Skip to main content

Secondary Metabolism in Botrytis cinerea: Combining Genomic and Metabolomic Approaches

  • Chapter
  • First Online:
Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems

Abstract

Filamentous fungi produce a wide variety of bioactive secondary metabolites that play roles in development and fitness. In the pre-genomic era of Botrytis cinerea research, already about eight families of secondary metabolites have been isolated from in vitro mycelium. In particular, the predominant metabolites botrydial and botcinic acid were identified as two unspecific phytotoxins contributing to the necrotrophic and polyphagous lifestyle of the fungus. Sequencing and annotation of the complete genome revealed more than 40 clusters of genes dedicated to the synthesis of polyketides, terpenes, non-ribosomal peptides and alkaloids which indicates that B. cinerea has the potential to produce many metabolites that have not been described so far. By a combination of transcriptomic, mutagenesis and metabolomic approaches the genes responsible for the production of botcinic acid and botrydial were identified and significant progress was made in the elucidation of the corresponding polyketidic and terpenic biosynthesis pathways. Mutagenesis also revealed that, although these two toxins play together a significant role in plant tissues colonization, some of the other secondary metabolites seem to be crucial for the necrotrophic processes as well. A major bottleneck in the identification of these compounds is that they are not produced in sufficient amounts during standard in vitro conditions. However, progress in understanding the regulation of fungal secondary metabolism, through transcription factors and epigenetic mechanisms, provide new strategies to “wake up” biosynthetic genes during in vitro growth. This will pave the way for the characterization of these metabolites that play an important if not essential role in B. cinerea virulence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amselem J, Cuomo CA, Van Kan JA et al (2011) Genomic analysis of the necrotrophic fungal pathogens Sclerotinia sclerotiorum and Botrytis cinerea. PLoS Genet 7:e1002230

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arpin N, Favre-Bonvin J, Thivend S (1977) Structure de la mycosporine 2, nouvelle molécule isolée de Botrytis cinerea. Tetrahedron Lett 18:819–820

    Article  Google Scholar 

  • Asselbergh B, Curvers K, França SC et al (2007) Resistance to Botrytis cinerea in sitiens, an abscisic acid-deficient tomato mutant, involves timely production of hydrogen peroxide and cell wall modifications in the epidermis. Plant Physiol 144:1863–1877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradshaw APW, Hanson JR, Nyfeler R (1981) Studies in terpenoid biosynthesis. Part 24. The formation of the carbon skeleton of the sesquiterpenoid dihydrobotrydial. J Chem Soc Perkin 1:1469–1472

    Article  Google Scholar 

  • Bradshaw APW, Hanson JR, Nyfeler R (1982) Studies in terpenoid biosynthesis. Part 25. The fate of the mevalonoid hydrogen atoms in the biosynthesis of the sesquiterpenoid, dihydrobotrydial. J Chem Soc Perkin Trans 1:2187–2192

    Article  Google Scholar 

  • Brakhage AA (2012) Regulation of fungal secondary metabolism. Nat Rev Microbiol 11:21–32

    Article  PubMed  Google Scholar 

  • Bushley KE, Turgeon BG (2010) Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships. BMC Evol Biol 10:26

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell MA, Rokas A, Slot J (2012) Horizontal transfer and death of a fungal secondary metabolic gene cluster. Genome Biol Evol 4:289–293

    Article  PubMed  PubMed Central  Google Scholar 

  • Campbell MA, Staats M, Van Kan JA et al (2013) Repeated loss of an anciently horizontally transferred gene cluster in Botrytis. Mycologia 105:1126–1134

    Article  PubMed  Google Scholar 

  • Challis GL (2008) Mining microbial genomes for the new natural products and biosynthetic pathways. Microbiology 154:1555–1569

    Article  CAS  PubMed  Google Scholar 

  • Collado IG, Hernández-Galán R, Durán-Patrón R et al (1995) Metabolites from a shake cultive of Botrytis cinerea. Phytochemistry 38:647–650

    Article  CAS  Google Scholar 

  • Collado IG, Hernández-Galán R, Prieto V et al (1996) New biologically active metabolites from the fungus Botrytis cinerea. Phytochemistry 41:513–517

    Article  CAS  Google Scholar 

  • Collado IG, Durán-Patrón R, Hernández-Galán R (1999) Some evidence on the role of exudated toxins in the pathogenesis of Botrytis cinerea. Rec Adv Allelopathy 1:479–484

    Google Scholar 

  • Collado IG, Aleu J, Hernández-Galán R et al (2000) Botrytis species: an intriguing source of metabolites with a wide range of biological activities. Structure, chemistry and bioactivity of metabolites isolated from Botrytis species. Curr Org Chem 4:1261–1286

    Article  CAS  Google Scholar 

  • Collado IG, Macias-Sánchez AJ, Hanson JR (2007) Fungal terpene metabolites: biosynthetic relationships and the control of the phytopathogenic fungus Botrytis cinerea. Nat Prod Rep 24:674–686

    Article  CAS  PubMed  Google Scholar 

  • Colmenares AJ, Aleu J, Duran-Patron R, Collado IG, Hernandez-Galan R (2002a) The putative role of botrydial and related metabolites in the infection mechanism of Botrytis cinerea. J Chem Ecol 28:997–1005

    Article  CAS  PubMed  Google Scholar 

  • Colmenares AJ, Durán-Patrón RM, Hernández-Galán R et al (2002b) Four new lactones from Botrytis cinerea. J Nat Prod 65:1724–1726

    Article  CAS  PubMed  Google Scholar 

  • Cutler HG, Springer JP, Arrendale RF et al (1988) Cinereain: a novel metabolite with plant growth regulating properties from Botrytis cinerea. Agric Biol Chem 52:1725–1733

    CAS  Google Scholar 

  • Cutler HG, Jacyno JM, Harwood JS et al (1993) Botcinolide: a biologically active natural product from Botrytis cinerea. Biosci Biotechnol Biochem 57:1980–1982

    Article  CAS  Google Scholar 

  • Cutler HG, Parker SR, Ross SA et al (1996) Homobotcinolide: a biologically active natural homolog of botcinolide from Botrytis cinerea. Biosci Biotechnol Biochem 60:656–658

    Article  CAS  PubMed  Google Scholar 

  • Dalmais B, Schumacher J, Moraga J et al (2011) The Botrytis cinerea phytotoxin botcinic acid requires two polyketide synthases for production and has a redundant role in virulence. Mol Plant Pathol 12:564–579

    Article  CAS  PubMed  Google Scholar 

  • Daoubi M, Duran-Patron R, Hernandez-Galan R et al (2006) The role of botrydienediol in the biodegradation of the sesquiterpenoid phytotoxin botrydial by Botrytis cinerea. Tetrahedron 62:8256–8261

    Article  CAS  Google Scholar 

  • Deighton N, Muckenschnabel I, Colmenares AJ et al (2001) Botrydial is produced in plant tissues infected by Botrytis cinerea. Phytochemistry 57:689–692

    Article  CAS  PubMed  Google Scholar 

  • Doss RP, Deisenhofer J, Krug von Nidda HA et al (2003) Melanin in the extracellular matrix of germlings of Botrytis cinerea. Phytochemistry 63:687–691

    Article  CAS  PubMed  Google Scholar 

  • Durán-Patrón R, Hernández-Galán R, Rebordinos L et al (1999) Structure-activity relationships of new phytotoxic metabolites with the botryane skeleton from Botrytis cinerea. Tetrahedron 55:2389–2400

    Article  Google Scholar 

  • Durán-Patrón R, Hernández-Galán R, Collado IG (2000) Secobotrytriendiol and related sesquiterpenoids: new phytotoxic metabolites from Botrytis cinerea. J Nat Prod 63:182–184

    Article  PubMed  Google Scholar 

  • Durán-Patrón R, Colmenares AJ, Hernández-Galán R et al (2001) Some key metabolic intermediates in the biosynthesis of botrydial and related compounds. Tetrahedron 57:1929–1933

    Article  Google Scholar 

  • Durán-Patrón R, Colmenares AJ, Montes A et al (2003) Studies on the biosynthesis of secobotryane skeleton. Tetrahedron 59:6267–6271

    Article  Google Scholar 

  • Durán-Patrón R, Cantoral JM, Hernández-Galán R et al (2004) The biodegradation pathways of the self-produced phytotoxic metabolite botrydial by Botrytis cinerea. J Chem Res 6:441–443

    Article  Google Scholar 

  • Favre-Bonvin J, Arpin N, Brevard C (1976) Structure de la mycosporine (P 310). Can J Chem 54:1105–1113

    Article  CAS  Google Scholar 

  • Fukui H, Shiina I (2008) Asymmetric total synthesis of botcinins C, D, and F. Org Lett 10:3153–3156

    Article  CAS  PubMed  Google Scholar 

  • Fukui H, Tsuji K, Umezaki Y et al (2009) Total synthesis and the confirmation of the revised structures of botcinins A and B. Heterocycles 79:403–410

    Article  CAS  Google Scholar 

  • Hanson JR (1981) The biosynthesis of some sesquiterpenoids. Pure Appl Chem 53:1155–1162

    Article  CAS  Google Scholar 

  • Heller J, Ruhnke N, Espino JJ et al (2012) The mitogen-activated protein kinase BcSak1 of Botrytis cinerea is required for pathogenic development and has broad regulatory functions beyond stress response. Mol Plant Microbe Interact 25:802–816

    Article  CAS  PubMed  Google Scholar 

  • Inomata M, Hirai N, Yoshida R, Ohigashi H (2004) The biosynthetic pathway to abscisic acid via ionylideneethane in the fungus Botrytis cinerea. Phytochemistry 65:2667–2678

    Article  CAS  PubMed  Google Scholar 

  • Jeya M, Kim TS, Tiwari MK et al (2012) The Botrytis cinerea type III polyketide synthase shows unprecedented high catalytic efficiency toward long chain acyl-CoAs. Mol BioSyst 8:2864–2867

    Article  CAS  PubMed  Google Scholar 

  • Kameda K, Aoki H, Namiki M (1974) An alternative structure for botrallin a metabolite of Botrytis allii. Tetrahedron Lett 1:103–106

    Article  Google Scholar 

  • Kimura Y, Fujioka H, Nakajima H et al (1993) BSF-A, a new plant growth regulator produced by the fungus Botrytis squamosa. Biosci Biotechnol Biochem 57:1584–1585

    Article  CAS  Google Scholar 

  • Kimura Y, Fujioka H, Hamasaki T et al (1995) Botryslactone, a new plant growth regulator produced by Botrytis squamosa. Tetrahedron Lett 36:7673–7676

    Article  CAS  Google Scholar 

  • Konetschny-Rapp S, Jung G, Huschka HG et al (1988) Isolation and identification of the principal siderophore of the plant pathogenic fungus Botrytis cinerea. Biol Met 1:90–98

    Article  CAS  Google Scholar 

  • Kroken S, Glass NL, Taylor JW et al (2003) Phylogenomic analysis of type I polyketide synthase genes in pathogenic and saprobic ascomycetes. Proc Natl Acad Sci U S A 100:15670–15675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Limon MC, Rodriguez-Ortiz R, Avalos J (2010) Bikaverin production and applications. App Microb Biotechnol 87:21–29

    Article  CAS  Google Scholar 

  • Marumo S, Katayama M, Komori E et al (1982) Microbial production of abscisic acid by Botrytis cinerea. Agric Biol Chem 46:1967–1968

    CAS  Google Scholar 

  • Massaroli M, Moraga J, Bastos Borges K et al (2013) A shared biosynthetic pathway for botcinins and botrylactones revealed through gene deletion. ChemBioChem 14:132–136

    Article  CAS  PubMed  Google Scholar 

  • Mauch-Mani B, Mauch F (2005) The role of abscisic acid in plant-pathogen interactions. Curr Opin Plant Biol 8:409–414

    Article  CAS  PubMed  Google Scholar 

  • Michielse CB, Becker M, Heller J et al (2011) The Botrytis cinerea Reg1 protein, a putative transcriptional regulator, is required for pathogenicity, conidiogenesis, and the production of secondary metabolites. Mol Plant Microbe Interact 24:1074–1085

    Article  CAS  PubMed  Google Scholar 

  • Moraga J, Pinedo C, Duran-Patron R et al (2011) Botrylactone: new interest in an old molecule, review of its absolute configuration and related compounds. Tetrahedron 67:417–420

    Article  CAS  Google Scholar 

  • Overeem JC, Van Dijkman A (1968) Botrallin, a novel quinone produced by Botrytis allii. Rec Trav Chim NL 87:940–944

    Article  CAS  Google Scholar 

  • Pinedo C, Wang CM, Pradier JM et al (2008) Sesquiterpene synthase from the botrydial biosynthetic gene cluster of the phytopathogen Botrytis cinerea. ACS Chem Biol 3:791–801

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prado-Cabrero A, Scherzinger D, Avalos J et al (2007) Retinal biosynthesis in fungi: characterization of the carotenoid oxygenase CarX from Fusarium fujikuroi. Eukaryot Cell 6:650–657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebordinos L, Cantoral JM, Prieto MV et al (1996) The phytotoxic activity of some metabolites of Botrytis cinerea. Phytochemistry 42:383–387

    Article  CAS  Google Scholar 

  • Reino JL, Durán-Patrón R, Segura I et al (2003) Chemical transformations on botryane skeleton. Effect on the cytotoxic activity. J Nat Prod 66:344–349

    Article  CAS  PubMed  Google Scholar 

  • Rossi FR, Garriz A, Marina M et al (2011) The sesquiterpene botrydial produced by Botrytis cinerea induces the hypersensitive response on plant tissues and its action is modulated by salicylic acid and jasmonic acid signalling. Mol Plant Microbe Interact 24:888–896

    Article  CAS  PubMed  Google Scholar 

  • Saikia S, Nicholson MJ, Young C et al (2008) The genetic basis for indole-diterpene chemical diversity in filamentous fungi. Mycol Res 112:184–199

    Article  CAS  PubMed  Google Scholar 

  • Scharf DH, Heinekamp T, Brakhage AA (2014) Human and plant fungal pathogens: the role of secondary metabolites. PLoS Pathog 10:e1003859

    Article  PubMed  PubMed Central  Google Scholar 

  • Scherlach K, Hertweck C (2009) Triggering cryptic natural product biosynthesis in microorganisms. Org Biomol Chem 7:1753–1760

    Article  CAS  PubMed  Google Scholar 

  • Schumacher J, de Larrinoa IF, Tudzynski B (2008a) Calcineurin-responsive zinc finger transcription factor CRZ1 of Botrytis cinerea is required for growth, development, and full virulence on bean plants. Eukaryot Cell 7:584–601

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher J, Viaud M, Simon A et al (2008b) The Galpha subunit BCG1, the phospholipase C (BcPLC1) and the calcineurin phosphatase co-ordinately regulate gene expression in the grey mould fungus Botrytis cinerea. Mol Microbiol 67:1027–1050

    Article  CAS  PubMed  Google Scholar 

  • Schumacher J, Pradier JM, Simon A et al (2012) Natural variation in the VELVET gene bcvel1 affects virulence and light-dependent differentiation in Botrytis cinerea. PLoS One 7:e47840

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher J, Gautier A, Morgant G et al (2013) A functional bikaverin biosynthesis gene cluster in rare strains of Botrytis cinerea is positively controlled by VELVET. PLoS One 8:e53729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schumacher J, Simon A, Cohrs KC et al (2014) The transcription factor BcLTF1 regulates virulence and light responses in the necrotrophic plant pathogen Botrytis cinerea. PLoS Genet 10:e1004040

    Article  PubMed  PubMed Central  Google Scholar 

  • Schumacher J, Simon A, Cohrs KC et al (2015) The VELVET complex in the gray mold fungus Botrytis cinerea: impact of BcLAE1 on differentiation, secondary metabolism and virulence. Mol Plant Microbe Interact 28:659–674. doi:http://dx.doi.org/10.1094/MPMI-12-14-0411-R

    Article  CAS  PubMed  Google Scholar 

  • Shiina I, Fukui H (2009) Chemistry and structural determination of botcinolides, botcinins, and botcinic acids. Chem Commun 4:385–400

    Article  Google Scholar 

  • Siewers V, Smedsgaard J, Tudzynski P (2004) The P450 monooxygenase BcABA1 is essential for abscisic acid biosynthesis in Botrytis cinerea. Appl Environ Microbiol 70:3868–3876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Siewers V, Viaud M, Jiménez-Teja D et al (2005) Functional analysis of the cytochrome P450 monooxygenase gene bcbot1 of Botrytis cinerea indicates that botrydial is a strain-specific virulence factor. Mol Plant Microbe Interact 18:602–612

    Article  CAS  PubMed  Google Scholar 

  • Siewers V, Kokkelink L, Smedsgaard J et al (2006) Identification of an abscisic acid gene cluster in the grey mold Botrytis cinerea. Appl Environ Microbiol 72:4619–4626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simon A, Dalmais B, Morgant G et al (2013) Screening of a Botrytis cinerea one-hybrid library reveals a Cys2His2 transcription factor involved in the regulation of secondary metabolism gene clusters. Fungal Genet Biol 52:9–19

    Article  CAS  PubMed  Google Scholar 

  • Staats M, Van Kan JA (2012) Genome update of Botrytis cinerea strains B05.10 and T4. Eukaryot Cell 11:1413–1414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stierle DB, Stierle AA, Kunz A (1998) Dihydroramulosin from Botrytis sp. J Nat Prod 61:1277–1278

    Article  CAS  PubMed  Google Scholar 

  • Tani H, Koshino H, Sakuno E et al (2005) Botcinins A, B, C, and D, metabolites produced by Botrytis cinerea, and their antifungal activity against Magnaporthe grisea, a pathogen of rice blast disease. J Nat Prod 68:1768–1772

    Article  CAS  PubMed  Google Scholar 

  • Tani H, Koshino H, Sakuno E et al (2006) Botcinins E and F and botcinolide from Botrytis cinerea and structural revision of botcinolides. J Nat Prod 69:722–725

    Article  CAS  PubMed  Google Scholar 

  • Temme N, Oeser B, Massaroli M et al (2012) BcAtf1, a global regulator, controls various differentiation processes and phytotoxin production in Botrytis cinerea. Mol Plant Pathol 13:704–718

    Article  CAS  PubMed  Google Scholar 

  • Wang TS, Zhou JY, Tan H (2008) Three new metabolites from Botrytis cinerea. J Asian Nat Prod Res 10:919–924

    Article  CAS  PubMed  Google Scholar 

  • Wang CM, Hopson R, Lin X et al (2009) Biosynthesis of the sesquiterpene botrydial in Botrytis cinerea. Mechanism and stereochemistry of the enzymatic formation of presilphiperfolan-8beta-ol. J Am Chem Soc 131:8360–8361

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Welmar K, Tschesche R, Breitmaier E (1979) Botrylacton, ein neuer Wirkstoff aus der Nährlösung des Pilzes Botrytis cinerea 2. Chem Ber 112:3598–3602

    Article  CAS  Google Scholar 

  • Wiemann P, Keller NP (2014) Strategies for mining fungal natural products. J Ind Microbiol Biotechnol 41:301–313

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Isidro G. Collado or Muriel Viaud .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Collado, I.G., Viaud, M. (2016). Secondary Metabolism in Botrytis cinerea: Combining Genomic and Metabolomic Approaches. In: Fillinger, S., Elad, Y. (eds) Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer, Cham. https://doi.org/10.1007/978-3-319-23371-0_15

Download citation

Publish with us

Policies and ethics