Skip to main content

Harmonic Versus Chaos Controlled Oscillators in Hexapedal Locomotion

  • Conference paper
  • First Online:
Information Processing in Cells and Tissues (IPCAT 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9303))

Abstract

The behavioural diversity of chaotic oscillator can be controlled into periodic dynamics and used to model locomotion using central pattern generators. This paper shows how controlled chaotic oscillators may improve the adaptation of the robot locomotion behaviour to terrain uncertainties when compared to nonlinear harmonic oscillators. This is quantitatively assesses by the stability, changes of direction and steadiness of the robotic movements. Our results show that the controlled Wu oscillator promotes the emergence of adaptive locomotion when deterministic sensory feedback is used. They also suggest that the chaotic nature of chaos controlled oscillators increases the expressiveness of pattern generators to explore new locomotion gaits.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Refer to [17] for additional insight about controlling unstable trajectories using the RRC method.

References

  1. Pina Fhilo de, A.C., Dutra, S.M., Raptopoulos, L.S.C.: Modelling of a bipedal robot using mutually coupled oscillators. Biol. Cybern. 92(1), 1–7 (2005)

    Article  Google Scholar 

  2. Righetti, L., Ijspeert, A.J.: Design methodologies for central pattern generators: an application to crawling humanoids. In: Proceedings of Robotics: Science and Systems, pp. 191–198 (2006)

    Google Scholar 

  3. Fuente, L.A., Lones, M.A., Turner, A.P., Caves, L.S., Stepney S., Tyrrell A.M.: Adaptive robotic gait control using coupled artificial signalling networks, hopf oscillators and inverse kinematics. In: 15th IEEE Congress on Evolutionary Computation, pp. 1435–1442 (2013)

    Google Scholar 

  4. Kuniyoshi, Y., Suzuki, S.: Dynamic emergence and adaptation of behaviour through embodiment as coupled chaotic fields. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, vol. 2, pp. 2042–2049 (2004)

    Google Scholar 

  5. Matthey, L., Righetti, L., Ijspeert, A.J.: Experimental study of limit cycle and chaotic controllers for the locomotion of centipede robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1860–1865 (2008)

    Google Scholar 

  6. Fasca, M., Arena, P., Fortuna, L.: Bio-inspired Emergent Control of Locomotion Systems. World Scientific Series of Nonlinear Science A, vol. 48. World Scientific, London (2004)

    Google Scholar 

  7. Cell signalling: H\(_{2}\)O\(_{2}\) a necessary evil for cell signalling. Science 312, 1882–1883 (2006)

    Google Scholar 

  8. Fuente, L.A., Lones, M.A., Turner, A.P., Stepney, S., Caves, L.S., Tyrrell, A.M.: Evolved artificial signalling networks for the control of a conservative complex dynamical system. In: Lones, M.A., Naef, F., Smith, S.L., Teichmann, S., Trefzer, M.A., Walker, J.A. (eds.) IPCAT 2012. LNCS, vol. 7223, pp. 38–49. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  9. Fuente, L.A., Lones, M.A., Turner, A.P., Caves, L.S., Stepney, S., Tyrrell, A.M.: Computational models of signalling networks for non-linear control. BioSystems 122(2), 122–130 (2013)

    Article  Google Scholar 

  10. Fuente, L.A.: A decentralised control architecture: coupled artificial signalling networks. Ph.D. thesis (2014)

    Google Scholar 

  11. Lones, M.A., Caves, L.S., Stepney S., Tyrrell A.M.: Controlling legged robots with coupled artificial biochemical networks. In: ECAL 2011, pp. 465–472. MIT Press (2011)

    Google Scholar 

  12. Lones, M.A., Fuente, L.A., Turner, A.P., Caves, L.S., Stepney, S., Tyrrell, A.M.: Artificial biochemical networks: evolving dynamical systems to control dynamical systems. IEEE Trans. Evol. Comput. 18(2), 145–166 (2014)

    Article  Google Scholar 

  13. Moioli R.C., Vargas, P.A., Husbands, P.: A multiple hormone approach to homeostatic control of conflicting behaviours in an autonomous mobile robot. In: IEEE 11th Congress on Evolutionary Computation, pp. 47–54 (2009)

    Google Scholar 

  14. Righetti, L., Ijspeert, A.J.: Pattern generators with sensory feedback for the control of quadruped locomotion. In: IEEE International Conference on Robotic and Automation, pp. 819–824 (2008)

    Google Scholar 

  15. Wright, J., Jordanov, I.: Intelligent approaches in locomotion. In: The 2012 International Joint Conference in Neural Networks (IJCNN 2012), pp. 1–8 (2012)

    Google Scholar 

  16. Wu, W., Zengqiang, C., Zhuzhi, Y.: The evolution of a novel four-dimensional autonomous system: among 3-torus, limit cycle, 2-torus, chaos and hyper-chaos. Chaos Solitions Fractals 39(5), 2340–2356 (2009)

    Article  Google Scholar 

  17. Scheper, T.O.: Why metabolic systems are rarely chaotic? BioSystems 94(1–2), 145–152 (2008)

    Article  Google Scholar 

  18. Lynxmotion Ltd.: 4-dof t-hex combo kit for bot board/ssc-32/bap28. http://www.lynxmotion.com/c-151-t-hex-4-dof.aspx

  19. Mayer, H.A., Spitzlinger, M.: Multi-chromosomal representations and chromosome shuffling in evolutionary algorithms. In: The 2003 Congress on Evolutionary Computation, vol. 2, pp. 1145–1149 (2003)

    Google Scholar 

  20. Ziegler, J., Banzhaf, W.: Evolving control metabolisms for a robot. Artif. Life 7, 171–190 (2001)

    Article  Google Scholar 

  21. Abourachid, A., Herbin, A., Hacker, R., Maes, L.: Experimental study of coordination patterns during unsteady locomotion in mammals. J. Exp. Biol. 210, 366–372 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luis A. Fuente .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Fuente, L.A., Lones, M.A., Crook, N.T., Olde Scheper, T.V. (2015). Harmonic Versus Chaos Controlled Oscillators in Hexapedal Locomotion. In: Lones, M., Tyrrell, A., Smith, S., Fogel, G. (eds) Information Processing in Cells and Tissues. IPCAT 2015. Lecture Notes in Computer Science(), vol 9303. Springer, Cham. https://doi.org/10.1007/978-3-319-23108-2_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-23108-2_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-23107-5

  • Online ISBN: 978-3-319-23108-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics