Skip to main content

An Automatic Differentiation Based Approach to the Level Set Method

  • Chapter
  • First Online:
  • 1587 Accesses

Part of the book series: Computational Methods in Applied Sciences ((COMPUTMETHODS,volume 40))

Abstract

This paper discusses an implementation of the parametric level set method. Adjoint approach is used to perform the sensitivity analysis, but contrary to standard implementations, the state problem is differentiated in its discretized form. The required partial derivatives are computed using tools of automatic differentiation, which avoids the need to derive the adjoint problem from the governing partial differential equation. The augmented Lagrangian approach is used to enforce volume constraints, and a gradient based optimization method is used to solve the subproblems. Applicability of the method is demonstrated by repeating well known compliance minimization studies of a cantilever beam and a Michell type structure. The obtained topologies are in good agreement with reference results.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. G. Allaire, F. Jouve, A.-M. Toader, Structural optimization using sensitivity analysis and a level-set method. J. Comput. Phys. 194(1), 363–393 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. M.P. Bendsøe, Optimal shape design as a material distribution problem. Struct. Multidiscip. Optim. 1(4), 193–202 (1989)

    Google Scholar 

  3. C.H. Bischof, H.M. Bücker, A. Rasch, Sensitivity analysis of turbulence models using automatic differentiation. SIAM J. Sci. Comput. 26(2), 510–522 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. C.H. Bischof, P.M. Khademi, A. Buaricha, C. Alan, Efficient computation of gradients and Jacobians by dynamic exploitation of sparsity in automatic differentiation. Optim. Methods Softw. 7(1), 1–39 (1996)

    Article  Google Scholar 

  5. M. Burger, S.J. Osher, A survey on level set methods for inverse problems and optimal design. Eur. J. Appl. Math. 16(2), 263–301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  6. V.J. Challis, J.K. Guest, Level set topology optimization of fluids in Stokes flow. Int. J. Numer. Methods Eng. 79(10), 1284–1308 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. A. de Boer, M.S. van der Schoot, H. Bijl, Mesh deformation based on radial basis function interpolation. Comput. Struct. 85(11–14), 784–795 (2007)

    Article  Google Scholar 

  8. J.W. Demmel, S.C. Eisenstat, J.R. Gilbert, X.S. Li, J.W.H. Liu, A supernodal approach to sparse partial pivoting. SIAM. J. Matrix Anal. Appl. 20(3), 720–755 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  9. A. Griewank, A. Walther, Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation, 2nd edn. (SIAM, Philadelphia, 2008)

    Book  Google Scholar 

  10. J. Haslinger, R.A.E. Mäkinen, Introduction to Shape Optimization: Theory, Approximation, and Computation (SIAM, Philadelphia, 2003)

    Book  Google Scholar 

  11. B.T. Helenbrook, Mesh deformation using the biharmonic operator. Int. J. Numer. Methods Eng. 56(7), 1007–1021 (2003)

    Article  MATH  Google Scholar 

  12. Z. Luo, M.Y. Wang, S. Wang, P. Wei, A level set-based parameterization method for structural shape and topology optimization. Int. J. Numer. Methods Eng. 76(1), 1–26 (2008). doi:10.1002/nme.2092

    Article  MathSciNet  MATH  Google Scholar 

  13. J.E.V. Peter, R.P. Dwight, Numerical sensitivity analysis for aerodynamic optimization: a survey of approaches. Comput. Fluids 39(3), 373–391 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  14. G.I.N. Rozvany, M. Zhou, T. Birker, Generalized shape optimization without homogenization. Struct. Multidiscip. Optim. 4(3–4), 250–252 (1992)

    Article  Google Scholar 

  15. J.A. Sethian, A. Wiegmann, Structural boundary design via level set and immersed interface methods. J. Comput. Phys. 163(2), 489–528 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. H. Shim, V.T.T. Ho, S. Wang, D.A. Tortorelli, Level set-based topology optimization for electromagnetic systems. IEEE Trans. Magn. 45(3), 1582–1585 (2009)

    Article  Google Scholar 

  17. J.A. Snyman, A.M. Hay, The spherical quadratic steepest descent (SQSD) method for unconstrained minimization with no explicit line searches. Comput. Math. Appl. 42(1–2), 169–178 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. K. Svanberg, A class of globally convergent optimization methods based on conservative convex separable approximations. SIAM J. Optim. 12(2), 555–573 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  19. J.I. Toivanen, R.A.E. Mäkinen, Implementation of sparse forward mode automatic differentiation with application to electromagnetic shape optimization. Optim. Methods Softw. 26(4–5), 601–616 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. M.Y. Wang, X. Wang, D. Guo, A level set method for structural topology optimization. Comput. Methods Appl. Mech. Eng. 192(1–2), 227–246 (2003). doi:10.1016/S0045-7825(02)00559-5

    Article  MATH  Google Scholar 

  21. S.Y. Wang, K.M. Lim, B.C. Khoo, M.Y. Wang, An extended level set method for shape and topology optimization. J. Comput. Phys. 221(1), 395–421 (2007). doi:10.1016/j.jcp.2006.06.029

    Article  MathSciNet  MATH  Google Scholar 

  22. H. Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree. Adv. Comput. Math. 4(1), 389–396 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  23. D.N. Wilke, S. Kok, A.A. Groenwold, The application of gradient-only optimization methods for problems discretized using non-constant methods. Struct. Multidiscip. Optim. 40, 433–451 (2010)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author was financially supported by Academy of Finland, grant #257589.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jukka I. Toivanen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Toivanen, J.I. (2016). An Automatic Differentiation Based Approach to the Level Set Method. In: Neittaanmäki, P., Repin, S., Tuovinen, T. (eds) Mathematical Modeling and Optimization of Complex Structures. Computational Methods in Applied Sciences, vol 40. Springer, Cham. https://doi.org/10.1007/978-3-319-23564-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23564-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23563-9

  • Online ISBN: 978-3-319-23564-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics