Skip to main content

Osteoarthritis in the Elderly

  • Chapter

Abstract

Osteoarthritis is the most common cause of chronic disability in older adults. It is a slowly progressive degenerative disorder of articular joints that has multiple etiologies with age being a key factor. Osteoarthritis most commonly affects the hands, knees, hips and spine with knee osteoarthritis representing a major cause of pain and activity limitation. Current therapies are focused on symptom relief while interventions proven to slow or stop the structural progression of the disease are not yet available. No longer considered a “wear and tear” condition that is an inevitable consequence of aging, it is becoming increasingly evident that osteoarthritis has elements of chronic inflammation associated with an imbalance in anabolic and catabolic activity within affected joint tissues. Age-related changes in the cells and tissues of the joint, including cell senescence, oxidative stress, a decline in autophagy, epigenetic alterations, and matrix damage all appear to contribute to the development and progression of osteoarthritis. Which of these may serve as effective targets will be a key question to address in the search for disease modifying interventions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Loeser RF, Goldring SR, Scanzello CR, Goldring MB (2012) Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum 64:1697–1707. doi:10.1002/art.34453

    PubMed Central  PubMed  Google Scholar 

  2. Goldring MB, Goldring SR (2007) Osteoarthritis. J Cell Physiol 213(3):626–634

    CAS  PubMed  Google Scholar 

  3. Centers for Disease Control and Prevention (CDC) (2006) Prevalence of doctor-diagnosed arthritis and arthritis-attributable activity limitation – United States, 2003–2005. MMWR Morb Mortal Wkly Rep 55(40):1089–1092

    Google Scholar 

  4. Hootman JM, Helmick CG (2006) Projections of US prevalence of arthritis and associated activity limitations. Arthritis Rheum 54(1):226–229

    PubMed  Google Scholar 

  5. Lawrence RC, Felson DT, Helmick CG, Arnold LM, Choi H, Deyo RA et al (2008) Estimates of the prevalence of arthritis and other rheumatic conditions in the United States: part II. Arthritis Rheum 58(1):26–35

    PubMed Central  PubMed  Google Scholar 

  6. Collaborators, U. S. B. o. D. (2013) The state of US health, 1990–2010: burden of diseases, injuries, and risk factors. JAMA 310(6):591–608. doi:10.1001/jama.2013.13805

    Google Scholar 

  7. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C, Ezzati M et al (2012) Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380(9859):2163–2196. doi:10.1016/S0140-6736(12)61729-2

    PubMed  Google Scholar 

  8. Boult C, Altmann M, Gilbertson D, Yu C, Kane RL (1996) Decreasing disability in the 21st century: the future effects of controlling six fatal and nonfatal conditions. Am J Public Health 86(10):1388–1393

    PubMed Central  CAS  PubMed  Google Scholar 

  9. Ong KL, Wu BJ, Cheung BM, Barter PJ, Rye KA (2013) Arthritis: its prevalence, risk factors, and association with cardiovascular diseases in the United States, 1999 to 2008. Ann Epidemiol 23(2):80–86. doi:10.1016/j.annepidem.2012.11.008

    PubMed  Google Scholar 

  10. Nuesch E, Dieppe P, Reichenbach S, Williams S, Iff S, Juni P (2011) All cause and disease specific mortality in patients with knee or hip osteoarthritis: population based cohort study. BMJ 342:d1165. doi:10.1136/bmj.d1165

    PubMed Central  PubMed  Google Scholar 

  11. Philbin EF, Groff GD, Ries MD, Miller TE (1995) Cardiovascular fitness and health in patients with end-stage osteoarthritis. Arthritis Rheum 38(6):799–805

    CAS  PubMed  Google Scholar 

  12. Dunlop DD, Semanik P, Song J, Manheim LM, Shih V, Chang RW (2005) Risk factors for functional decline in older adults with arthritis. Arthritis Rheum 52(4):1274–1282

    PubMed Central  PubMed  Google Scholar 

  13. Leveille SG, Bean J, Bandeen-Roche K, Jones R, Hochberg M, Guralnik JM (2002) Musculoskeletal pain and risk for falls in older disabled women living in the community. J Am Geriatr Soc 50(4):671–678

    PubMed  Google Scholar 

  14. Misra D, Felson DT, Silliman RA, Nevitt M, Lewis CE, Torner J et al (2014) Knee osteoarthritis and frailty: findings from the multicenter osteoarthritis study and osteoarthritis initiative. J Gerontol A Biol Sci Med Sci. doi:10.1093/gerona/glu102

    PubMed  Google Scholar 

  15. Zhang W, Doherty M, Leeb BF, Alekseeva L, Arden NK, Bijlsma JW et al (2009) EULAR evidence-based recommendations for the diagnosis of hand osteoarthritis: report of a task force of ESCISIT. Ann Rheum Dis 68(1):8–17. doi:10.1136/ard.2007.084772. [Practice Guideline Research Support, Non-U.S. Gov’t Review]

    CAS  PubMed  Google Scholar 

  16. Finan PH, Buenaver LF, Bounds SC, Hussain S, Park RJ, Haque UJ et al (2013) Discordance between pain and radiographic severity in knee osteoarthritis: findings from quantitative sensory testing of central sensitization. Arthritis Rheum 65(2):363–372. doi:10.1002/art.34646

    PubMed  Google Scholar 

  17. Thomas RH, Daniels TR (2003) Ankle arthritis. J Bone Joint Surg Am 85-A(5):923–936

    PubMed  Google Scholar 

  18. Valdes AM, Spector TD (2011) Genetic epidemiology of hip and knee osteoarthritis. Nat Rev Rheumatol 7(1):23–32. doi:10.1038/nrrheum.2010.191

    PubMed  Google Scholar 

  19. arc, O. C., arc, O. C., Zeggini E, Panoutsopoulou K, Southam L, Rayner NW (2012) Identification of new susceptibility loci for osteoarthritis (arcOGEN): a genome-wide association study. Lancet 380(9844):815–823. doi:10.1016/S0140-6736(12)60681-3

    Google Scholar 

  20. Rodriguez-Fontenla C, Calaza M, Evangelou E, Valdes AM, Arden N, Blanco FJ et al (2014) Assessment of osteoarthritis candidate genes in a meta-analysis of nine genome-wide association studies. Arthritis Rheumatol 66(4):940–949. doi:10.1002/art.38300

    CAS  PubMed  Google Scholar 

  21. Anderson SA, Loeser RF (2010) Why is osteoarthritis an age-related disease? Best Pract Res Clin Rheumatol 24(1):15–26. doi:10.1016/j.berh.2009.08.006, S1521-6942(09)00084-9 [pii]

    PubMed Central  Google Scholar 

  22. Losina E, Weinstein AM, Reichmann WM, Burbine SA, Solomon DH, Daigle ME et al (2013) Lifetime risk and age at diagnosis of symptomatic knee osteoarthritis in the US. Arthritis Care Res (Hoboken) 65(5):703–711. doi:10.1002/acr.21898. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, P.H.S.]

    Google Scholar 

  23. Leyland KM, Hart DJ, Javaid MK, Judge A, Kiran A, Soni A et al (2012) The natural history of radiographic knee osteoarthritis: a fourteen-year population-based cohort study. Arthritis Rheum 64(7):2243–2251. doi:10.1002/art.34415

    CAS  PubMed  Google Scholar 

  24. Murphy L, Schwartz TA, Helmick CG, Renner JB, Tudor G, Koch G et al (2008) Lifetime risk of symptomatic knee osteoarthritis. Arthritis Rheum 59(9):1207–1213

    PubMed Central  PubMed  Google Scholar 

  25. Driban JB, Eaton CB, Lo GH, Ward RJ, Lu B, McAlindon TE (2014) Association of knee injuries with accelerated knee osteoarthritis progression: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken) 66(11):1673–1679. doi:10.1002/acr.22359

    Google Scholar 

  26. Johnson VL, Hunter DJ (2014) The epidemiology of osteoarthritis. Best Pract Res Clin Rheumatol 28(1):5–15. doi:10.1016/j.berh.2014.01.004

    PubMed  Google Scholar 

  27. Blagojevic M, Jinks C, Jeffery A, Jordan KP (2010) Risk factors for onset of osteoarthritis of the knee in older adults: a systematic review and meta-analysis. Osteoarthritis Cartilage 18(1):24–33. doi:10.1016/j.joca.2009.08.010, S1063-4584(09)00225-8 [pii]

    CAS  PubMed  Google Scholar 

  28. Felson DT, Anderson JJ, Naimark A, Walker AM, Meenan RF (1988) Obesity and knee osteoarthritis. The Framingham Study. Ann Intern Med 109(1):18–24

    CAS  PubMed  Google Scholar 

  29. Karlson EW, Mandl LA, Aweh GN, Sangha O, Liang MH, Grodstein F (2003) Total hip replacement due to osteoarthritis: the importance of age, obesity, and other modifiable risk factors. Am J Med 114(2):93–98

    PubMed  Google Scholar 

  30. Oliveria SA, Felson DT, Cirillo PA, Reed JI, Walker AM (1999) Body weight, body mass index, and incident symptomatic osteoarthritis of the hand, hip, and knee. Epidemiology 10(2):161–166

    CAS  PubMed  Google Scholar 

  31. Visser AW, Ioan-Facsinay A, de Mutsert R, Widya RL, Loef M, de Roos A et al (2014) Adiposity and hand osteoarthritis: the Netherlands Epidemiology of Obesity study. Arthritis Res Ther 16(1):R19. doi:10.1186/ar4447

    PubMed Central  PubMed  Google Scholar 

  32. Issa RI, Griffin TM (2012) Pathobiology of obesity and osteoarthritis: integrating biomechanics and inflammation. Pathobiol Aging Age Relat Dis 2(2012). doi:10.3402/pba.v2i0.17470

    Google Scholar 

  33. Hui W, Litherland GJ, Elias MS, Kitson GI, Cawston TE, Rowan AD et al (2012) Leptin produced by joint white adipose tissue induces cartilage degradation via upregulation and activation of matrix metalloproteinases. Ann Rheum Dis 71(3):455–462. doi:10.1136/annrheumdis-2011-200372. [Research Support, Non-U.S. Gov’t]

    CAS  PubMed  Google Scholar 

  34. Zhuo Q, Yang W, Chen J, Wang Y (2012) Metabolic syndrome meets osteoarthritis. Nat Rev Rheumatol 8(12):729–737. doi:10.1038/nrrheum.2012.135

    CAS  PubMed  Google Scholar 

  35. Sellam J, Berenbaum F (2013) Is osteoarthritis a metabolic disease? Joint Bone Spine 80(6):568–573. doi:10.1016/j.jbspin.2013.09.007

    CAS  PubMed  Google Scholar 

  36. Jungmann PM, Kraus MS, Alizai H, Nardo L, Baum T, Nevitt MC et al (2013) Association of metabolic risk factors with cartilage degradation assessed by T2 relaxation time at the knee: data from the osteoarthritis initiative. Arthritis Care Res (Hoboken) 65(12):1942–1950. doi:10.1002/acr.22093

    CAS  Google Scholar 

  37. Borkan GA, Hults DE, Gerzof SG, Robbins AH, Silbert CK (1983) Age changes in body composition revealed by computed tomography. J Gerontol 38(6):673–677

    CAS  PubMed  Google Scholar 

  38. Kumar D, Karampinos DC, MacLeod TD, Lin W, Nardo L, Li X et al (2014) Quadriceps intramuscular fat fraction rather than muscle size is associated with knee osteoarthritis. Osteoarthritis Cartilage 22(2):226–234. doi:10.1016/j.joca.2013.12.005

    PubMed Central  CAS  PubMed  Google Scholar 

  39. Addison O, Drummond MJ, LaStayo PC, Dibble LE, Wende AR, McClain DA et al (2014) Intramuscular fat and inflammation differ in older adults: the impact of frailty and inactivity. J Nutr Health Aging 18(5):532–538. doi:10.1007/s12603-014-0019-1

    CAS  PubMed  Google Scholar 

  40. Chuckpaiwong B, Charles HC, Kraus VB, Guilak F, Nunley JA (2010) Age-associated increases in the size of the infrapatellar fat pad in knee osteoarthritis as measured by 3T MRI. J Orthop Res 28(9):1149–1154. doi:10.1002/jor.21125

    PubMed Central  PubMed  Google Scholar 

  41. Distel E, Cadoudal T, Durant S, Poignard A, Chevalier X, Benelli C (2009) The infrapatellar fat pad in knee osteoarthritis: an important source of interleukin-6 and its soluble receptor. Arthritis Rheum 60(11):3374–3377. doi:10.1002/art.24881

    CAS  PubMed  Google Scholar 

  42. Goekoop RJ, Kloppenburg M, Kroon HM, Dirkse LE, Huizinga TW, Westendorp RG et al (2011) Determinants of absence of osteoarthritis in old age. Scand J Rheumatol 40(1):68–73. doi:10.3109/03009742.2010.500618

    CAS  PubMed  Google Scholar 

  43. Felson DT (2004) Risk factors for osteoarthritis: understanding joint vulnerability. Clin Orthop Relat Res (427 Suppl):S16–21. doi:00003086-200410001-00005 [pii]

    Google Scholar 

  44. Hochberg MC, Altman RD, April KT, Benkhalti M, Guyatt G, McGowan J et al (2012) American College of Rheumatology 2012 recommendations for the use of nonpharmacologic and pharmacologic therapies in osteoarthritis of the hand, hip, and knee. Arthritis Care Res (Hoboken) 64(4):455–474. [Consensus Development Conference Practice Guideline Review]

    Google Scholar 

  45. Nelson AE, Allen KD, Golightly YM, Goode AP, Jordan JM (2014) A systematic review of recommendations and guidelines for the management of osteoarthritis: the Chronic Osteoarthritis Management Initiative of the U.S. Bone and Joint Initiative. Semin Arthritis Rheum 43(6):701–712. doi:10.1016/j.semarthrit.2013.11.012

    PubMed  Google Scholar 

  46. Tonge DP, Pearson MJ, Jones SW (2014) The hallmarks of osteoarthritis and the potential to develop personalised disease-modifying pharmacological therapeutics. Osteoarthritis Cartilage 22(5):609–621. doi:10.1016/j.joca.2014.03.004

    CAS  PubMed  Google Scholar 

  47. Yang S, Eaton CB, McAlindon TE, Lapane KL (2014) Effects of glucosamine and chondroitin on treating knee osteoarthritis: an analysis with marginal structural models. Arthritis Rheumatol. doi:10.1002/art.38932

    Google Scholar 

  48. Guermazi A, Roemer FW, Felson DT, Brandt KD (2013) Motion for debate: osteoarthritis clinical trials have not identified efficacious therapies because traditional imaging outcome measures are inadequate. Arthritis Rheum 65(11):2748–2758. doi:10.1002/art.38086

    PubMed  Google Scholar 

  49. Lotz M, Loeser RF (2012) Effects of aging on articular cartilage homeostasis. Bone 51(2):241–248. doi:10.1016/j.bone.2012.03.023

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Hollander AP, Pidoux I, Reiner A, Rorabeck C, Bourne R, Poole AR (1995) Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J Clin Invest 96(6):2859–2869

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Nguyen QT, Wong BL, Chun J, Yoon YC, Talke FE, Sah RL (2010) Macroscopic assessment of cartilage shear: effects of counter-surface roughness, synovial fluid lubricant, and compression offset. J Biomech 43(9):1787–1793. doi:10.1016/j.jbiomech.2010.02.014, S0021-9290(10)00097-7 [pii]

    PubMed Central  PubMed  Google Scholar 

  52. Dean DD, Martel-Pelletier J, Pelletier JP, Howell DS, Woessner JF Jr (1989) Evidence for metalloproteinase and metalloproteinase inhibitor imbalance in human osteoarthritic cartilage. J Clin Invest 84(2):678–685

    PubMed Central  CAS  PubMed  Google Scholar 

  53. Dodge GR, Poole AR (1989) Immunohistochemical detection and immunochemical analysis of type II collagen degradation in human normal, rheumatoid, and osteoarthritic articular cartilages and in explants of bovine articular cartilage cultured with interleukin 1. J Clin Invest 83(2):647–661. doi:10.1172/JCI113929

    PubMed Central  CAS  PubMed  Google Scholar 

  54. Bank RA, Krikken M, Beekman B, Stoop R, Maroudas A, Lafeber FP et al (1997) A simplified measurement of degraded collagen in tissues: application in healthy, fibrillated and osteoarthritic cartilage. Matrix Biol 16(5):233–243

    CAS  PubMed  Google Scholar 

  55. Gibson GJ, Verner JJ, Nelson FR, Lin DL (2001) Degradation of the cartilage collagen matrix associated with changes in chondrocytes in osteoarthrosis. Assessment by loss of background fluorescence and immunodetection of matrix components. J Orthop Res 19(1):33–42. doi:10.1016/S0736-0266(00)00008-5, S0736-0266(00)00008-5 [pii]

    CAS  PubMed  Google Scholar 

  56. Maroudas A (1979) Physico-chemical properties of articular cartilage. In: Freeman MAR (ed) Adult articular cartilage. Pitman Medical, Turnbridge Wells, pp 215–290

    Google Scholar 

  57. Verzijl N, Bank RA, TeKoppele JM, DeGroot J (2003) AGEing and osteoarthritis: a different perspective. Curr Opin Rheumatol 15(5):616–622

    PubMed  Google Scholar 

  58. Loeser RF, Yammani RR, Carlson CS, Chen H, Cole A, Im HJ et al (2005) Articular chondrocytes express the receptor for advanced glycation end products: potential role in osteoarthritis. Arthritis Rheum 52(8):2376–2385

    PubMed Central  CAS  PubMed  Google Scholar 

  59. Yammani RR, Carlson CS, Bresnick AR, Loeser RF (2006) Increase in production of matrix metalloproteinase 13 by human articular chondrocytes due to stimulation with S100A4: role of the receptor for advanced glycation end products. Arthritis Rheum 54(9):2901–2911

    CAS  PubMed  Google Scholar 

  60. Steenvoorden MM, Huizinga TW, Verzijl N, Bank RA, Ronday HK, Luning HA et al (2006) Activation of receptor for advanced glycation end products in osteoarthritis leads to increased stimulation of chondrocytes and synoviocytes. Arthritis Rheum 54(1):253–263

    CAS  PubMed  Google Scholar 

  61. Cecil DL, Johnson K, Rediske J, Lotz M, Schmidt AM, Terkeltaub R (2005) Inflammation-induced chondrocyte hypertrophy is driven by receptor for advanced glycation end products. J Immunol 175(12):8296–8302

    CAS  PubMed  Google Scholar 

  62. Mitsuyama H, Healey RM, Terkeltaub RA, Coutts RD, Amiel D (2007) Calcification of human articular knee cartilage is primarily an effect of aging rather than osteoarthritis. Osteoarthritis Cartilage 15(5):559–565. doi:10.1016/j.joca.2006.10.017, S1063-4584(06)00319-0 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  63. Fuerst M, Bertrand J, Lammers L, Dreier R, Echtermeyer F, Nitschke Y et al (2009) Calcification of articular cartilage in human osteoarthritis. Arthritis Rheum 60(9):2694–2703. doi:10.1002/art.24774

    CAS  PubMed  Google Scholar 

  64. Rosen F, McCabe G, Quach J, Solan J, Terkeltaub R, Seegmiller JE et al (1997) Differential effects of aging on human chondrocyte responses to transforming growth factor beta: increased pyrophosphate production and decreased cell proliferation. Arthritis Rheum 40(7):1275–1281

    CAS  PubMed  Google Scholar 

  65. Terkeltaub RA (2002) What does cartilage calcification tell us about osteoarthritis? J Rheumatol 29(3):411–415

    PubMed  Google Scholar 

  66. Niggemeyer O, Steinhagen J, Deuretzbacher G, Zustin J, Ruther W (2011) Amyloid deposition in osteoarthritis of the hip. Arch Orthop Trauma Surg 131(5):637–643. doi:10.1007/s00402-010-1187-z

    PubMed  Google Scholar 

  67. Ladefoged C (1986) Amyloid deposits in the knee joint at autopsy. Ann Rheum Dis 45(8):668–672

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Grogan SP, D’Lima DD (2010) Joint aging and chondrocyte cell death. Int J Clin Rheumatol 5(2):199–214. doi:10.2217/ijr.10.3

    Google Scholar 

  69. Radin EL, Rose RM (1986) Role of subchondral bone in the initiation and progression of cartilage damage. Clin Orthop Relat Res (213):34–40

    Google Scholar 

  70. Walsh DA, Bonnet CS, Turner EL, Wilson D, Situ M, McWilliams DF (2007) Angiogenesis in the synovium and at the osteochondral junction in osteoarthritis. Osteoarthritis Cartilage 15(7):743–751. doi:10.1016/j.joca.2007.01.020, S1063-4584(07)00058-1 [pii]

    CAS  PubMed  Google Scholar 

  71. Lories RJ, Luyten FP (2011) The bone-cartilage unit in osteoarthritis. Nat Rev Rheumatol 7(1):43–49. doi:10.1038/nrrheum.2010.197, nrrheum.2010.197 [pii]

    CAS  PubMed  Google Scholar 

  72. Lyons TJ, McClure SF, Stoddart RW, McClure J (2006) The normal human chondro-osseous junctional region: evidence for contact of uncalcified cartilage with subchondral bone and marrow spaces. BMC Musculoskelet Disord 7:52. doi:10.1186/1471-2474-7-52, 1471-2474-7-52 [pii]

    PubMed Central  PubMed  Google Scholar 

  73. Hart DJ, Cronin C, Daniels M, Worthy T, Doyle DV, Spector TD (2002) The relationship of bone density and fracture to incident and progressive radiographic osteoarthritis of the knee: the Chingford Study. Arthritis Rheum 46(1):92–99. doi:10.1002/1529-0131(200201)46:1<92::AID-ART10057>3.0.CO;2-#

    PubMed  Google Scholar 

  74. Hunter DJ, Hart D, Snieder H, Bettica P, Swaminathan R, Spector TD (2003) Evidence of altered bone turnover, vitamin D and calcium regulation with knee osteoarthritis in female twins. Rheumatology (Oxford) 42(11):1311–1316. doi:10.1093/rheumatology/keg373keg373 [pii]

    CAS  Google Scholar 

  75. Hilal G, Martel-Pelletier J, Pelletier JP, Duval N, Lajeunesse D (1999) Abnormal regulation of urokinase plasminogen activator by insulin-like growth factor 1 in human osteoarthritic subchondral osteoblasts. Arthritis Rheum 42(10):2112–2122. doi:10.1002/1529-0131(199910)42:10<2112::AID-ANR11>3.0.CO;2-N

    CAS  PubMed  Google Scholar 

  76. Hilal G, Martel-Pelletier J, Pelletier JP, Ranger P, Lajeunesse D (1998) Osteoblast-like cells from human subchondral osteoarthritic bone demonstrate an altered phenotype in vitro: possible role in subchondral bone sclerosis. Arthritis Rheum 41(5):891–899

    CAS  PubMed  Google Scholar 

  77. Bettica P, Cline G, Hart DJ, Meyer J, Spector TD (2002) Evidence for increased bone resorption in patients with progressive knee osteoarthritis: longitudinal results from the Chingford study. Arthritis Rheum 46(12):3178–3184. doi:10.1002/art.10630

    PubMed  Google Scholar 

  78. Kwan Tat S, Lajeunesse D, Pelletier JP, Martel-Pelletier J (2010) Targeting subchondral bone for treating osteoarthritis: what is the evidence? Best Pract Res Clin Rheumatol 24(1):51–70. doi:10.1016/j.berh.2009.08.004, S1521-6942(09)00087-4 [pii]

    PubMed  Google Scholar 

  79. Li B, Aspden RM (1997) Composition and mechanical properties of cancellous bone from the femoral head of patients with osteoporosis or osteoarthritis. J Bone Miner Res 12(4):641–651. doi:10.1359/jbmr.1997.12.4.641

    CAS  PubMed  Google Scholar 

  80. Couchourel D, Aubry I, Delalandre A, Lavigne M, Martel-Pelletier J, Pelletier JP et al (2009) Altered mineralization of human osteoarthritic osteoblasts is attributable to abnormal type I collagen production. Arthritis Rheum 60(5):1438–1450. doi:10.1002/art.24489

    PubMed  Google Scholar 

  81. Burr DB, Gallant MA (2012) Bone remodelling in osteoarthritis. Nat Rev Rheumatol 8(11):665–673. doi:10.1038/nrrheum.2012.130

    CAS  PubMed  Google Scholar 

  82. Fazzalari NL, Parkinson IH (1997) Fractal properties of subchondral cancellous bone in severe osteoarthritis of the hip. J Bone Miner Res 12(4):632–640. doi:10.1359/jbmr.1997.12.4.632

    CAS  PubMed  Google Scholar 

  83. Grynpas MD, Alpert B, Katz I, Lieberman I, Pritzker KP (1991) Subchondral bone in osteoarthritis. Calcif Tissue Int 49(1):20–26

    CAS  PubMed  Google Scholar 

  84. Suri S, Walsh DA (2012) Osteochondral alterations in osteoarthritis. Bone 51(2):204–211. doi:10.1016/j.bone.2011.10.010, S8756-3282(11)01290-7 [pii]

    PubMed  Google Scholar 

  85. Pan J, Wang B, Li W, Zhou X, Scherr T, Yang Y et al (2012) Elevated cross-talk between subchondral bone and cartilage in osteoarthritic joints. Bone 51(2):212–217. doi:10.1016/j.bone.2011.11.030. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]

    PubMed Central  PubMed  Google Scholar 

  86. Lajeunesse D (2004) The role of bone in the treatment of osteoarthritis. Osteoarthritis Cartilage 12 Suppl A:S34–S38, doi:S1063458403002504 [pii]

    PubMed  Google Scholar 

  87. Goldring SR, Goldring MB (2010) Bone and cartilage in osteoarthritis: is what’s best for one good or bad for the other? Arthritis Res Ther 12(5):143. doi:10.1186/ar3135, ar3135 [pii]

    PubMed Central  PubMed  Google Scholar 

  88. Weinans H, Siebelt M, Agricola R, Botter SM, Piscaer TM, Waarsing JH (2012) Pathophysiology of peri-articular bone changes in osteoarthritis. Bone 51(2):190–196. doi:10.1016/j.bone.2012.02.002, S8756-3282(12)00057-9 [pii]

    CAS  PubMed  Google Scholar 

  89. Dieppe P, Cushnaghan J, Young P, Kirwan J (1993) Prediction of the progression of joint space narrowing in osteoarthritis of the knee by bone scintigraphy. Ann Rheum Dis 52(8):557–563

    PubMed Central  CAS  PubMed  Google Scholar 

  90. Matsui H, Shimizu M, Tsuji H (1997) Cartilage and subchondral bone interaction in osteoarthrosis of human knee joint: a histological and histomorphometric study. Microsc Res Tech 37(4):333–342. doi:10.1002/(SICI)1097-0029(19970515)37:4<333::AID-JEMT8>3.0.CO;2-L, [pii]10.1002/(SICI)1097-0029(19970515)37:4<333::AID-JEMT8>3.0.CO;2-L

    CAS  PubMed  Google Scholar 

  91. Carlson CS, Loeser RF, Purser CB, Gardin JF, Jerome CP (1996) Osteoarthritis in cynomolgus macaques. III: effects of age, gender, and subchondral bone thickness on the severity of disease. J Bone Miner Res 11(9):1209–1217

    CAS  PubMed  Google Scholar 

  92. Nevitt MC, Zhang Y, Javaid MK, Neogi T, Curtis JR, Niu J et al (2010) High systemic bone mineral density increases the risk of incident knee OA and joint space narrowing, but not radiographic progression of existing knee OA: the MOST study. Ann Rheum Dis 69(1):163–168. doi:10.1136/ard.2008.099531, ard.2008.099531 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  93. Bergink AP, Uitterlinden AG, Van Leeuwen JP, Hofman A, Verhaar JA, Pols HA (2005) Bone mineral density and vertebral fracture history are associated with incident and progressive radiographic knee osteoarthritis in elderly men and women: the Rotterdam Study. Bone 37(4):446–456. doi:10.1016/j.bone.2005.05.001., S8756-3282(05)00220-6 [pii]

    CAS  PubMed  Google Scholar 

  94. Hochberg MC, Lethbridge-Cejku M, Tobin JD (2004) Bone mineral density and osteoarthritis: data from the Baltimore Longitudinal Study of Aging. Osteoarthritis Cartilage 12 Suppl A:S45–S48, doi:S1063458403002462 [pii]

    PubMed  Google Scholar 

  95. Zhang Y, Hannan MT, Chaisson CE, McAlindon TE, Evans SR, Aliabadi P et al (2000) Bone mineral density and risk of incident and progressive radiographic knee osteoarthritis in women: the Framingham Study. J Rheumatol 27(4):1032–1037

    CAS  PubMed  Google Scholar 

  96. Kadri A, Ea HK, Bazille C, Hannouche D, Liote F, Cohen-Solal ME (2008) Osteoprotegerin inhibits cartilage degradation through an effect on trabecular bone in murine experimental osteoarthritis. Arthritis Rheum 58(8):2379–2386. doi:10.1002/art.23638

    CAS  PubMed  Google Scholar 

  97. Karsdal MA, Bay-Jensen AC, Lories RJ, Abramson S, Spector T, Pastoureau P et al (2014) The coupling of bone and cartilage turnover in osteoarthritis: opportunities for bone antiresorptives and anabolics as potential treatments? Ann Rheum Dis 73(2):336–348. doi:10.1136/annrheumdis-2013-204111, annrheumdis-2013-204111 [pii]

    CAS  PubMed  Google Scholar 

  98. Reginster JY (2014) Efficacy and safety of strontium ranelate in the treatment of knee osteoarthritis: results of a double-blind randomised, placebo-controlled trial. Ann Rheum Dis 73(2):e8. doi:10.1136/annrheumdis-2013-204194, annrheumdis-2013-204194 [pii]

    PubMed  Google Scholar 

  99. Sakaguchi Y, Sekiya I, Yagishita K, Muneta T (2005) Comparison of human stem cells derived from various mesenchymal tissues: superiority of synovium as a cell source. Arthritis Rheum 52(8):2521–2529. doi:10.1002/art.21212

    PubMed  Google Scholar 

  100. Wilkinson LS, Edwards JC (1991) Demonstration of lymphatics in human synovial tissue. Rheumatol Int 11(4–5):151–155

    CAS  PubMed  Google Scholar 

  101. Walsh DA, Verghese P, Cook GJ, McWilliams DF, Mapp PI, Ashraf S et al (2012) Lymphatic vessels in osteoarthritic human knees. Osteoarthritis Cartilage 20(5):405–412. doi:10.1016/j.joca.2012.01.012, S1063-4584(12)00036-2 [pii]

    CAS  PubMed  Google Scholar 

  102. Hui AY, McCarty WJ, Masuda K, Firestein GS, Sah RL (2012) A systems biology approach to synovial joint lubrication in health, injury, and disease. Wiley Interdiscip Rev Syst Biol Med 4(1):15–37. doi:10.1002/wsbm.157

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Mitrovic DR, Stankovic A, Quintero M, Ryckewaert A (1985) Amyloid deposits in human knee and hip joints. Rheumatol Int 5(2):83–89

    CAS  PubMed  Google Scholar 

  104. Satomura K, Torigoshi T, Koga T, Maeda Y, Izumi Y, Jiuchi Y et al (2013) Serum amyloid A (SAA) induces pentraxin 3 (PTX3) production in rheumatoid synoviocytes. Mod Rheumatol 23(1):28–35. doi:10.1007/s10165-012-0630-0

    CAS  PubMed  Google Scholar 

  105. Scanzello CR, Goldring SR (2012) The role of synovitis in osteoarthritis pathogenesis. Bone 51(2):249–257. doi:10.1016/j.bone.2012.02.012

    PubMed Central  CAS  PubMed  Google Scholar 

  106. Lindblad S, Hedfors E (1987) Arthroscopic and immunohistologic characterization of knee joint synovitis in osteoarthritis. Arthritis Rheum 30(10):1081–1088

    CAS  PubMed  Google Scholar 

  107. Revell PA, Mayston V, Lalor P, Mapp P (1988) The synovial membrane in osteoarthritis: a histological study including the characterisation of the cellular infiltrate present in inflammatory osteoarthritis using monoclonal antibodies. Ann Rheum Dis 47(4):300–307

    PubMed Central  CAS  PubMed  Google Scholar 

  108. Krenn V, Morawietz L, Burmester GR, Kinne RW, Mueller-Ladner U, Muller B et al (2006) Synovitis score: discrimination between chronic low-grade and high-grade synovitis. Histopathology 49(4):358–364. doi:10.1111/j.1365-2559.2006.02508.x, HIS2508 [pii]

    CAS  PubMed  Google Scholar 

  109. Ayral X, Pickering EH, Woodworth TG, Mackillop N, Dougados M (2005) Synovitis: a potential predictive factor of structural progression of medial tibiofemoral knee osteoarthritis – results of a 1 year longitudinal arthroscopic study in 422 patients. Osteoarthritis Cartilage 13(5):361–367

    CAS  PubMed  Google Scholar 

  110. Hill CL, Hunter DJ, Niu J, Clancy M, Guermazi A, Genant H et al (2007) Synovitis detected on magnetic resonance imaging and its relation to pain and cartilage loss in knee osteoarthritis. Ann Rheum Dis 66(12):1599–1603. doi:10.1136/ard.2006.067470, ard.2006.067470 [pii]

    PubMed Central  PubMed  Google Scholar 

  111. Baker K, Grainger A, Niu J, Clancy M, Guermazi A, Crema M et al (2010) Relation of synovitis to knee pain using contrast-enhanced MRIs. Ann Rheum Dis 69(10):1779–1783. doi:10.1136/ard.2009.121426, ard.2009.121426 [pii]

    CAS  PubMed  Google Scholar 

  112. Sun Y, Mauerhan DR, Franklin AM, Zinchenko N, Norton HJ, Hanley EN Jr et al (2014) Fibroblast-like synoviocytes induce calcium mineral formation and deposition. Arthritis 2014:812678. doi:10.1155/2014/812678

    PubMed Central  PubMed  Google Scholar 

  113. McCarthy GM, Macius AM, Christopherson PA, Ryan LM, Pourmotabbed T (1998) Basic calcium phosphate crystals induce synthesis and secretion of 92 kDa gelatinase (gelatinase B/matrix metalloprotease 9) in human fibroblasts. Ann Rheum Dis 57(1):56–60

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Englund M, Guermazi A, Lohmander LS (2009) The meniscus in knee osteoarthritis. Rheum Dis Clin North Am 35(3):579–590. doi:10.1016/j.rdc.2009.08.004, S0889-857X(09)00062-3 [pii]

    PubMed  Google Scholar 

  115. Englund M (2009) Meniscal tear – a common finding with often troublesome consequences. J Rheumatol 36(7):1362–1364. doi:10.3899/jrheum.090335, 36/7/1362 [pii]

    PubMed  Google Scholar 

  116. Englund M, Guermazi A, Roemer FW, Aliabadi P, Yang M, Lewis CE et al (2009) Meniscal tear in knees without surgery and the development of radiographic osteoarthritis among middle-aged and elderly persons: the Multicenter Osteoarthritis Study. Arthritis Rheum 60(3):831–839

    PubMed Central  PubMed  Google Scholar 

  117. Englund M (2009) The role of the meniscus in osteoarthritis genesis. Med Clin North Am 93(1):37–43. doi:10.1016/j.mcna.2008.08.005, S0025-7125(08)00126-0 [pii]

    PubMed  Google Scholar 

  118. Ding C, Martel-Pelletier J, Pelletier JP, Abram F, Raynauld JP, Cicuttini F et al (2007) Meniscal tear as an osteoarthritis risk factor in a largely non-osteoarthritic cohort: a cross-sectional study. J Rheumatol 34(4):776–784, doi:07/13/0313 [pii]

    PubMed  Google Scholar 

  119. Rodeo SA, Seneviratne A, Suzuki K, Felker K, Wickiewicz TL, Warren RF (2000) Histological analysis of human meniscal allografts. A preliminary report. J Bone Joint Surg Am 82-A(8):1071–1082

    CAS  PubMed  Google Scholar 

  120. Krenn V, Kurz B, Krukemeyer MG, Knoess P, Jakobs M, Poremba C et al (2010) Histopathological degeneration score of fibrous cartilage. Low- and high-grade meniscal degeneration. Z Rheumatol 69(7):644–652. doi:10.1007/s00393-010-0609-1

    CAS  PubMed  Google Scholar 

  121. Mesiha M, Zurakowski D, Soriano J, Nielson JH, Zarins B, Murray MM (2007) Pathologic characteristics of the torn human meniscus. Am J Sports Med 35(1):103–112. doi:10.1177/0363546506293700, 0363546506293700 [pii]

    PubMed  Google Scholar 

  122. Meister K, Indelicato PA, Spanier S, Franklin J, Batts J (2004) Histology of the torn meniscus: a comparison of histologic differences in meniscal tissue between tears in anterior cruciate ligament-intact and anterior cruciate ligament-deficient knees. Am J Sports Med 32(6):1479–1483. doi:10.1177/036354650326218232/6/1479 [pii]

    PubMed  Google Scholar 

  123. Fisseler-Eckhoff A, Muller KM (2009) Histopathological meniscus diagnostic. Orthopade 38(6):539–545. doi:10.1007/s00132-008-1401-7

    CAS  PubMed  Google Scholar 

  124. Ghadially FN, Lalonde JM, Wedge JH (1983) Ultrastructure of normal and torn menisci of the human knee joint. J Anat 136(Pt 4):773–791

    PubMed Central  CAS  PubMed  Google Scholar 

  125. Pauli C, Grogan SP, Patil S, Otsuki S, Hasegawa A, Koziol J et al (2011) Macroscopic and histopathologic analysis of human knee menisci in aging and osteoarthritis. Osteoarthritis Cartilage 19(9):1132–1141. doi:10.1016/j.joca.2011.05.008

    PubMed Central  CAS  PubMed  Google Scholar 

  126. Adams ME, Billingham ME, Muir H (1983) The glycosaminoglycans in menisci in experimental and natural osteoarthritis. Arthritis Rheum 26(1):69–76

    CAS  PubMed  Google Scholar 

  127. Herwig J, Egner E, Buddecke E (1984) Chemical changes of human knee joint menisci in various stages of degeneration. Ann Rheum Dis 43(4):635–640

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Katsuragawa Y, Saitoh K, Tanaka N, Wake M, Ikeda Y, Furukawa H et al (2010) Changes of human menisci in osteoarthritic knee joints. Osteoarthritis Cartilage 18(9):1133–1143. doi:10.1016/j.joca.2010.05.017. [Research Support, Non-U.S. Gov’t]

    CAS  PubMed  Google Scholar 

  129. Nakano T, Dodd CM, Scott PG (1997) Glycosaminoglycans and proteoglycans from different zones of the porcine knee meniscus. J Orthop Res 15(2):213–220. doi:10.1002/jor.1100150209

    CAS  PubMed  Google Scholar 

  130. Cheung HS (1987) Distribution of type I, II, III and V in the pepsin solubilized collagens in bovine menisci. Connect Tissue Res 16(4):343–356

    CAS  PubMed  Google Scholar 

  131. Mullaji AB, Marawar SV, Simha M, Jindal G (2008) Cruciate ligaments in arthritic knees: a histologic study with radiologic correlation. J Arthroplasty 23(4):567–572. doi:10.1016/j.arth.2007.05.024

    PubMed  Google Scholar 

  132. Levy YD, Hasegawa A, Patil S, Koziol JA, Lotz MK, D’Lima DD (2013) Histopathological changes in the human posterior cruciate ligament during aging and osteoarthritis: correlations with anterior cruciate ligament and cartilage changes. Ann Rheum Dis 72(2):271–277. doi:10.1136/annrheumdis-2012-201730

    PubMed Central  CAS  PubMed  Google Scholar 

  133. Blevins FT, Hecker AT, Bigler GT, Boland AL, Hayes WC (1994) The effects of donor age and strain rate on the biomechanical properties of bone-patellar tendon-bone allografts. Am J Sports Med 22(3):328–333

    CAS  PubMed  Google Scholar 

  134. Flahiff CM, Brooks AT, Hollis JM, Vander Schilden JL, Nicholas RW (1995) Biomechanical analysis of patellar tendon allografts as a function of donor age. Am J Sports Med 23(3):354–358

    CAS  PubMed  Google Scholar 

  135. Hasegawa A, Otsuki S, Pauli C, Miyaki S, Patil S, Steklov N et al (2012) Anterior cruciate ligament changes in the human knee joint in aging and osteoarthritis. Arthritis Rheum 64(3):696–704. doi:10.1002/art.33417. [Research Support, N.I.H., Extramural]

    PubMed Central  PubMed  Google Scholar 

  136. Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES et al (2014) Geroscience: linking aging to chronic disease. Cell 159(4):709–713. doi:10.1016/j.cell.2014.10.039

    CAS  PubMed  Google Scholar 

  137. Stannus OP, Jones G, Blizzard L, Cicuttini FM, Ding C (2013) Associations between serum levels of inflammatory markers and change in knee pain over 5 years in older adults: a prospective cohort study. Ann Rheum Dis 72(4):535–540. doi:10.1136/annrheumdis-2011-201047, annrheumdis-2011-201047 [pii]

    CAS  PubMed  Google Scholar 

  138. Lotz M, Martel-Pelletier J, Christiansen C, Brandi ML, Bruyere O, Chapurlat R et al (2013) Value of biomarkers in osteoarthritis: current status and perspectives. Ann Rheum Dis 72(11):1756–1763. doi:10.1136/annrheumdis-2013-203726, annrheumdis-2013-203726 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Spector TD, Hart DJ, Nandra D, Doyle DV, Mackillop N, Gallimore JR et al (1997) Low-level increases in serum C-reactive protein are present in early osteoarthritis of the knee and predict progressive disease. Arthritis Rheum 40(4):723–727

    CAS  PubMed  Google Scholar 

  140. Livshits G, Zhai G, Hart DJ, Kato BS, Wang H, Williams FM et al (2009) Interleukin-6 is a significant predictor of radiographic knee osteoarthritis: the Chingford study. Arthritis Rheum 60(7):2037–2045

    PubMed Central  CAS  PubMed  Google Scholar 

  141. Goekoop RJ, Kloppenburg M, Kroon HM, Frolich M, Huizinga TW, Westendorp RG et al (2010) Low innate production of interleukin-1beta and interleukin-6 is associated with the absence of osteoarthritis in old age. Osteoarthritis Cartilage 18(7):942–947. doi:10.1016/j.joca.2010.03.016, S1063-4584(10)00116-0 [pii]

    CAS  PubMed  Google Scholar 

  142. Penninx BW, Abbas H, Ambrosius W, Nicklas BJ, Davis C, Messier SP et al (2004) Inflammatory markers and physical function among older adults with knee osteoarthritis. J Rheumatol 31(10):2027–2031

    PubMed  Google Scholar 

  143. Malemud CJ (2010) Anticytokine therapy for osteoarthritis: evidence to date. Drugs Aging 27(2):95–115. doi:10.2165/11319950-000000000-00000

    CAS  PubMed  Google Scholar 

  144. Kapoor M, Martel-Pelletier J, Lajeunesse D, Pelletier JP, Fahmi H (2011) Role of proinflammatory cytokines in the pathophysiology of osteoarthritis. Nat Rev Rheumatol 7(1):33–42. doi:10.1038/nrrheum.2010.196

    CAS  PubMed  Google Scholar 

  145. Lee AS, Ellman MB, Yan D, Kroin JS, Cole BJ, van Wijnen AJ et al (2013) A current review of molecular mechanisms regarding osteoarthritis and pain. Gene 527(2):440–447. doi:10.1016/j.gene.2013.05.069

    PubMed Central  CAS  PubMed  Google Scholar 

  146. Miller RE, Miller RJ, Malfait AM (2014) Osteoarthritis joint pain: the cytokine connection. Cytokine 70(2):185–193. doi:10.1016/j.cyto.2014.06.019, S1043-4666(14)00206-3 [pii]

    CAS  PubMed  Google Scholar 

  147. Chen YJ, Sheu ML, Tsai KS, Yang RS, Liu SH (2013) Advanced glycation end products induce peroxisome proliferator-activated receptor gamma down-regulation-related inflammatory signals in human chondrocytes via Toll-like receptor-4 and receptor for advanced glycation end products. PLoS One 8(6):e66611. doi:10.1371/journal.pone.0066611PONE-D-13-01610 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  148. Akasaki Y, Reixach N, Matsuzaki T, Alvarez-Garcia O, Olmer M, Iwamoto Y et al (2015) Transthyretin deposition in articular cartilage: a novel mechanism in the pathogenesis of osteoarthritis. Arthritis Rheumatol 67:2097–2107

    Google Scholar 

  149. Kolettas E, Muir HI, Barrett JC, Hardingham TE (2001) Chondrocyte phenotype and cell survival are regulated by culture conditions and by specific cytokines through the expression of Sox-9 transcription factor. Rheumatology (Oxford) 40(10):1146–1156

    CAS  Google Scholar 

  150. Chevalier X, Eymard F, Richette P (2013) Biologic agents in osteoarthritis: hopes and disappointments. Nat Rev Rheumatol 9(7):400–410. doi:10.1038/nrrheum.2013.44, nrrheum.2013.44 [pii]

    CAS  PubMed  Google Scholar 

  151. Anz AW, Hackel JG, Nilssen EC, Andrews JR (2014) Application of biologics in the treatment of the rotator cuff, meniscus, cartilage, and osteoarthritis. J Am Acad Orthop Surg 22(2):68–79. doi:10.5435/JAAOS-22-02-68, 22/2/68 [pii]

    PubMed  Google Scholar 

  152. Wang W, Rigueur D, Lyons KM (2014) TGFbeta signaling in cartilage development and maintenance. Birth Defects Res C Embryo Today 102(1):37–51. doi:10.1002/bdrc.21058

    PubMed Central  CAS  PubMed  Google Scholar 

  153. Loeser RF (2013) Aging processes and the development of osteoarthritis. Curr Opin Rheumatol 25(1):108–113. doi:10.1097/BOR.0b013e32835a9428. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]

    PubMed Central  PubMed  Google Scholar 

  154. Blaney Davidson EN, van der Kraan PM, van den Berg WB (2007) TGF-beta and osteoarthritis. Osteoarthritis Cartilage 15(6):597–604. doi:10.1016/j.joca.2007.02.005, S1063-4584(07)00065-9 [pii]

    CAS  PubMed  Google Scholar 

  155. Plaas A, Velasco J, Gorski DJ, Li J, Cole A, Christopherson K et al (2011) The relationship between fibrogenic TGFbeta1 signaling in the joint and cartilage degradation in post-injury osteoarthritis. Osteoarthritis Cartilage 19(9):1081–1090. doi:10.1016/j.joca.2011.05.003

    CAS  PubMed  Google Scholar 

  156. Tang Y, Wu X, Lei W, Pang L, Wan C, Shi Z et al (2009) TGF-beta1-induced migration of bone mesenchymal stem cells couples bone resorption with formation. Nat Med 15(7):757–765. doi:10.1038/nm.1979, nm.1979 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  157. Zhen G, Cao X (2014) Targeting TGFbeta signaling in subchondral bone and articular cartilage homeostasis. Trends Pharmacol Sci 35(5):227–236. doi:10.1016/j.tips.2014.03.005, S0165-6147(14)00039-X [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  158. Zhen G, Wen C, Jia X, Li Y, Crane JL, Mears SC et al (2013) Inhibition of TGF-beta signaling in mesenchymal stem cells of subchondral bone attenuates osteoarthritis. Nat Med 19(6):704–712. doi:10.1038/nm.3143

    PubMed Central  CAS  PubMed  Google Scholar 

  159. Janssen-Heininger YM, Mossman BT, Heintz NH, Forman HJ, Kalyanaraman B, Finkel T et al (2008) Redox-based regulation of signal transduction: principles, pitfalls, and promises. Free Radic Biol Med 45(1):1–17, [Research Support, Non-U.S. Gov’t Review]. ACS Chem Biol 5(1):47–62. doi:10.1021/cb900258z

    PubMed Central  CAS  PubMed  Google Scholar 

  160. Paulsen CE, Carroll KS (2010) Orchestrating redox signaling networks through regulatory cysteine switches 5(1):47–62

    Google Scholar 

  161. Jones DP (2006) Redefining oxidative stress. Antioxid Redox Signal 8(9–10):1865–1879. doi:10.1089/ars.2006.8.1865

    CAS  PubMed  Google Scholar 

  162. Studer R, Jaffurs D, Stefanovic-Racic M, Robbins PD, Evans CH (1999) Nitric oxide in osteoarthritis. Osteoarthritis Cartilage 7(4):377–379

    CAS  PubMed  Google Scholar 

  163. Hiran TS, Moulton PJ, Hancock JT (1997) Detection of superoxide and NADPH oxidase in porcine articular chondrocytes. Free Radic Biol Med 23(5):736–743

    CAS  PubMed  Google Scholar 

  164. Tiku ML, Shah R, Allison GT (2000) Evidence linking chondrocyte lipid peroxidation to cartilage matrix protein degradation: possible role in cartilage aging and the pathogenesis of osteoarthritis. J Biol Chem 275:20069–20076

    CAS  PubMed  Google Scholar 

  165. Morita K, Miyamoto T, Fujita N, Kubota Y, Ito K, Takubo K et al (2007) Reactive oxygen species induce chondrocyte hypertrophy in endochondral ossification. J Exp Med 204(7):1613–1623

    PubMed Central  CAS  PubMed  Google Scholar 

  166. Fosang AJ, Beier F (2011) Emerging frontiers in cartilage and chondrocyte biology. Best Pract Res Clin Rheumatol 25(6):751–766. doi:10.1016/j.berh.2011.11.010

    CAS  PubMed  Google Scholar 

  167. Henrotin YE, Bruckner P, Pujol JP (2003) The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage 11(10):747–755

    CAS  PubMed  Google Scholar 

  168. Loeser RF, Carlson CS, Carlo MD, Cole A (2002) Detection of nitrotyrosine in aging and osteoarthritic cartilage: correlation of oxidative damage with the presence of interleukin-1beta and with chondrocyte resistance to insulin-like growth factor 1. Arthritis Rheum 46(9):2349–2357

    CAS  PubMed  Google Scholar 

  169. Hui W, Young DA, Rowan AD, Xu X, Cawston TE, Proctor CJ (2014) Oxidative changes and signalling pathways are pivotal in initiating age-related changes in articular cartilage. Ann Rheum Dis. doi:10.1136/annrheumdis-2014-206295

    Google Scholar 

  170. Jallali N, Ridha H, Thrasivoulou C, Underwood C, Butler PE, Cowen T (2005) Vulnerability to ROS-induced cell death in ageing articular cartilage: the role of antioxidant enzyme activity. Osteoarthritis Cartilage 13(7):614–622

    CAS  PubMed  Google Scholar 

  171. Kurz B, Lemke A, Kehn M, Domm C, Patwari P, Frank EH et al (2004) Influence of tissue maturation and antioxidants on the apoptotic response of articular cartilage after injurious compression. Arthritis Rheum 50(1):123–130

    CAS  PubMed  Google Scholar 

  172. Martin JA, McCabe D, Walter M, Buckwalter JA, McKinley TO (2009) N-acetylcysteine inhibits post-impact chondrocyte death in osteochondral explants. J Bone Joint Surg Am 91(8):1890–1897. doi:10.2106/JBJS.H.00545, 91/8/1890 [pii]

    PubMed Central  PubMed  Google Scholar 

  173. Goodwin W, McCabe D, Sauter E, Reese E, Walter M, Buckwalter JA et al (2010) Rotenone prevents impact-induced chondrocyte death. J Orthop Res 28(8):1057–1063. doi:10.1002/jor.21091

    PubMed Central  CAS  PubMed  Google Scholar 

  174. Nelson KK, Melendez JA (2004) Mitochondrial redox control of matrix metalloproteinases. Free Radic Biol Med 37(6):768–784

    CAS  PubMed  Google Scholar 

  175. Lo YY, Cruz TF (1995) Involvement of reactive oxygen species in cytokine and growth factor induction of c-fos expression in chondrocytes. J Biol Chem 270(20):11727–11730

    CAS  PubMed  Google Scholar 

  176. Lo YY, Wong JM, Cruz TF (1996) Reactive oxygen species mediate cytokine activation of c-Jun NH2- terminal kinases. J Biol Chem 271(26):15703–15707

    CAS  PubMed  Google Scholar 

  177. Mendes AF, Caramona MM, Carvalho AP, Lopes MC (2003) Differential roles of hydrogen peroxide and superoxide in mediating IL-1-induced NF-kappaB activation and iNOS expression in bovine articular chondrocytes. J Cell Biochem 88(4):783–793

    CAS  PubMed  Google Scholar 

  178. Ahmad R, Sylvester J, Ahmad M, Zafarullah M (2011) Involvement of H-Ras and reactive oxygen species in proinflammatory cytokine-induced matrix metalloproteinase-13 expression in human articular chondrocytes. Arch Biochem Biophys 507(2):350–355. doi:10.1016/j.abb.2010.12.032. [Research Support, Non-U.S. Gov’t]

    CAS  PubMed  Google Scholar 

  179. Del Carlo M, Schwartz D, Erickson EA, Loeser RF (2007) Endogenous production of reactive oxygen species is required for stimulation of human articular chondrocyte matrix metalloproteinase production by fibronectin fragments. Free Radic Biol Med 42(9):1350–1358

    PubMed Central  PubMed  Google Scholar 

  180. Jr Del Carlo M, Loeser RF (2003) Increased oxidative stress with aging reduces chondrocyte survival: correlation with intracellular glutathione levels. Arthritis Rheum 48(12):3419–3430

    PubMed  Google Scholar 

  181. Ruiz-Romero C, Calamia V, Mateos J, Carreira V, Martinez-Gomariz M, Fernandez M et al (2008) Mitochondrial dysregulation of osteoarthritic human articular chondrocytes analyzed by proteomics: a decrease in mitochondrial superoxide dismutase points to a redox imbalance. Mol Cell Proteomics 8(1):179–189

    Google Scholar 

  182. Aigner T, Fundel K, Saas J, Gebhard PM, Haag J, Weiss T et al (2006) Large-scale gene expression profiling reveals major pathogenetic pathways of cartilage degeneration in osteoarthritis. Arthritis Rheum 54(11):3533–3544

    CAS  PubMed  Google Scholar 

  183. Scott JL, Gabrielides C, Davidson RK, Swingler TE, Clark IM, Wallis GA et al (2010) Superoxide dismutase downregulation in osteoarthritis progression and end-stage disease. Ann Rheum Dis 69(8):1502–1510. doi:10.1136/ard.2009.119966, ard.2009.119966 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Gavriilidis C, Miwa S, von Zglinicki T, Taylor RW, Young DA (2013) Mitochondrial dysfunction in osteoarthritis is associated with down-regulation of superoxide dismutase 2. Arthritis Rheum 65(2):378–387. doi:10.1002/art.37782

    CAS  PubMed  Google Scholar 

  185. Davies CM, Guilak F, Weinberg JB, Fermor B (2008) Reactive nitrogen and oxygen species in interleukin-1-mediated DNA damage associated with osteoarthritis. Osteoarthritis Cartilage 16(5):624–630

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Grishko VI, Ho R, Wilson GL, Pearsall AW 4th (2009) Diminished mitochondrial DNA integrity and repair capacity in OA chondrocytes. Osteoarthritis Cartilage 17(1):107–113. doi:10.1016/j.joca.2008.05.009, S1063-4584(08)00167-2 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  187. Loeser RF, Gandhi U, Long DL, Yin W, Chubinskaya S (2014) Aging and oxidative stress reduce the response of human articular chondrocytes to insulin-like growth factor 1 and osteogenic protein 1. Arthritis Rheumatol 66(8):2201–2209. doi:10.1002/art.38641

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Yudoh K, Nguyen T, Nakamura H, Hongo-Masuko K, Kato T, Nishioka K (2005) Potential involvement of oxidative stress in cartilage senescence and development of osteoarthritis: oxidative stress induces chondrocyte telomere instability and downregulation of chondrocyte function. Arthritis Res Ther 7(2):R380–R391

    PubMed Central  CAS  PubMed  Google Scholar 

  189. Brandl A, Hartmann A, Bechmann V, Graf B, Nerlich M, Angele P (2011) Oxidative stress induces senescence in chondrocytes. J Orthop Res 29:1114–1120. doi:10.1002/jor.21348

    CAS  PubMed  Google Scholar 

  190. Zushi S, Akagi M, Kishimoto H, Teramura T, Sawamura T, Hamanishi C (2009) Induction of bovine articular chondrocyte senescence with oxidized low-density lipoprotein through lectin-like oxidized low-density lipoprotein receptor 1. Arthritis Rheum 60(10):3007–3016. doi:10.1002/art.24816

    CAS  PubMed  Google Scholar 

  191. Loeser RF, Shanker G, Carlson CS, Gardin JF, Shelton BJ, Sonntag WE (2000) Reduction in the chondrocyte response to insulin-like growth factor 1 in aging and osteoarthritis: studies in a non-human primate model of naturally occurring disease. Arthritis Rheum 43(9):2110–2120

    CAS  PubMed  Google Scholar 

  192. Loeser RF (2009) Aging and osteoarthritis: the role of chondrocyte senescence and aging changes in the cartilage matrix. Osteoarthritis Cartilage 17(8):971–979. doi:10.1016/j.joca.2009.03.002. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t Review]

    PubMed Central  CAS  PubMed  Google Scholar 

  193. Yin W, Park JI, Loeser RF (2009) Oxidative stress inhibits insulin-like growth factor-I induction of chondrocyte proteoglycan synthesis through differential regulation of phosphatidylinositol 3-Kinase-Akt and MEK-ERK MAPK signaling pathways. J Biol Chem 284(46):31972–31981. doi:10.1074/jbc.M109.056838

    PubMed Central  CAS  PubMed  Google Scholar 

  194. McAlindon TE, Jacques P, Zhang Y, Hannan MT, Aliabadi P, Weissman B et al (1996) Do antioxidant micronutrients protect against the development and progression of knee osteoarthritis? Arthritis Rheum 39(4):648–656

    CAS  PubMed  Google Scholar 

  195. Kurz B, Jost B, Schunke M (2002) Dietary vitamins and selenium diminish the development of mechanically induced osteoarthritis and increase the expression of antioxidative enzymes in the knee joint of STR/1N mice. Osteoarthritis Cartilage 10(2):119–126

    CAS  PubMed  Google Scholar 

  196. Nakagawa S, Arai Y, Mazda O, Kishida T, Takahashi KA, Sakao K et al (2010) N-acetylcysteine prevents nitric oxide-induced chondrocyte apoptosis and cartilage degeneration in an experimental model of osteoarthritis. J Orthop Res 28(2):156–163. doi:10.1002/jor.20976

    CAS  PubMed  Google Scholar 

  197. Yudoh K, Shishido K, Murayama H, Yano M, Matsubayashi K, Takada H et al (2007) Water-soluble C60 fullerene prevents degeneration of articular cartilage in osteoarthritis via down-regulation of chondrocyte catabolic activity and inhibition of cartilage degeneration during disease development. Arthritis Rheum 56(10):3307–3318

    CAS  PubMed  Google Scholar 

  198. Dudek KA, Lafont JE, Martinez-Sanchez A, Murphy CL (2010) Type II collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes. J Biol Chem 285(32):24381–24387. doi:10.1074/jbc.M110.111328, M110.111328 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  199. Matsukawa T, Sakai T, Yonezawa T, Hiraiwa H, Hamada T, Nakashima M et al (2013) MicroRNA-125b regulates the expression of aggrecanase-1 (ADAMTS-4) in human osteoarthritic chondrocytes. Arthritis Res Ther 15(1):R28. doi:10.1186/ar4164, ar4164 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  200. Miyaki S, Asahara H (2012) Macro view of microRNA function in osteoarthritis. Nat Rev Rheumatol 8(9):543–552. doi:10.1038/nrrheum.2012.128, nrrheum.2012.128 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  201. Miyaki S, Nakasa T, Otsuki S, Grogan SP, Higashiyama R, Inoue A et al (2009) MicroRNA-140 is expressed in differentiated human articular chondrocytes and modulates interleukin-1 responses. Arthritis Rheum 60(9):2723–2730. doi:10.1002/art.24745

    PubMed Central  CAS  PubMed  Google Scholar 

  202. Miyaki S, Sato T, Inoue A, Otsuki S, Ito Y, Yokoyama S et al (2010) MicroRNA-140 plays dual roles in both cartilage development and homeostasis. Genes Dev 24(11):1173–1185. doi:10.1101/gad.1915510. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]

    PubMed Central  CAS  PubMed  Google Scholar 

  203. Li Z, Rana TM (2014) Therapeutic targeting of microRNAs: current status and future challenges. Nat Rev Drug Discov 13(8):622–638. doi:10.1038/nrd4359, nrd4359 [pii]

    CAS  PubMed  Google Scholar 

  204. Bhutani N, Burns DM, Blau HM (2011) DNA demethylation dynamics. Cell 146(6):866–872. doi:10.1016/j.cell.2011.08.042, S0092-8674(11)01012-9 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  205. Kim KI, Park YS, Im GI (2013) Changes in the epigenetic status of the SOX-9 promoter in human osteoarthritic cartilage. J Bone Miner Res 28(5):1050–1060. doi:10.1002/jbmr.1843

    CAS  PubMed  Google Scholar 

  206. Roach HI, Aigner T (2007) DNA methylation in osteoarthritic chondrocytes: a new molecular target. Osteoarthritis Cartilage 15(2):128–137

    CAS  PubMed  Google Scholar 

  207. Roach HI, Yamada N, Cheung KS, Tilley S, Clarke NM, Oreffo RO et al (2005) Association between the abnormal expression of matrix-degrading enzymes by human osteoarthritic chondrocytes and demethylation of specific CpG sites in the promoter regions. Arthritis Rheum 52(10):3110–3124

    CAS  PubMed  Google Scholar 

  208. Hashimoto K, Otero M, Imagawa K, de Andres MC, Coico JM, Roach HI et al (2013) Regulated transcription of human matrix metalloproteinase 13 (MMP13) and interleukin-1beta (IL1B) genes in chondrocytes depends on methylation of specific proximal promoter CpG sites. J Biol Chem 288(14):10061–10072. doi:10.1074/jbc.M112.421156

    PubMed Central  CAS  PubMed  Google Scholar 

  209. de Andres MC, Imagawa K, Hashimoto K, Gonzalez A, Roach HI, Goldring MB et al (2013) Loss of methylation in CpG sites in the NF-kappaB enhancer elements of inducible nitric oxide synthase is responsible for gene induction in human articular chondrocytes. Arthritis Rheum 65(3):732–742. doi:10.1002/art.37806

    PubMed Central  PubMed  Google Scholar 

  210. Hashimoto K, Oreffo RO, Gibson MB, Goldring MB, Roach HI (2009) DNA demethylation at specific CpG sites in the IL1B promoter in response to inflammatory cytokines in human articular chondrocytes. Arthritis Rheum 60(11):3303–3313. doi:10.1002/art.24882. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]

    PubMed Central  CAS  PubMed  Google Scholar 

  211. Iliopoulos D, Malizos KN, Tsezou A (2007) Epigenetic regulation of leptin affects MMP-13 expression in osteoarthritic chondrocytes: possible molecular target for osteoarthritis therapeutic intervention. Ann Rheum Dis 66(12):1616–1621. doi:10.1136/ard.2007.069377, ard.2007.069377 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  212. Reynard LN, Bui C, Canty-Laird EG, Young DA, Loughlin J (2011) Expression of the osteoarthritis-associated gene GDF5 is modulated epigenetically by DNA methylation. Hum Mol Genet 20(17):3450–3460. doi:10.1093/hmg/ddr253, ddr253 [pii]

    CAS  PubMed  Google Scholar 

  213. Delgado-Calle J, Fernandez AF, Sainz J, Zarrabeitia MT, Sanudo C, Garcia-Renedo R et al (2013) Genome-wide profiling of bone reveals differentially methylated regions in osteoporosis and osteoarthritis. Arthritis Rheum 65(1):197–205. doi:10.1002/art.37753

    CAS  PubMed  Google Scholar 

  214. Jeffries MA, Donica M, Baker LW, Stevenson ME, Annan AC, Humphrey MB et al (2014) Genome-wide DNA methylation study identifies significant epigenomic changes in osteoarthritic cartilage. Arthritis Rheumatol 66(10):2804–2815. doi:10.1002/art.38762

    CAS  PubMed  Google Scholar 

  215. den Hollander W, Ramos YF, Bos SD, Bomer N, van der Breggen R, Lakenberg N et al (2014) Knee and hip articular cartilage have distinct epigenomic landscapes: implications for future cartilage regeneration approaches. Ann Rheum Dis 73(12):2208–2212. doi:10.1136/annrheumdis-2014-205980

    Google Scholar 

  216. Bannister AJ, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21(3):381–395. doi:10.1038/cr.2011.22, cr201122 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  217. Zentner GE, Henikoff S (2013) Regulation of nucleosome dynamics by histone modifications. Nat Struct Mol Biol 20(3):259–266. doi:10.1038/nsmb.2470, nsmb.2470 [pii]

    CAS  PubMed  Google Scholar 

  218. Black JC, Van Rechem C, Whetstine JR (2012) Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol Cell 48(4):491–507. doi:10.1016/j.molcel.2012.11.006, S1097-2765(12)00937-9 [pii]

    CAS  PubMed  Google Scholar 

  219. Fischle W (2012) One, two, three: how histone methylation is read. Epigenomics 4(6):641–653. doi:10.2217/epi.12.56

    CAS  PubMed  Google Scholar 

  220. Verrier L, Vandromme M, Trouche D (2011) Histone demethylases in chromatin cross-talks. Biol Cell 103(8):381–401. doi:10.1042/BC20110028, BC20110028 [pii]

    CAS  PubMed  Google Scholar 

  221. El Mansouri FE, Nebbaki SS, Kapoor M, Afif H, Martel-Pelletier J, Pelletier JP et al (2014) Lysine-specific demethylase 1-mediated demethylation of histone H3 lysine 9 contributes to interleukin 1beta-induced microsomal prostaglandin E synthase 1 expression in human osteoarthritic chondrocytes. Arthritis Res Ther 16(3):R113. doi:10.1186/ar4564, ar4564 [pii]

    PubMed Central  PubMed  Google Scholar 

  222. de Ruijter AJ, van Gennip AH, Caron HN, Kemp S, van Kuilenburg AB (2003) Histone deacetylases (HDACs): characterization of the classical HDAC family. Biochem J 370(Pt 3):737–749. doi:10.1042/BJ20021321BJ20021321 [pii]

    PubMed Central  PubMed  Google Scholar 

  223. Hong S, Derfoul A, Pereira-Mouries L, Hall DJ (2009) A novel domain in histone deacetylase 1 and 2 mediates repression of cartilage-specific genes in human chondrocytes. FASEB J 23(10):3539–3552. doi:10.1096/fj.09-133215, fj.09-133215 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  224. Higashiyama R, Miyaki S, Yamashita S, Yoshitaka T, Lindman G, Ito Y et al (2010) Correlation between MMP-13 and HDAC7 expression in human knee osteoarthritis. Mod Rheumatol 20(1):11–17. doi:10.1007/s10165-009-0224-7

    PubMed Central  CAS  PubMed  Google Scholar 

  225. Cao K, Wei L, Zhang Z, Guo L, Zhang C, Li Y et al (2014) Decreased histone deacetylase 4 is associated with human osteoarthritis cartilage degeneration by releasing histone deacetylase 4 inhibition of runt-related transcription factor-2 and increasing osteoarthritis-related genes: a novel mechanism of human osteoarthritis cartilage degeneration. Arthritis Res Ther 16(6):491. doi:10.1186/s13075-014-0491-3, s13075-014-0491-3 [pii]

    PubMed Central  PubMed  Google Scholar 

  226. Lu J, Sun Y, Ge Q, Teng H, Jiang Q (2014) Histone deacetylase 4 alters cartilage homeostasis in human osteoarthritis. BMC Musculoskelet Disord 15:438. doi:10.1186/1471-2474-15-438, 1471-2474-15-438 [pii]

    PubMed Central  PubMed  Google Scholar 

  227. Young DA, Lakey RL, Pennington CJ, Jones D, Kevorkian L, Edwards DR et al (2005) Histone deacetylase inhibitors modulate metalloproteinase gene expression in chondrocytes and block cartilage resorption. Arthritis Res Ther 7(3):R503–R512. doi:10.1186/ar1702

    PubMed Central  CAS  PubMed  Google Scholar 

  228. Bradley EW, Carpio LR, Westendorf JJ (2013) Histone deacetylase 3 suppression increases PH domain and leucine-rich repeat phosphatase (Phlpp)1 expression in chondrocytes to suppress Akt signaling and matrix secretion. J Biol Chem 288(14):9572–9582. doi:10.1074/jbc.M112.423723, M112.423723 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  229. Culley KL, Hui W, Barter MJ, Davidson RK, Swingler TE, Destrument AP et al (2013) Class I histone deacetylase inhibition modulates metalloproteinase expression and blocks cytokine-induced cartilage degradation. Arthritis Rheum 65(7):1822–1830. doi:10.1002/art.37965

    CAS  PubMed  Google Scholar 

  230. Vega RB, Matsuda K, Oh J, Barbosa AC, Yang X, Meadows E et al (2004) Histone deacetylase 4 controls chondrocyte hypertrophy during skeletogenesis. Cell 119(4):555–566. doi:10.1016/j.cell.2004.10.024, S0092867404010347 [pii]

    CAS  PubMed  Google Scholar 

  231. Shimizu E, Selvamurugan N, Westendorf JJ, Olson EN, Partridge NC (2010) HDAC4 represses matrix metalloproteinase-13 transcription in osteoblastic cells, and parathyroid hormone controls this repression. J Biol Chem 285(13):9616–9626. doi:10.1074/jbc.M109.094862, M109.094862 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  232. Furumatsu T, Tsuda M, Yoshida K, Taniguchi N, Ito T, Hashimoto M et al (2005) Sox9 and p300 cooperatively regulate chromatin-mediated transcription. J Biol Chem 280(42):35203–35208. doi:10.1074/jbc.M502409200, M502409200 [pii]

    CAS  PubMed  Google Scholar 

  233. Huh YH, Ryu JH, Chun JS (2007) Regulation of type II collagen expression by histone deacetylase in articular chondrocytes. J Biol Chem 282(23):17123–17131. doi:10.1074/jbc.M700599200, M700599200 [pii]

    CAS  PubMed  Google Scholar 

  234. Chen WP, Bao JP, Hu PF, Feng J, Wu LD (2010) Alleviation of osteoarthritis by Trichostatin A, a histone deacetylase inhibitor, in experimental osteoarthritis. Mol Biol Rep 37(8):3967–3972. doi:10.1007/s11033-010-0055-9

    CAS  PubMed  Google Scholar 

  235. Dvir-Ginzberg M, Steinmeyer J (2013) Towards elucidating the role of SirT1 in osteoarthritis. Front Biosci (Landmark Ed) 18:343–355, doi:4105 [pii]

    CAS  Google Scholar 

  236. Matsuzaki T, Matsushita T, Takayama K, Matsumoto T, Nishida K, Kuroda R et al (2014) Disruption of Sirt1 in chondrocytes causes accelerated progression of osteoarthritis under mechanical stress and during ageing in mice. Ann Rheum Dis 73(7):1397–1404. doi:10.1136/annrheumdis-2012-202620, annrheumdis-2012-202620 [pii]

    CAS  PubMed  Google Scholar 

  237. Matsushita T, Sasaki H, Takayama K, Ishida K, Matsumoto T, Kubo S et al (2013) The overexpression of SIRT1 inhibited osteoarthritic gene expression changes induced by interleukin-1beta in human chondrocytes. J Orthop Res 31(4):531–537. doi:10.1002/jor.22268

    CAS  PubMed  Google Scholar 

  238. Gabay O, Zaal KJ, Sanchez C, Dvir-Ginzberg M, Gagarina V, Song Y et al (2013) Sirt1-deficient mice exhibit an altered cartilage phenotype. Joint Bone Spine 80(6):613–620. doi:10.1016/j.jbspin.2013.01.001, S1297-319X(13)00021-3 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  239. Wang J, Gao JS, Chen JW, Li F, Tian J (2012) Effect of resveratrol on cartilage protection and apoptosis inhibition in experimental osteoarthritis of rabbit. Rheumatol Int 32(6):1541–1548. doi:10.1007/s00296-010-1720-y

    CAS  PubMed  Google Scholar 

  240. Mizushima N (2009) Physiological functions of autophagy. Curr Top Microbiol Immunol 335:71–84. doi:10.1007/978-3-642-00302-8_3

    CAS  PubMed  Google Scholar 

  241. Levine B, Kroemer G (2008) Autophagy in the pathogenesis of disease. Cell 132(1):27–42. doi:10.1016/j.cell.2007.12.018, S0092-8674(07)01685-6 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  242. Carames B, Taniguchi N, Otsuki S, Blanco FJ, Lotz M (2010) Autophagy is a protective mechanism in normal cartilage, and its aging-related loss is linked with cell death and osteoarthritis. Arthritis Rheum 62(3):791–801. doi:10.1002/art.27305

    PubMed Central  CAS  PubMed  Google Scholar 

  243. Carames B, Kiosses WB, Akasaki Y, Brinson DC, Eap W, Koziol J et al (2013) Glucosamine activates autophagy in vitro and in vivo. Arthritis Rheum 65(7):1843–1852. doi:10.1002/art.37977

    PubMed Central  CAS  PubMed  Google Scholar 

  244. Carames B, Olmer M, Kiosses W, Lotz M (2015) The relationship of autophagy defects and cartilage damage during joint aging in a mouse model. Arthritis Rheumatol 67:1568–1576

    CAS  PubMed  Google Scholar 

  245. Almonte-Becerril M, Navarro-Garcia F, Gonzalez-Robles A, Vega-Lopez MA, Lavalle C, Kouri JB (2010) Cell death of chondrocytes is a combination between apoptosis and autophagy during the pathogenesis of Osteoarthritis within an experimental model. Apoptosis 15(5):631–638. doi:10.1007/s10495-010-0458-z

    CAS  PubMed  Google Scholar 

  246. Bohensky J, Terkhorn SP, Freeman TA, Adams CS, Garcia JA, Shapiro IM et al (2009) Regulation of autophagy in human and murine cartilage: hypoxia-inducible factor 2 suppresses chondrocyte autophagy. Arthritis Rheum 60(5):1406–1415. doi:10.1002/art.24444

    PubMed Central  PubMed  Google Scholar 

  247. Chang J, Wang W, Zhang H, Hu Y, Wang M, Yin Z (2013) The dual role of autophagy in chondrocyte responses in the pathogenesis of articular cartilage degeneration in osteoarthritis. Int J Mol Med 32(6):1311–1318. doi:10.3892/ijmm.2013.1520

    CAS  PubMed  Google Scholar 

  248. Blanco FJ, Rego I, Ruiz-Romero C (2011) The role of mitochondria in osteoarthritis. Nat Rev Rheumatol 7(3):161–169. doi:10.1038/nrrheum.2010.213, nrrheum.2010.213 [pii]

    CAS  PubMed  Google Scholar 

  249. Kim J, Xu M, Xo R, Mates A, Wilson GL, Pearsall AW 4th et al (2010) Mitochondrial DNA damage is involved in apoptosis caused by pro-inflammatory cytokines in human OA chondrocytes. Osteoarthritis Cartilage 18(3):424–432. doi:10.1016/j.joca.2009.09.008, S1063-4584(09)00250-7 [pii]

    CAS  PubMed  Google Scholar 

  250. Tschopp J (2011) Mitochondria: sovereign of inflammation? Eur J Immunol 41(5):1196–1202. doi:10.1002/eji.201141436

    CAS  PubMed  Google Scholar 

  251. Sanchez-Adams J, Athanasiou A (2009) The knee meniscus: a complex tissue of diverse cells. Cell Mol Bioeng 2(3):332–340

    Google Scholar 

  252. Sasaki H, Takayama K, Matsushita T, Ishida K, Kubo S, Matsumoto T et al (2012) Autophagy modulates osteoarthritis-related gene expression in human chondrocytes. Arthritis Rheum 64(6):1920–1928. doi:10.1002/art.34323

    CAS  PubMed  Google Scholar 

  253. Rubinsztein DC, Marino G, Kroemer G (2011) Autophagy and aging. Cell 146(5):682–695. doi:10.1016/j.cell.2011.07.030, S0092-8674(11)00828-2 [pii]

    CAS  PubMed  Google Scholar 

  254. Ravikumar B, Vacher C, Berger Z, Davies JE, Luo S, Oroz LG et al (2004) Inhibition of mTOR induces autophagy and reduces toxicity of polyglutamine expansions in fly and mouse models of Huntington disease. Nat Genet 36(6):585–595. doi:10.1038/ng1362ng1362 [pii]

    CAS  PubMed  Google Scholar 

  255. Demidenko ZN, Zubova SG, Bukreeva EI, Pospelov VA, Pospelova TV, Blagosklonny MV (2009) Rapamycin decelerates cellular senescence. Cell Cycle 8(12):1888–1895, doi:8606 [pii]

    CAS  PubMed  Google Scholar 

  256. Narita M, Young AR, Arakawa S, Samarajiwa SA, Nakashima T, Yoshida S et al (2011) Spatial coupling of mTOR and autophagy augments secretory phenotypes. Science 332(6032):966–970. doi:10.1126/science.1205407, science.1205407 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  257. Zhang Y, Vasheghani F, Li YH, Blati M, Simeone K, Fahmi H et al (2014) Cartilage-specific deletion of mTOR upregulates autophagy and protects mice from osteoarthritis. Ann Rheum Dis. doi:10.1136/annrheumdis-2013-204599, annrheumdis-2013-204599 [pii]

    Google Scholar 

  258. Carames B, Taniguchi N, Seino D, Blanco FJ, D’Lima D, Lotz M (2012) Mechanical injury suppresses autophagy regulators and pharmacologic activation of autophagy results in chondroprotection. Arthritis Rheum 64(4):1182–1192. doi:10.1002/art.33444. [Research Support, N.I.H., Extramural]

    PubMed Central  CAS  PubMed  Google Scholar 

  259. Carames B, Hasegawa A, Taniguchi N, Miyaki S, Blanco FJ, Lotz M (2012) Autophagy activation by rapamycin reduces severity of experimental osteoarthritis. Ann Rheum Dis 71(4):575–581. doi:10.1136/annrheumdis-2011-200557. [Research Support, N.I.H., Extramural Research Support, Non-U.S. Gov’t]

    PubMed Central  CAS  PubMed  Google Scholar 

  260. Rajpar MH, McDermott B, Kung L, Eardley R, Knowles L, Heeran M et al (2009) Targeted induction of endoplasmic reticulum stress induces cartilage pathology. PLoS Genet 5(10):e1000691. doi:10.1371/journal.pgen.1000691

    PubMed Central  PubMed  Google Scholar 

  261. Saito A, Hino S, Murakami T, Kanemoto S, Kondo S, Saitoh M et al (2009) Regulation of endoplasmic reticulum stress response by a BBF2H7-mediated Sec23a pathway is essential for chondrogenesis. Nat Cell Biol 11(10):1197–1204. doi:10.1038/ncb1962

    CAS  PubMed  Google Scholar 

  262. Hino K, Saito A, Kido M, Kanemoto S, Asada R, Takai T et al (2014) Master regulator for chondrogenesis, Sox9, regulates transcriptional activation of the endoplasmic reticulum stress transducer BBF2H7/CREB3L2 in chondrocytes. J Biol Chem 289(20):13810–13820. doi:10.1074/jbc.M113.543322

    PubMed Central  CAS  PubMed  Google Scholar 

  263. Liu-Bryan R, Terkeltaub R (2014) Emerging regulators of the inflammatory process in osteoarthritis. Nat Rev Rheumatol. doi:10.1038/nrrheum.2014.162

    PubMed Central  PubMed  Google Scholar 

  264. Terkeltaub R, Yang B, Lotz M, Liu-Bryan R (2011) Chondrocyte AMP-activated protein kinase activity suppresses matrix degradation responses to proinflammatory cytokines interleukin-1beta and tumor necrosis factor alpha. Arthritis Rheum 63(7):1928–1937. doi:10.1002/art.30333. [Research Support, N.I.H., Extramural Research Support, U.S. Gov’t, Non-P.H.S.]

    PubMed Central  CAS  PubMed  Google Scholar 

  265. Zhao X, Petursson F, Viollet B, Lotz M, Terkeltaub R, Liu-Bryan R (2014) PGC-1alpha and FOXO3a mediate chondroprotection by AMP-activated Protein Kinase. Arthritis Rheumatol. doi:10.1002/art.38791

    Google Scholar 

  266. Nugent AE, Speicher DM, Gradisar I, McBurney DL, Baraga A, Doane KJ et al (2009) Advanced osteoarthritis in humans is associated with altered collagen VI expression and upregulation of ER-stress markers Grp78 and bag-1. J Histochem Cytochem 57(10):923–931. doi:10.1369/jhc.2009.953893

    PubMed Central  CAS  PubMed  Google Scholar 

  267. Uehara Y, Hirose J, Yamabe S, Okamoto N, Okada T, Oyadomari S et al (2014) Endoplasmic reticulum stress-induced apoptosis contributes to articular cartilage degeneration via C/EBP homologous protein. Osteoarthritis Cartilage 22(7):1007–1017. doi:10.1016/j.joca.2014.04.025

    CAS  PubMed  Google Scholar 

  268. Takada K, Hirose J, Senba K, Yamabe S, Oike Y, Gotoh T et al (2011) Enhanced apoptotic and reduced protective response in chondrocytes following endoplasmic reticulum stress in osteoarthritic cartilage. Int J Exp Pathol 92(4):232–242. doi:10.1111/j.1365-2613.2010.00758.x

    PubMed Central  PubMed  Google Scholar 

  269. Husa M, Petursson F, Lotz M, Terkeltaub R, Liu-Bryan R (2013) C/EBP homologous protein drives pro-catabolic responses in chondrocytes. Arthritis Res Ther 15(6):R218. doi:10.1186/ar4415

    PubMed Central  PubMed  Google Scholar 

  270. Price J, Zaidi AK, Bohensky J, Srinivas V, Shapiro IM, Ali H (2010) Akt-1 mediates survival of chondrocytes from endoplasmic reticulum-induced stress. J Cell Physiol 222(3):502–508. doi:10.1002/jcp.22001

    CAS  PubMed  Google Scholar 

  271. Cravero JD, Carlson CS, Im HJ, Yammani RR, Long D, Loeser RF (2009) Increased expression of the Akt/PKB inhibitor TRB3 in osteoarthritic chondrocytes inhibits insulin-like growth factor 1-mediated cell survival and proteoglycan synthesis. Arthritis Rheum 60(2):492–500

    PubMed Central  CAS  PubMed  Google Scholar 

  272. Lopez-Otin C, Blasco MA, Partridge L, Serrano M, Kroemer G (2013) The hallmarks of aging. Cell 153(6):1194–1217. doi:10.1016/j.cell.2013.05.039

    PubMed Central  CAS  PubMed  Google Scholar 

  273. Caplan AI (2005) Review: mesenchymal stem cells: cell-based reconstructive therapy in orthopedics. Tissue Eng 11(7–8):1198–1211. doi:10.1089/ten.2005.11.1198

    CAS  PubMed  Google Scholar 

  274. Baker N, Boyette LB, Tuan RS (2015) Characterization of bone marrow-derived mesenchymal stem cells in aging. Bone 70C:37–47. doi:10.1016/j.bone.2014.10.014, S8756-3282(14)00387-1 [pii]

    Google Scholar 

  275. Oreffo RO, Bennett A, Carr AJ, Triffitt JT (1998) Patients with primary osteoarthritis show no change with ageing in the number of osteogenic precursors. Scand J Rheumatol 27(6):415–424

    CAS  PubMed  Google Scholar 

  276. Justesen J, Stenderup K, Eriksen EF, Kassem M (2002) Maintenance of osteoblastic and adipocytic differentiation potential with age and osteoporosis in human marrow stromal cell cultures. Calcif Tissue Int 71(1):36–44. doi:10.1007/s00223-001-2059-x

    CAS  PubMed  Google Scholar 

  277. Stenderup K, Justesen J, Clausen C, Kassem M (2003) Aging is associated with decreased maximal life span and accelerated senescence of bone marrow stromal cells. Bone 33(6):919–926, doi:S8756328203002679 [pii]

    PubMed  Google Scholar 

  278. Scharstuhl A, Schewe B, Benz K, Gaissmaier C, Buhring HJ, Stoop R (2007) Chondrogenic potential of human adult mesenchymal stem cells is independent of age or osteoarthritis etiology. Stem Cells 25(12):3244–3251. doi:10.1634/stemcells.2007-0300, 2007–0300 [pii]

    CAS  PubMed  Google Scholar 

  279. Stenderup K, Justesen J, Eriksen EF, Rattan SI, Kassem M (2001) Number and proliferative capacity of osteogenic stem cells are maintained during aging and in patients with osteoporosis. J Bone Miner Res 16(6):1120–1129. doi:10.1359/jbmr.2001.16.6.1120

    CAS  PubMed  Google Scholar 

  280. Payne KA, Didiano DM, Chu CR (2010) Donor sex and age influence the chondrogenic potential of human femoral bone marrow stem cells. Osteoarthritis Cartilage 18(5):705–713. doi:10.1016/j.joca.2010.01.011, S1063-4584(10)00041-5 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  281. D’Ippolito G, Schiller PC, Ricordi C, Roos BA, Howard GA (1999) Age-related osteogenic potential of mesenchymal stromal stem cells from human vertebral bone marrow. J Bone Miner Res 14(7):1115–1122. doi:10.1359/jbmr.1999.14.7.1115, jbm375 [pii]

    PubMed  Google Scholar 

  282. Stolzing A, Jones E, McGonagle D, Scutt A (2008) Age-related changes in human bone marrow-derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev 129(3):163–173. doi:10.1016/j.mad.2007.12.002, S0047-6374(07)00179-0 [pii]

    CAS  PubMed  Google Scholar 

  283. Mendes SC, Tibbe JM, Veenhof M, Bakker K, Both S, Platenburg PP et al (2002) Bone tissue-engineered implants using human bone marrow stromal cells: effect of culture conditions and donor age. Tissue Eng 8(6):911–920. doi:10.1089/107632702320934010

    CAS  PubMed  Google Scholar 

  284. Zhou S, Greenberger JS, Epperly MW, Goff JP, Adler C, Leboff MS et al (2008) Age-related intrinsic changes in human bone-marrow-derived mesenchymal stem cells and their differentiation to osteoblasts. Aging Cell 7(3):335–343. doi:10.1111/j.1474-9726.2008.00377.x, ACE377 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  285. Fickert S, Schroter-Bobsin U, Gross AF, Hempel U, Wojciechowski C, Rentsch C et al (2011) Human mesenchymal stem cell proliferation and osteogenic differentiation during long-term ex vivo cultivation is not age dependent. J Bone Miner Metab 29(2):224–235. doi:10.1007/s00774-010-0215-y

    PubMed  Google Scholar 

  286. Phinney DG, Kopen G, Righter W, Webster S, Tremain N, Prockop DJ (1999) Donor variation in the growth properties and osteogenic potential of human marrow stromal cells. J Cell Biochem 75(3):424–436. doi:10.1002/(SICI)1097-4644(19991201)75:3<424::AID-JCB8>3.0.CO;2[-‐]8 [pii]

    CAS  PubMed  Google Scholar 

  287. Suva D, Garavaglia G, Menetrey J, Chapuis B, Hoffmeyer P, Bernheim L et al (2004) Non-hematopoietic human bone marrow contains long-lasting, pluripotential mesenchymal stem cells. J Cell Physiol 198(1):110–118. doi:10.1002/jcp.10396

    CAS  PubMed  Google Scholar 

  288. Dexheimer V, Mueller S, Braatz F, Richter W (2011) Reduced reactivation from dormancy but maintained lineage choice of human mesenchymal stem cells with donor age. PLoS One 6(8):e22980. doi:10.1371/journal.pone.0022980PONE-D-11-04667 [pii]

    PubMed Central  CAS  PubMed  Google Scholar 

  289. Segawa Y, Muneta T, Makino H, Nimura A, Mochizuki T, Ju YJ et al (2009) Mesenchymal stem cells derived from synovium, meniscus, anterior cruciate ligament, and articular chondrocytes share similar gene expression profiles. J Orthop Res 27(4):435–441. doi:10.1002/jor.20786. [Research Support, Non-U.S. Gov’t]

    CAS  PubMed  Google Scholar 

  290. Sekiya I, Ojima M, Suzuki S, Yamaga M, Horie M, Koga H et al (2012) Human mesenchymal stem cells in synovial fluid increase in the knee with degenerated cartilage and osteoarthritis. J Orthop Res 30(6):943–949. doi:10.1002/jor.22029

    PubMed  Google Scholar 

  291. Ferretti C, Lucarini G, Andreoni C, Salvolini E, Bianchi N, Vozzi G et al (2014) Human periosteal derived stem cell potential: the impact of age. Stem Cell Rev. doi:10.1007/s12015-014-9559-3

    Google Scholar 

  292. Grogan SP, Miyaki S, Asahara H, D’Lima DD, Lotz MK (2009) Mesenchymal progenitor cell markers in human articular cartilage: normal distribution and changes in osteoarthritis. Arthritis Res Ther 11(3):R85. doi:10.1186/ar2719, ar2719 [pii]

    PubMed Central  PubMed  Google Scholar 

  293. Otsuki S, Grogan SP, Miyaki S, Kinoshita M, Asahara H, Lotz MK (2010) Tissue neogenesis and STRO-1 expression in immature and mature articular cartilage. J Orthop Res 28(1):96–102. doi:10.1002/jor.20944

    PubMed Central  PubMed  Google Scholar 

  294. Lotz MK, Otsuki S, Grogan SP, Sah R, Terkeltaub R, D’Lima D (2010) Cartilage cell clusters. Arthritis Rheum 62(8):2206–2218. doi:10.1002/art.27528

    PubMed Central  PubMed  Google Scholar 

  295. Sandell LJ, Aigner T (2001) Articular cartilage and changes in arthritis. An introduction: cell biology of osteoarthritis. Arthritis Res 3(2):107–113

    PubMed Central  CAS  PubMed  Google Scholar 

  296. Koelling S, Kruegel J, Irmer M, Path JR, Sadowski B, Miro X et al (2009) Migratory chondrogenic progenitor cells from repair tissue during the later stages of human osteoarthritis. Cell Stem Cell 4(4):324–335. doi:10.1016/j.stem.2009.01.015, S1934-5909(09)00018-6 [pii]

    CAS  PubMed  Google Scholar 

  297. van der Kraan PM, van den Berg WB (2007) Osteophytes: relevance and biology. Osteoarthritis Cartilage 15(3):237–244. doi:10.1016/j.joca.2006.11.006, S1063-4584(06)00327-X [pii]

    PubMed  Google Scholar 

  298. Singh S, Jones BJ, Crawford R, Xiao Y (2008) Characterization of a mesenchymal-like stem cell population from osteophyte tissue. Stem Cells Dev 17(2):245–254. doi:10.1089/scd.2007.0146

    CAS  PubMed  Google Scholar 

  299. Hashimoto S, Creighton-Achermann L, Takahashi K, Amiel D, Coutts RD, Lotz M (2002) Development and regulation of osteophyte formation during experimental osteoarthritis. Osteoarthritis Cartilage 10(3):180–187

    CAS  PubMed  Google Scholar 

  300. Patrascu JM, Kruger JP, Boss HG, Ketzmar AK, Freymann U, Sittinger M et al (2013) Polyglycolic acid-hyaluronan scaffolds loaded with bone marrow-derived mesenchymal stem cells show chondrogenic differentiation in vitro and cartilage repair in the rabbit model. J Biomed Mater Res B Appl Biomater 101(7):1310–1320. doi:10.1002/jbm.b.32944

    PubMed  Google Scholar 

  301. Al Faqeh H, Nor Hamdan BM, Chen HC, Aminuddin BS, Ruszymah BH (2012) The potential of intra-articular injection of chondrogenic-induced bone marrow stem cells to retard the progression of osteoarthritis in a sheep model. Exp Gerontol 47(6):458–464. doi:10.1016/j.exger.2012.03.018, S0531-5565(12)00073-3 [pii]

    PubMed  Google Scholar 

  302. Jo CH, Lee YG, Shin WH, Kim H, Chai JW, Jeong EC et al (2014) Intra-articular injection of mesenchymal stem cells for the treatment of osteoarthritis of the knee: a proof-of-concept clinical trial. Stem Cells 32(5):1254–1266. doi:10.1002/stem.1634

    CAS  PubMed  Google Scholar 

  303. Murphy JM, Dixon K, Beck S, Fabian D, Feldman A, Barry F (2002) Reduced chondrogenic and adipogenic activity of mesenchymal stem cells from patients with advanced osteoarthritis. Arthritis Rheum 46(3):704–713. doi:10.1002/art.10118, 10.1002/art.10118 [pii]

    PubMed  Google Scholar 

  304. Siddappa R, Licht R, van Blitterswijk C, de Boer J (2007) Donor variation and loss of multipotency during in vitro expansion of human mesenchymal stem cells for bone tissue engineering. J Orthop Res 25(8):1029–1041. doi:10.1002/jor.20402

    CAS  PubMed  Google Scholar 

  305. Loeser RF, Olex A, McNulty MA, Carlson CS, Callahan M, Ferguson C et al (2012) Microarray analysis reveals age-related differences in gene expression during the development of osteoarthritis in mice. Arthritis Rheum 64(3):705–717. doi:10.1002/art.33388

    PubMed Central  CAS  PubMed  Google Scholar 

  306. McGonagle D, Tan AL, Carey J, Benjamin M (2010) The anatomical basis for a novel classification of osteoarthritis and allied disorders. J Anat 216(3):279–291. doi:10.1111/j.1469-7580.2009.01186.x

    PubMed Central  PubMed  Google Scholar 

  307. Karsdal MA, Christiansen C, Ladel C, Henriksen K, Kraus VB, Bay-Jensen AC (2014) Osteoarthritis – a case for personalized health care? Osteoarthritis Cartilage 22(1):7–16. doi:10.1016/j.joca.2013.10.018

    CAS  PubMed  Google Scholar 

  308. van der Esch M, Knoop J, van der Leeden M, Roorda LD, Lems WF, Knol DL et al (2015) Clinical phenotypes in patients with knee osteoarthritis: a study in the Amsterdam osteoarthritis cohort. Osteoarthritis Cartilage. doi:10.1016/j.joca.2015.01.006

    PubMed  Google Scholar 

  309. Loeser RF (2012) The effects of aging on the development of osteoarthritis. HSS J 8:18–19

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

Work in the Loeser laboratory was supported by National Institutes of Health grants AG044034 and AR049003. Work in the Lotz laboratory was supported by National Institutes of Health grant AG007996.

Editor: John Williams, National Institute on Aging (NIA), NIH.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Loeser MD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing

About this chapter

Cite this chapter

Loeser, R.F., Lotz, M. (2016). Osteoarthritis in the Elderly. In: Sierra, F., Kohanski, R. (eds) Advances in Geroscience. Springer, Cham. https://doi.org/10.1007/978-3-319-23246-1_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23246-1_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23245-4

  • Online ISBN: 978-3-319-23246-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics