Skip to main content

Computational Scientific Discovery and Cognitive Science Theories

  • Chapter

Part of the book series: Synthese Library ((SYLI,volume 375))

Abstract

This study is concerned with processes for discovering new theories in science. It considers a computational approach to scientific discovery, as applied to the discovery of theories in cognitive science. The approach combines two ideas. First, a process-based scientific theory can be represented as a computer program. Second, an evolutionary computational method, genetic programming, allows computer programs to be improved through a process of computational trial-and-error. Putting these two ideas together leads to a system that can automatically generate and improve scientific theories. The application of this method to the discovery of theories in cognitive science is examined. Theories are built up from primitive operators. These are contained in a theory language that defines the space of possible theories. An example of a theory generated by this method is described. These results support the idea that scientific discovery can be achieved through a heuristic search process, even for theories involving a sequence of steps. However, this computational approach to scientific discovery does not eliminate the need for human input. Human judgment is needed to make reasonable prior assumptions about the characteristics of operators used in the theory generation process, and to interpret and provide context for the computationally generated theories.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Achinstein, P. (1965). The problem of theoretical terms. American Philosophical Quarterly, 2(3), 193–203.

    Google Scholar 

  • Altenberg, L. (1994). The evolution of evolvability in genetic programming. In K. Kinnear (Ed.), Advances in genetic programming (pp. 47–74). Cambridge: MIT Press.

    Google Scholar 

  • Barrett, D. (2014). Functional analysis and mechanistic explanation. Synthese, 191, 2695–2714.

    Article  Google Scholar 

  • Burks, A. W. (1946). Peirce’s theory of abduction. Philosophy of Science, 13, 301–306.

    Article  Google Scholar 

  • Campbell, D. (1960). Blind variation and selective retention in creative thought as in other knowledge processes. Psychological Review, 67, 380–400.

    Article  Google Scholar 

  • Chao, L., Haxby, J., & Martin, A. (1999). Attribute-based neural substrates in temporal cortex for perceiving and knowing about objects. Nature Neuroscience, 2, 913–919.

    Article  Google Scholar 

  • Charnov, E. L. (1976). Optimal foraging, the marginal value theorem. Theoretical Population Biology, 9(2), 129–136.

    Article  Google Scholar 

  • Contessa, G. (2010). Scientific models and fictional objects. Synthese, 172, 215–229.

    Article  Google Scholar 

  • Fodor, J. (1968). Psychological explanation: An introduction to the philosophy of psychology. New York: Random House.

    Google Scholar 

  • Frias-Martinez, E., & Gobet, F. (2007). Automatic generation of cognitive theories using genetic programming. Minds and Machines, 17, 287–309.

    Article  Google Scholar 

  • Friedman, N., Linial, M., Nachman, I., & Pe’er, D. (2000). Using Bayesian networks to analyze expression data. Journal of Computational Biology, 7(3–4), 601–620.

    Article  Google Scholar 

  • Frigg, R. (2010). Models and fiction. Synthese, 172, 251–268.

    Article  Google Scholar 

  • Frigg, R., Smith, L., & Stainforth, D. (2013). The myopia of imperfect climate models: The case of UKCP09. Philosophy of Science, 80, 886–897.

    Article  Google Scholar 

  • Gobet, F., & Parker, A. (2005). Evolving structure-function mappings in cognitive neuroscience using genetic programming. Swiss Journal of Psychology, 64, 231–239.

    Article  Google Scholar 

  • Gobet, F., Lane, P. C., Croker, S., Cheng, P. C., Jones, G., Oliver, I., & Pine, J. M. (2001). Chunking mechanisms in human learning. Trends in Cognitive Sciences, 5, 236–243.

    Article  Google Scholar 

  • Hanson, N. (1958). Patterns of discovery. Cambridge: Cambridge University Press.

    Google Scholar 

  • Holland, J., Holyoak, K., Nisbett, R., & Thagard, P. (1986). Induction: Processes of inference, learning, and discovery. Cambridge: MIT Press.

    Google Scholar 

  • King, R., Rowland, J., Oliver, S., et al. (2009). The automation of science. Science, 324, 85–89.

    Article  Google Scholar 

  • Kowald, A. (1997). Possible mechanisms for the regulation of telomere length. Journal of Molecular Biology, 273, 814–825.

    Article  Google Scholar 

  • Koza, J. (1992). Genetic programming: On the programming of computers by means of natural selection (Vol. 1). Cambridge: MIT Press.

    Google Scholar 

  • Krebs, J., & Davies, N. (1993). An introduction to behavioural ecology. Oxford: Blackwell.

    Google Scholar 

  • Kuhn, T. (1962). The structure of scientific revolutions. Chicago: University of Chicago Press.

    Google Scholar 

  • Lakatos, I. (1970). Falsification and the methodology of scientific research programmes. In I. Lakatos & A. Musgrave (Eds.), Criticism and the growth of knowledge (pp. 91–196). Cambridge: Cambridge University Press.

    Chapter  Google Scholar 

  • Lane, P., & Gobet, F. (2012). A theory-driven testing methodology for developing scientific software. Journal for Experimental and Theoretical Artificial Intelligence, 24, 421–456.

    Article  Google Scholar 

  • Lane, P., & Gobet, F. (2013). Evolving non-dominated parameter sets for computational models from multiple experiments. Journal of Artificial General Intelligence, 4, 1–30.

    Article  Google Scholar 

  • Lane, P., Sozou, P., Addis, M., & Gobet, F. (2014). Evolving process-based models from psychological data using genetic programming. In R. Kibble (Ed.), Proceedings of the 50th anniversary convention of the AISB. London: AISB.

    Google Scholar 

  • Langley, P. (1981). Data-driven discovery of physical laws. Cognitive Science, 5, 31–34.

    Article  Google Scholar 

  • Langley, P., Bradshaw, G., & Simon, H. (1981). BACON 5: The discovery of conservation laws. In Proceedings of the 7th IJCAI (pp. 121–126). San Francisco, CA: Morgan Kaufman.

    Google Scholar 

  • Langley, P., Simon, H., Bradshaw, G., et al. (1987). Scientific discovery: Computational explorations of the creative processes. Cambridge: MIT Press.

    Book  Google Scholar 

  • Lindsay, R., Buchanan, B., Feigenbaum, E., et al. (1993). DENDRAL: A case study of the first expert system for scientific hypothesis formation. Artificial Intelligence, 61, 209–261.

    Article  Google Scholar 

  • Luke, S. (2010). The ECJ owner’s manual. In A user manual for the ECJ evolutionary computation library, San Francisco, California. Available at http://cs.gmu.edu/~eclab/projects/ecj/docs/manual/manual.pdf

  • Mitchell, T. (1980). The need for biases in learning generalizations (Technical report). New Brunswick, NJ: Rutgers University. Laboratory for Computer Science Research: Rutgers University.

    Google Scholar 

  • Newell, A. (1990). Unified theories of cognition. Cambridge: Harvard University Press.

    Google Scholar 

  • Newell, A., & Simon, H. (1972). Human problem solving. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • O’Neill, M., Vanneschi, L., Gustafson, S., & Banzhaf, W. (2010). Open issues in genetic programming. Genetic Programming and Evolvable Machines, 11, 339–363.

    Article  Google Scholar 

  • Piccinini, G., & Craver, C. (2011). Integrating psychology and neuroscience: Functional analyses as mechanism sketches. Synthese, 183, 283–311.

    Article  Google Scholar 

  • Polanyi, M. (1964). Personal knowledge: Towards a post-critical philosophy. London: Routledge.

    Google Scholar 

  • Poli, R., Langdon, W., & McPhee, N. (2008). A field guide to genetic programming. Available from http://www.gp-field-guide.org.uk

  • Popper, K. (1959). The logic of scientific discovery. London: Hutchinson.

    Google Scholar 

  • Samsonovich, A. (2010). Toward a unified catalog of implemented cognitive architectures. BICA, 221, 195–244.

    Google Scholar 

  • Simon, H. A. (1973). Does scientific discovery have a logic? Philosophy of Science, 40, 471–480.

    Article  Google Scholar 

  • Simon, H. (1979). Information processing models of cognition. Annual Review of Psychology, 30, 363–396.

    Article  Google Scholar 

  • Simonton, D. K. (1985). Quality, quantity, and age: The careers of ten distinguished psychologists. International Journal of Aging and Human Development, 21, 241–254.

    Article  Google Scholar 

  • Simonton, D. (1999). Origins of genius. Oxford: Oxford University Press.

    Google Scholar 

  • Smith, D., & Minda, J. (2000). Thirty categorization results in search of a model. Journal of Experimental Psychology: Learning, Memory, and Cognition, 26, 3–27.

    Google Scholar 

  • Sozou, P., & Kirkwood, T. (2001). A stochastic model of cell replicative senescence based on telomere shortening, oxidative stress, and somatic mutations in nuclear and mitochondrial DNA. Journal of Theoretical Biology, 213, 573–586.

    Article  Google Scholar 

  • Thagard, P. R. (1978). The best explanation: Criteria for theory choice. The Journal of Philosophy, 75, 76–92.

    Article  Google Scholar 

  • Thagard, P. (1988). Computational philosophy of science. Cambridge: MIT Press.

    Book  Google Scholar 

  • Walton, K. (1990). Mimesis as make-believe: On the foundations of the representational arts. Cambridge: Harvard University Press.

    Google Scholar 

  • Weisberg, M. (2007). Three kinds of idealization. The Journal of Philosophy, 104, 639–659.

    Article  Google Scholar 

  • Zhang, B. T., & Mühlenbein, H. (1995). Balancing accuracy and parsimony in genetic programming. Evolutionary Computation, 3, 17–38.

    Article  Google Scholar 

Download references

Acknowledgments

This research was supported by Economic and Social Research Council grant ES/L003090/1. We thank three referees for comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mark Addis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Addis, M., Sozou, P.D., Lane, P.C., Gobet, F. (2016). Computational Scientific Discovery and Cognitive Science Theories. In: Müller, V.C. (eds) Computing and Philosophy. Synthese Library, vol 375. Springer, Cham. https://doi.org/10.1007/978-3-319-23291-1_6

Download citation

Publish with us

Policies and ethics