SU pure models obtaining a good compromise between them and better results in terms of accuracy and ordinal classification error.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angeline, P.J., Sauders, G.M., Pollack, J.B.: An evolutionary algorithm that constructs recurrent neural networks. IEEE Trans. Neural Netw. 5(1), 54–65 (1994)

    Article  Google Scholar 

  2. Asuncion, A., Newman, D.: UCI machine learning repository (2007). http://www.ics.uci.edu/mlearn/MLRepository.html

  3. Baccianella, S., Esuli, A., Sebastiani, F.: Evaluation measures for ordinal regression. In: Proceedings of the Ninth International Conference on Intelligent Systems Design and Applications (ISDA 09), Pisa, Italy, December 2009

    Google Scholar 

  4. Bishop, C.M.: Improving the generalization properties of radial basis function neural networks. Neural Comput. 8, 579–581 (1991)

    Article  Google Scholar 

  5. Buchtala, O., Klimek, M., Sick, B.: Evolutionary optimization of radial basis function classifiers for data mining applications. IEEE Trans. Neural Netw. Part B 35(5), 928–947 (2005)

    Google Scholar 

  6. Chu, W., Keerthi, S.S.: Support vector ordinal regression. Neural Comput. 19(3), 792–815 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cohen, S., Intrator, N.: A hybrid projection-based and radial basis function architecture: initial values and global optimisation. Pattern Anal. Appl. 5, 113–120 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  8. Donoho, D.: Projection-based approximation and a duality with kernel methods. Ann. Stat. 5, 58–106 (1989)

    Article  MathSciNet  Google Scholar 

  9. Dorado-Moreno, M., Gutiérrez, P.A., Hervás-Martínez, C.: Ordinal classification using hybrid artificial neural networks with projection and kernel basis functions. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part II. LNCS, vol. 7209, pp. 319–330. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. Friedman, M.: A comparison of alternative tests of significance for the problem of m rankings. Ann. Math. Stat. 11, 86–92 (1940)

    Article  Google Scholar 

  11. Gutiérrez, P.A., Hervás-Martínez, C., Carbonero-Ruz, M., Fernandez, J.C.: Combined projection and kernel basis functions for classification in evolutionary neural networks. Neurocomputing 27(13–15), 2731–2742 (2009)

    Article  Google Scholar 

  12. Gutiérrez, P.A., Hervás-Martínez, C., Martínez-Estudillo, F.J.: Logistic regression by means of evolutionary radial basis function neural networks. IEEE Trans. Neural Netw. 22(2), 246–263 (2011)

    Article  Google Scholar 

  13. Hastie, T., Tibshirani, R.: Generalized Additive Models. Chapman and Hall, London (1990)

    MATH  Google Scholar 

  14. Igel, C., Hüsken, M.: Empirical evaluation of the improved rprop learning algorithms. Neurocomputing 50(6), 105–123 (2003)

    Article  MATH  Google Scholar 

  15. Lee, S.H., Hou, C.L.: An art-based construction of RBF networks. IEEE Trans. Neural Netw. 13(6), 1308–1321 (2002)

    Article  Google Scholar 

  16. Lippmann, R.P.: Pattern classification using neural networks. IEEE Trans. Neural Netw. 27, 47–64 (1989)

    Google Scholar 

  17. Maniezzo, V.: Genetic evolution of the topology and weight distribution of neural networks. IEEE Trans. Neural Netw. 5, 39–53 (1994)

    Article  Google Scholar 

  18. Martínez-Estudillo, A.C., Martínez-Estudillo, F.J., Hervás-Martínez, C., García, N.: Evolutionary product unit based neural networks for regression. Neural Netw. 19(4), 477–486 (2006)

    Article  MATH  Google Scholar 

  19. Maul, T.: Early experiments with neural diversity machines. Neurocomputing 113, 136–48 (2013)

    Article  Google Scholar 

  20. McCullagh, P.: Regression models for ordinal data (with discussion). J. Roy. Stat. Soc. 42(2), 109–142 (1980)

    MATH  MathSciNet  Google Scholar 

  21. PASCAL: Pascal (pattern analysis, statistical modelling and computational learning) machine learning benchmarks repository (2011). http://mldata.org/

  22. van Rooij, A.J.F., Jain, L.C., Johnson, R.P.: Neural Networks Training Using Genetic Algorithms. Series in Machine Perception and Artificial Intelligence, vol. 26. World Scientific, Singapore (1996)

    Google Scholar 

  23. Schmitt, M.: On the complexity of computing and learning with multiplicative neural networks. Neural Comput. 14, 241–301 (2001)

    Article  Google Scholar 

  24. Smola, A., Scholkopf, B.: A tutorial on support vector regression. Stat. Comput. 14(3), 199–222 (2004)

    Article  MathSciNet  Google Scholar 

  25. Soltesz, I.: Diversity in the Neuronal Machine: Order and Variability in Interneuronal Microcircuits. Oxford University Press, New York (2002)

    Google Scholar 

  26. Yao, X., Liu, Y.: A new evolutionary system for evolving artificial neural networks. IEEE Trans. Neural Netw. 8, 694–713 (1997)

    Article  Google Scholar 

  27. Yao, X.: Evolving artificial neural networks. Proc. IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

Download references

Acknowledgements

This work has been partially subsidised by the TIN2014-54583-C2-1-R project of the Spanish MINECO, FEDER funds and P11-TIC-7508 project of the “Junta de Andalucía(Spain)”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manuel Dorado-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Dorado-Moreno, M., Gutiérrez, P.A., Sánchez-Monedero, J., Hervás-Martínez, C. (2015). Overcoming the Linearity of Ordinal Logistic Regression Adding Non-linear Covariates from Evolutionary Hybrid Neural Network Models. In: Puerta, J., et al. Advances in Artificial Intelligence. CAEPIA 2015. Lecture Notes in Computer Science(), vol 9422. Springer, Cham. https://doi.org/10.1007/978-3-319-24598-0_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-24598-0_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-24597-3

  • Online ISBN: 978-3-319-24598-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics