Skip to main content

Fully Automatic Segmentation of Hip CT Images

  • Chapter
  • First Online:
Computational Radiology for Orthopaedic Interventions

Part of the book series: Lecture Notes in Computational Vision and Biomechanics ((LNCVB,volume 23))

Abstract

Automatic segmentation of the hip joint with pelvis and proximal femur surfaces from CT images is essential for orthopedic diagnosis and surgery. It remains challenging due to the narrowness of hip joint space, where the adjacent surfaces of acetabulum and femoral head are hardly distinguished from each other. This chapter presents a fully automatic method to segment pelvic and proximal femoral surfaces from hip CT images. A coarse-to-fine strategy was proposed to combine multi-atlas segmentation with graph-based surface detection. The multi-atlas segmentation step seeks to coarsely extract the entire hip joint region. It uses automatically detected anatomical landmarks to initialize and select the atlas and accelerate the segmentation. The graph based surface detection is to refine the coarsely segmented hip joint region. It aims at completely and efficiently separate the adjacent surfaces of the acetabulum and the femoral head while preserving the hip joint structure. The proposed strategy was evaluated on 30 hip CT images and provided an average accuracy of 0.55, 0.54, and 0.50 mm for segmenting the pelvis, the left and right proximal femurs, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kang Y, Engelke K, Kalender A (2003) A new accurate and precise 3D segmentation method for skeletal structures in volumetric CT data. IEEE Trans Med Imaging 22(5):586–598

    Google Scholar 

  2. Zoroofi RA, Sato Y, Sasama T, Nishii T, Sugano N, Yonenobu K, Yoshikawa H, Ochi T, Tamura S ( 2003) Automated segmentation of acetabulum and femoral head from 3-D CT images. IEEE Trans Inf Technol Biomed 7(4):329–343

    Google Scholar 

  3. Cheng Y, Zhou S, Wang Y, Guo C, Bai J, Tamura S (2013) Automatic segmentation technique for acetabulum and femoral head in CT images. Pattern Recogn 46(11):2969–2984

    Google Scholar 

  4. Lamecker H, Seebaß M, Hege HC, Deuflhard P (2004) A 3D statistical shape model of the pelvic bone for segmentation. In: SPIE 2004, vol. 5370, pp 1341–1351

    Google Scholar 

  5. Seim H, Kainmueller D, Heller M, Lamecker H, Zachow S, Hege HC (2008) Automatic segmentation of the pelvic bones from CT data based on a statistical shape model. In: VCBM 2008, pp 93–100

    Google Scholar 

  6. Kainmueller D, Lamecker H, Zachow S, Hege HC (2009) An articulated statistical shape model for accurate hip joint segmentation. In: IEEE EMBC, pp 6345–6351

    Google Scholar 

  7. Yokota F, Okada T, Takao M, Sugano S, Tada Y, Sato Y (2009) Automated segmentation of the femur and pelvis from 3D CT data of diseased hip using hierarchical statistical shape model of joint structure. In: MICCAI 2009, part II, pp 811–818

    Google Scholar 

  8. Yokota F, Okada T, Takao M, Sugano S, Tada Y, Tomiyama N, Sato Y (2013) Automated CT segmentation of diseased hip using hierarchical and conditional statistical shape models. In: MICCAI 2013, part II, pp 190–197

    Google Scholar 

  9. Ehrhardte J, Handels H, Plotz W, Poppl SJ (2004) Atlas-based recognition of anatomical structures and landmarks and the automatic computation of orthopedic parameters. Methods Inf Med 43(3):391–397

    Google Scholar 

  10. Pettersson J, Knutsson H, Borga M (2006) Automatic hip bone segmentation using non-rigid registration. In: ICPR 2006, pp 946–949

    Google Scholar 

  11. Xia Y, Fripp J, Chandra SS, Schwarz R, Engstrom C, Crozier S (2013) Automated bone segmentation from large field of view 3D MR images of the hip joint. Phys Med Biol 58:7375–7390

    Google Scholar 

  12. Li K, Wu X, Chen DZ, Sonka M (2006) Optimal surface segmentation in volumetric images A graph-theoretic approach. IEEE Trans Pattern Anal Mach Intell 28(1):119–134

    Google Scholar 

  13. Song Q, Wu X, Liu Y, Smith M, Buatti J, Sonka M (2009) Optimal graph search segmentation using arc-weighted graph for simultaneous surface detection of bladder and prostate. In: Proceedings of MICCAI, vol 5762, pp 827–835

    Google Scholar 

  14. Thirion JP (1998) Image matching as a diffusion process: an analogy with maxwell™s demons. Med Image Anal 2:243–260

    Google Scholar 

  15. Knutsson H, Andersson M (2005) Morphons: segmentation using elastic canvas and paint on priors. In: IEEE international conference on image processing (ICIP05), Genova, Italy, Sep 2005

    Google Scholar 

  16. Breiman L (2001) Random forests. Mach Learn 45(1):5–32

    Article  MATH  Google Scholar 

  17. Criminisi A, Shotton J, Robertson D, Konukoglu E (2010) Regression forests for efficient anatomy detection and localization in CT studies. MCV 2010:106–117

    Google Scholar 

  18. Lindner C, Thiagarajah S, Wilkinson JM, arcOGEN Consortium, Wallis G, Cootes TF (2013) Fully automatic segmentation of the proximal femur using random forest regression voting. IEEE Trans Med Imag 32(8):1462–1472

    Google Scholar 

  19. Chu C, Chen C, Liu L, Zheng G (2014) FACTS: fully automatic CT segmentation of a hip joint. Ann Biomed Eng. doi:10.1007/s10439-014-1176-4

    Google Scholar 

  20. Glocker B, Komodakis N, Tziritas G, Navab N, Paragios N (2008) Dense image registration through MRFs and efficient linear programming. Med Image Anal 12(6):731–741

    Article  Google Scholar 

  21. Boykov Y, Jolly MP (2000) Interactive organ segmentation using graph cuts. In: Proceedings of medical image computing and computer-assisted intervention (MICCAI), pp 276–286

    Google Scholar 

  22. Chu C, Oda M, Kitasaka T, Misawa K, Fujiwara M, Hayashi Y, Nimura Y, Rueckert D, Mori K (2013) Multi-organ segmentation based on spatially-divided probabilistic atlas from 3D abdominal CT images. In: MICCAI 2013, part II, pp 165–172

    Google Scholar 

  23. Liu L, Ecker T, Schumann S, Siebenrock K, Nolte L, Zheng G (2014) Computer assisted planning and navigation of periacetabular osteotomy with range of motion optimization. In: MICCAI 2014, vol 8674, pp 643–650

    Google Scholar 

  24. Kolmogorov V, Zabih R (2004) What energy functions can be minimized via graph cuts? IEEE Trans PAMI 26:147–159

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guoyan Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chu, C., Bai, J., Wu, X., Zheng, G. (2016). Fully Automatic Segmentation of Hip CT Images. In: Zheng, G., Li, S. (eds) Computational Radiology for Orthopaedic Interventions. Lecture Notes in Computational Vision and Biomechanics, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-319-23482-3_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23482-3_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23481-6

  • Online ISBN: 978-3-319-23482-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics