Skip to main content

Feature Learning Using Stacked Autoencoders to Predict the Activity of Antimicrobial Peptides

  • Conference paper
  • First Online:
Computational Methods in Systems Biology (CMSB 2015)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9308))

Included in the following conference series:

Abstract

In recent years, pattern recognition methods have been applied to determine the activity of biological molecules, including the prediction of antimicrobial activity of synthetic and natural peptides where Quantitative Structure-Activity Relationship methodologies are widely used. Traditionally, works focused on designing descriptors for sequences to yield better correlations with the biological activity and improve predictors performance. Albeit there have been remarkable results, the small size of available datasets leave large room for improvement. In this work, rather than hand-crafting new descriptors, our approach consists in automatically learning them from existing ones. We use stacked autoencoders (a class of unsupervised neural networks), and the descriptors learnt are fed to a support vector regression task to predict biological activity. This method improves results in existing literature by roughly 12 % simultaneously in different metrics, providing interesting insights into the nature of descriptors learnt and suggesting its applicability in other areas in protein properties prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amábile-Cuevas, C.F.: Antimicrobial resistance in developing countries. In: Sosa, A.d.J., Byarugaba, D.K., Amábile-Cuevas, C.F., Hsueh, P.R., Kariuki, S., Okeke, I.N. (eds.) Antimicrobial Resistance in Develoving Countries, Chap. 1, pp. 15–27. Springer, New York (2010)

    Google Scholar 

  2. Projan, S.J.: Why is big Pharma getting out of antibacterial drug discovery? Curr. Opin. Microbiol. 6(5), 427–430 (2003)

    Article  Google Scholar 

  3. Fjell, C.D., Hiss, J., Hancock, R.E.W., Schneider, G.: Designing antimicrobial peptides: form follows function. Nature Rev. Drug Discov. 11(1), 37–51 (2012)

    Google Scholar 

  4. Zhou, X., Li, Z., Dai, Z., Zou, X.: QSAR modeling of peptide biological activity by coupling support vector machine with particle swarm optimization algorithm and genetic algorithm. J. Mol. Graph. Model. 29(2), 188–196 (2010)

    Article  Google Scholar 

  5. Borkar, M.R., Pissurlenkar, R.R.S., Coutinho, E.C.: HomoSAR: bridging comparative protein modeling with quantitative structural activity relationship to design new peptides. J. Comput. Chem. 34(30), 2635–2646 (2013)

    Article  Google Scholar 

  6. Cherkasov, A., Jankovic, B.: Application of ‘inductive’ QSAR descriptors for quantification of antibacterial activity of cationic polypeptides. Molecules 9(12), 1034–1052 (2004). (Basel, Switzerland)

    Article  Google Scholar 

  7. Taboureau, O.: Methods for building quantitative structure-activity relationship (QSAR) descriptors and predictive models for computer-aided design of antimicrobial peptides. In: Giuliani, A., Rinaldi, A.C. (eds.) Antimicrobial Peptides, Methods in Molecular Biology, Methods in Molecular Biology, Chap. 6, vol. 618, pp. 77–86. Humana Press, Totowa (2010)

    Google Scholar 

  8. Shu, M., Yu, R., Zhang, Y., Wang, J., Yang, L., Wang, L., Lin, Z.: Predicting the activity of antimicrobial peptides with amino acid topological information. Med. Chem. 9(1), 32–44 (2013)

    Article  Google Scholar 

  9. Hemmateenejad, B., Yousefinejad, S., Mehdipour, A.R.: Novel amino acids indices based on quantum topological molecular similarity and their application to QSAR study of peptides. Amino Acids 40(4), 1169–1183 (2011)

    Article  Google Scholar 

  10. Lin, Z., Long, H., Bo, Z., Wang, Y., Wu, Y.: New descriptors of amino acids and their application to peptide QSAR study. Peptides 29(10), 1798–1805 (2008)

    Article  Google Scholar 

  11. Li, Z.R., Lin, H.H., Han, L.Y., Jiang, L., Chen, X., Chen, Y.Z.: PROFEAT: a web server for computing structural and physicochemical features of proteins and peptides from amino acid sequence. Nucleic Acids Res. 34(Web Server issue), W32–W37 (2006)

    Article  Google Scholar 

  12. Cao, D.S., Xu, Q.S., Liang, Y.Z.: propy: a tool to generate various models of Chous PseAAC. Bioinform. Appl. Note 29(7), 960–962 (2013)

    Article  Google Scholar 

  13. Shin, H., Orton, M.R., Collins, D.J., Doran, S.J., Leach, M.O.: Stacked autoencoders for unsupervised feature learning and multiple organ detection in a pilot study using 4D patient data. IEEE Trans. Pattern Anal. Mach. Intell. 35(8), 1930–1943 (2013)

    Article  Google Scholar 

  14. Wold, S., Esbensen, K., Geladi, P.: Principal component analysis. Chemometr. Intell. Lab. Syst. 2(1–3), 37–52 (1987)

    Article  Google Scholar 

  15. Liu, D.C., Nocedal, J.: On the limited memory BFGS method for large scale optimization. Math. Program. 45, 503–528 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kiralj, R., Ferreira, M.M.C.: Basic validation procedures for regression models in QSAR and QSPR studies: theory and application. J. Braz. Chem. Soc. 20(4), 770–787 (2009)

    Article  Google Scholar 

  17. Ng, A., Ngiam, J., Foo, C.Y., Mai, Y., Suen, C.: Unsupervised feature learning and deep learning. http://ufldl.stanford.edu/wiki/index.php/UFLDL_Tutorial

  18. Wang, Y., Ding, Y., Wen, H., Lin, Y., Hu, Y., Zhang, Y., Xia, Q., Lin, Z.: QSAR modeling and design of cationic antimicrobial peptides based on structural properties of amino acids. Comb. Chem. High Throughput Screen. 15(4), 347–353 (2012)

    Article  Google Scholar 

  19. Torrent, M., Andreu, D., Nogués, V.M., Boix, E.: Connecting peptide physicochemical and antimicrobial properties by a rational prediction model. PLoS One 6(2), e16968 (2011)

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the support of the High Performance and Scientific Computing Centre at Universidad Industrial de Santander (www.sc3.uis.edu.co). This project was funded by COLCIENCIAS (Project number: 1102-5453-1671) and Vicerrectoría de Investigación y Extensión (VIE) from UIS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francy Camacho .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Camacho, F., Torres, R., Ramos-Pollán, R. (2015). Feature Learning Using Stacked Autoencoders to Predict the Activity of Antimicrobial Peptides. In: Roux, O., Bourdon, J. (eds) Computational Methods in Systems Biology. CMSB 2015. Lecture Notes in Computer Science(), vol 9308. Springer, Cham. https://doi.org/10.1007/978-3-319-23401-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23401-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23400-7

  • Online ISBN: 978-3-319-23401-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics