Skip to main content

microRNA and Epilepsy

  • Chapter
microRNA: Medical Evidence

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 888))

Abstract

Epilepsy is a common, serious neurological disease characterized by recurring seizures. Such abnormal, excessive synchronous firing of neurons arises in part because of imbalances in excitation and inhibition in the brain. The process of epileptogenesis, during which the normal brain is transformed after injury to one capable of generating spontaneous seizures, is associated with large-scale changes in gene expression. These contribute to the remodelling of brain networks that permanently alters excitability. Components of the microRNA (miRNA) biogenesis pathway have been found to be altered in brain tissue from epilepsy patients and experimental epileptogenic insults result in select changes to miRNAs regulating neuronal microstructure, cell death, inflammation, and ion channels. Targeting key miRNAs has been shown to alter brain excitability and suppress or exacerbate seizures, indicating potential for miRNA-based therapeutics in epilepsy. Altered miRNA profiles in biofluids may be potentially useful biomarkers of epileptogenesis. In summary, miRNAs represent an important layer of gene expression control in epilepsy with therapeutic and biomarker potential.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Loscher W, Brandt C. Prevention or modification of epileptogenesis after brain insults: experimental approaches and translational research. Pharmacol Rev. 2010;62:668–700.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Vezzani A, French J, Bartfai T, Baram TZ. The role of inflammation in epilepsy. Nat Rev Neurol. 2011;7:31–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Fisher RS, Acevedo C, Arzimanoglou A, Bogacz A, Cross JH, Elger CE, et al. ILAE official report: a practical clinical definition of epilepsy. Epilepsia. 2014;55:475–82.

    Article  PubMed  Google Scholar 

  4. Engel Jr J. Classification of epileptic disorders. Epilepsia. 2001;42:316.

    Article  PubMed  Google Scholar 

  5. Thurman DJ, Beghi E, Begley CE, Berg AT, Buchhalter JR, Ding D, et al. Standards for epidemiologic studies and surveillance of epilepsy. Epilepsia. 2011;52 Suppl 7:2–26.

    Article  CAS  PubMed  Google Scholar 

  6. Fisher RS, van Emde BW, Blume W, Elger C, Genton P, Lee P, et al. Epileptic seizures and epilepsy: definitions proposed by the International League Against Epilepsy (ILAE) and the International Bureau for Epilepsy (IBE). Epilepsia. 2005;46:470–2.

    Article  PubMed  Google Scholar 

  7. Proposal for revised clinical and electroencephalographic classification of epileptic seizures. From the commission on classification and terminology of the international league against epilepsy. Epilepsia. 1981;22:489–501.

    Google Scholar 

  8. Jenssen S, Gracely EJ, Sperling MR. How long do most seizures last? A systematic comparison of seizures recorded in the epilepsy monitoring unit. Epilepsia. 2006;47:1499–503.

    Article  PubMed  Google Scholar 

  9. Shinnar S, Berg AT, Moshe SL, Shinnar R. How long do new-onset seizures in children last? Ann Neurol. 2001;49:659–64.

    Article  CAS  PubMed  Google Scholar 

  10. Al-Mufti F, Claassen J. Neurocritical care: status epilepticus review. Crit Care Clin. 2014;30:751–64.

    Article  PubMed  Google Scholar 

  11. Meldrum BS, Brierley JB. Prolonged epileptic seizures in primates. Ischemic cell change and its relation to ictal physiological events. Arch Neurol. 1973;28:10–7.

    Article  CAS  PubMed  Google Scholar 

  12. Moshe SL, Perucca E, Ryvlin P, Tomson T. Epilepsy: new advances. Lancet. 2015;385(9971):884–98.

    Article  PubMed  Google Scholar 

  13. Thomas RH, Berkovic SF. The hidden genetics of epilepsy-a clinically important new paradigm. Nat Rev Neurol. 2014;10:283–92.

    Article  PubMed  Google Scholar 

  14. Ngugi AK, Bottomley C, Kleinschmidt I, Sander JW, Newton CR. Estimation of the burden of active and life-time epilepsy: a meta-analytic approach. Epilepsia. 2010;51:883–90.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Savage N. Epidemiology: the complexities of epilepsy. Nature. 2014;511:S2–3.

    Article  PubMed  Google Scholar 

  16. Hauser WA, Annegers JF, Kurland LT. Incidence of epilepsy and unprovoked seizures in Rochester, Minnesota: 1935–1984. Epilepsia. 1993;34:453–68.

    Article  CAS  PubMed  Google Scholar 

  17. Kotsopoulos IA, van Merode T, Kessels FG, de Krom MC, Knottnerus JA. Systematic review and meta-analysis of incidence studies of epilepsy and unprovoked seizures. Epilepsia. 2002;43:1402–9.

    Article  PubMed  Google Scholar 

  18. Christensen J, Kjeldsen MJ, Andersen H, Friis ML, Sidenius P. Gender differences in epilepsy. Epilepsia. 2005;46:956–60.

    Article  PubMed  Google Scholar 

  19. McHugh JC, Delanty N. Epidemiology and classification of epilepsy: gender comparisons. Int Rev Neurobiol. 2008;83:11–26.

    Article  PubMed  Google Scholar 

  20. Savic I. Sex differences in human epilepsy. Exp Neurol. 2014;259:38–43.

    Article  PubMed  Google Scholar 

  21. Benbadis S. The differential diagnosis of epilepsy: a critical review. Epilepsy Behav. 2009;15:15–21.

    Article  CAS  PubMed  Google Scholar 

  22. Rogawski MA. Diverse mechanisms of antiepileptic drugs in the development pipeline. Epilepsy Res. 2006;69:273–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Rogawski MA, Hanada T. Preclinical pharmacology of perampanel, a selective non-competitive AMPA receptor antagonist. Acta Neurol Scand Suppl. 2013:19–24.

    Google Scholar 

  24. Perucca E, French J, Bialer M. Development of new antiepileptic drugs: challenges, incentives, and recent advances. Lancet Neurol. 2007;6:793–804.

    Article  CAS  PubMed  Google Scholar 

  25. Fisher RS. Therapeutic devices for epilepsy. Ann Neurol. 2012;71:157–68.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Pitkänen A, Schwartzkroin PA, Moshé SL. Models of seizures and epilepsy. Oxford: Elsevier Academic Press; 2006. 712 p.

    Google Scholar 

  27. Coppola A, Moshe SL. Animal models. Handb Clin Neurol. 2012;107:63–98.

    Article  PubMed  Google Scholar 

  28. Loscher W. Critical review of current animal models of seizures and epilepsy used in the discovery and development of new antiepileptic drugs. Seizure. 2011;20:359–68.

    Article  PubMed  Google Scholar 

  29. Simonato M, Brooks-Kayal AR, Engel Jr J, Galanopoulou AS, Jensen FE, Moshe SL, et al. The challenge and promise of anti-epileptic therapy development in animal models. Lancet Neurol. 2014;13:949–60.

    Article  PubMed  Google Scholar 

  30. Engel Jr J, International League Against Epilepsy. A proposed diagnostic scheme for people with epileptic seizures and with epilepsy: report of the ILAE Task Force on Classification and Terminology. Epilepsia. 2001;42:796–803.

    Article  PubMed  Google Scholar 

  31. McGeer PL, McGeer EG. Intracerebral injections of kainic acid and tetanus toxin: possible models for the signs of chorea and dystonia. Adv Neurol. 1978;21:331–8.

    CAS  PubMed  Google Scholar 

  32. Coyle JT. Kainic acid: insights into excitatory mechanisms causing selective neuronal degeneration. Ciba Found Symp. 1987;126:186–203.

    CAS  PubMed  Google Scholar 

  33. Miller LP, Johnson AE, Gelhard RE, Insel TR. The ontogeny of excitatory amino acid receptors in the rat forebrain—II. Kainic acid receptors. Neuroscience. 1990;35:45–51.

    Article  CAS  PubMed  Google Scholar 

  34. Schwarcz R, Zaczek R, Coyle JT. Microinjection of kainic acid into the rat hippocampus. Eur J Pharmacol. 1978;50:209–20.

    Article  CAS  PubMed  Google Scholar 

  35. Rondouin G, Bockaert J, Lerner-Natoli M. L-nitroarginine, an inhibitor of NO synthase, dramatically worsens limbic epilepsy in rats. Neuroreport. 1993;4:1187–90.

    CAS  PubMed  Google Scholar 

  36. Ben-Ari Y. Limbic seizure and brain damage produced by kainic acid: mechanisms and relevance to human temporal lobe epilepsy. Neuroscience. 1985;14:375–403.

    Article  CAS  PubMed  Google Scholar 

  37. Cavalheiro EA, Riche DA, Le Gal La Salle G. Long-term effects of intrahippocampal kainic acid injection in rats: a method for inducing spontaneous recurrent seizures. Electroencephalogr Clin Neurophysiol. 1982;53:581–9.

    Article  CAS  PubMed  Google Scholar 

  38. Stafstrom CE, Thompson JL, Holmes GL. Kainic acid seizures in the developing brain: status epilepticus and spontaneous recurrent seizures. Brain Res Dev Brain Res. 1992;65:227–36.

    Article  CAS  PubMed  Google Scholar 

  39. Giorgi FS, Malhotra S, Hasson H, Veliskova J, Rosenbaum DM, Moshe SL. Effects of status epilepticus early in life on susceptibility to ischemic injury in adulthood. Epilepsia. 2005;46:490–8.

    Article  PubMed  Google Scholar 

  40. Velisek L. Models of chemically-induced acute seizures. In: Pitkanen A, Schwartzkroin PA, Moshé S, editors. Models of seizure and epilepsy. Elsevier Academic Press: Oxford; 2006. p. 127–52.

    Chapter  Google Scholar 

  41. Kuhar M, Yamamura HI. Localization of cholinergic muscarinic receptors in rat brain by light microscopic radioautography. Brain Res. 1976;110:229–43.

    Article  CAS  PubMed  Google Scholar 

  42. Fabene PF, Navarro Mora G, Martinello M, Rossi B, Merigo F, Ottoboni L, et al. A role for leukocyte-endothelial adhesion mechanisms in epilepsy. Nat Med. 2008;14:1377–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Oby E, Janigro D. The blood–brain barrier and epilepsy. Epilepsia. 2006;47:1761–74.

    Article  CAS  PubMed  Google Scholar 

  44. Marchi N, Angelov L, Masaryk T, Fazio V, Granata T, Hernandez N, et al. Seizure-promoting effect of blood–brain barrier disruption. Epilepsia. 2007;48:732–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Goddard GV, McIntyre DC, Leech CK. A permanent change in brain function resulting from daily electrical stimulation. Exp Neurol. 1969;25:295–330.

    Article  CAS  PubMed  Google Scholar 

  46. McNamara JO, Byrne MC, Dasheiff RM, Fitz JG. The kindling model of epilepsy: a review. Prog Neurobiol. 1980;15:139–59.

    Article  CAS  PubMed  Google Scholar 

  47. Morrell F. Secondary epileptogenic lesions. Epilepsia. 1960;1:538–60.

    Article  CAS  PubMed  Google Scholar 

  48. Bertram E. The relevance of kindling for human epilepsy. Epilepsia. 2007;48 Suppl 2:65–74.

    Article  PubMed  Google Scholar 

  49. Chang BS, Lowenstein DH. Epilepsy. N Engl J Med. 2003;349:1257–66.

    Article  PubMed  Google Scholar 

  50. Hanna MG. Genetic neurological channelopathies. Nat Clin Pract Neurol. 2006;2:252–63.

    Article  CAS  PubMed  Google Scholar 

  51. Maljevic S, Lerche H. Potassium channel genes and benign familial neonatal epilepsy. Prog Brain Res. 2014;213:17–53.

    Article  PubMed  Google Scholar 

  52. Epi4K Consortium, Epilepsy Phenome/Genome Project, Allen AS, Berkovic SF, Cossette P, Delanty N, et al. De novo mutations in epileptic encephalopathies. Nature. 2013;501:217–21.

    Article  CAS  Google Scholar 

  53. Gomez-Herreros F, Schuurs-Hoeijmakers JH, McCormack M, Greally MT, Rulten S, Romero-Granados R, et al. TDP2 protects transcription from abortive topoisomerase activity and is required for normal neural function. Nat Genet. 2014;46:516–21.

    Article  CAS  PubMed  Google Scholar 

  54. Jin P, Alisch RS, Warren ST. RNA and microRNAs in fragile X mental retardation. Nat Cell Biol. 2004;6:1048–53.

    Article  CAS  PubMed  Google Scholar 

  55. Piccione M, Vecchio D, Cavani S, Malacarne M, Pierluigi M, Corsello G. The first case of myoclonic epilepsy in a child with a de novo 22q11.2 microduplication. Am J Med Genet A. 2011;155A:3054–9.

    Article  PubMed  CAS  Google Scholar 

  56. Cheung EN, George SR, Andrade DM, Chow EW, Silversides CK, Bassett AS. Neonatal hypocalcemia, neonatal seizures, and intellectual disability in 22q11.2 deletion syndrome. Genet Med. 2014;16:40–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Wieser HG, ILAE Commission on Neurosurgery of Epilepsy. ILAE commission report. Mesial temporal lobe epilepsy with hippocampal sclerosis. Epilepsia. 2004;45:695–714.

    Article  PubMed  Google Scholar 

  58. Thom M, Blumcke I, Aronica E. Long-term epilepsy-associated tumors. Brain Pathol. 2012;22:350–79.

    Article  PubMed  Google Scholar 

  59. Thom M. Review: hippocampal sclerosis in epilepsy: a neuropathology review. Neuropathol Appl Neurobiol. 2014;40:520–43.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Okamoto OK, Janjoppi L, Bonone FM, Pansani AP, da Silva AV, Scorza FA, et al. Whole transcriptome analysis of the hippocampus: toward a molecular portrait of epileptogenesis. BMC Genomics. 2010;11:230.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  61. Kharatishvili I, Pitkanen A. Association of the severity of cortical damage with the occurrence of spontaneous seizures and hyperexcitability in an animal model of posttraumatic epilepsy. Epilepsy Res. 2010;90:47–59.

    Article  PubMed  Google Scholar 

  62. Ebert U, Brandt C, Loscher W. Delayed sclerosis, neuroprotection, and limbic epileptogenesis after status epilepticus in the rat. Epilepsia. 2002;43 Suppl 5:86–95.

    Article  PubMed  Google Scholar 

  63. Andre V, Ferrandon A, Marescaux C, Nehlig A. Electroshocks delay seizures and subsequent epileptogenesis but do not prevent neuronal damage in the lithium-pilocarpine model of epilepsy. Epilepsy Res. 2000;42:7–22.

    Article  CAS  PubMed  Google Scholar 

  64. Sloviter RS, Bumanglag AV. Defining “epileptogenesis” and identifying “antiepileptogenic targets” in animal models of acquired temporal lobe epilepsy is not as simple as it might seem. Neuropharmacology. 2013;69:3–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Vezzani A, Aronica E, Mazarati A, Pittman QJ. Epilepsy and brain inflammation. Exp Neurol. 2013;244:11–21.

    Article  CAS  PubMed  Google Scholar 

  66. Engel T, Murphy BM, Hatazaki S, Jimenez-Mateos EM, Concannon CG, Woods I, et al. Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma. FASEB J. 2010;24:853–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Engel T, Sanz-Rodgriguez A, Jimenez-Mateos EM, Concannon CG, Jimenez-Pacheco A, Moran C, et al. CHOP regulates the p53-MDM2 axis and is required for neuronal survival after seizures. Brain. 2013;136:577–92.

    Article  PubMed  Google Scholar 

  68. Vezzani A, Granata T. Brain inflammation in epilepsy: experimental and clinical evidence. Epilepsia. 2005;46:1724–43.

    Article  CAS  PubMed  Google Scholar 

  69. Pitkanen A, Sutula TP. Is epilepsy a progressive disorder? Prospects for new therapeutic approaches in temporal-lobe epilepsy. Lancet Neurol. 2002;1:173–81.

    Article  PubMed  Google Scholar 

  70. Aronica E, Gorter JA. Gene expression profile in temporal lobe epilepsy. Neuroscientist. 2007;13:100–8.

    Article  CAS  PubMed  Google Scholar 

  71. Kreutzberg GW. Microglia: a sensor for pathological events in the CNS. Trends Neurosci. 1996;19:312–8.

    Article  CAS  PubMed  Google Scholar 

  72. Choi J, Nordli Jr DR, Alden TD, DiPatri Jr A, Laux L, Kelley K, et al. Cellular injury and neuroinflammation in children with chronic intractable epilepsy. J Neuroinflammation. 2009;6:38.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Jorgensen MB, Finsen BR, Jensen MB, Castellano B, Diemer NH, Zimmer J. Microglial and astroglial reactions to ischemic and kainic acid-induced lesions of the adult rat hippocampus. Exp Neurol. 1993;120:70–88.

    Article  CAS  PubMed  Google Scholar 

  74. Borges K, Gearing M, McDermott DL, Smith AB, Almonte AG, Wainer BH, et al. Neuronal and glial pathological changes during epileptogenesis in the mouse pilocarpine model. Exp Neurol. 2003;182:21–34.

    Article  CAS  PubMed  Google Scholar 

  75. da Fonseca AC, Matias D, Garcia C, Amaral R, Geraldo LH, Freitas C, et al. The impact of microglial activation on blood–brain barrier in brain diseases. Front Cell Neurosci. 2014;8:362.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Obermeier B, Daneman R, Ransohoff RM. Development, maintenance and disruption of the blood–brain barrier. Nat Med. 2013;19:1584–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Varvel NH, Jiang J, Dingledine R. Candidate drug targets for prevention or modification of epilepsy. Annu Rev Pharmacol Toxicol. 2015;55:229–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ravizza T, Gagliardi B, Noe F, Boer K, Aronica E, Vezzani A. Innate and adaptive immunity during epileptogenesis and spontaneous seizures: evidence from experimental models and human temporal lobe epilepsy. Neurobiol Dis. 2008;29:142–60.

    Article  CAS  PubMed  Google Scholar 

  79. Oliveira MS, Furian AF, Royes LF, Fighera MR, Fiorenza NG, Castelli M, et al. Cyclooxygenase-2/PGE2 pathway facilitates pentylenetetrazol-induced seizures. Epilepsy Res. 2008;79:14–21.

    Article  CAS  PubMed  Google Scholar 

  80. Rojas A, Jiang J, Ganesh T, Yang MS, Lelutiu N, Gueorguieva P, et al. Cyclooxygenase-2 in epilepsy. Epilepsia. 2014;55:17–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, et al. Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med. 2010;16:413–9.

    Article  CAS  PubMed  Google Scholar 

  82. Roth TL, Nayak D, Atanasijevic T, Koretsky AP, Latour LL, McGavern DB. Transcranial amelioration of inflammation and cell death after brain injury. Nature. 2014;505:223–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Fieschi C, Lenzi GL, Zanette E, Orzi F, Passero S. Effects on EEG of the osmotic opening of the blood–brain barrier in rats. Life Sci. 1980;27:239–43.

    Article  CAS  PubMed  Google Scholar 

  84. Uva L, Librizzi L, Marchi N, Noe F, Bongiovanni R, Vezzani A, et al. Acute induction of epileptiform discharges by pilocarpine in the in vitro isolated guinea-pig brain requires enhancement of blood–brain barrier permeability. Neuroscience. 2008;151:303–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. van Vliet EA, da Costa AS, Redeker S, van Schaik R, Aronica E, Gorter JA. Blood–brain barrier leakage may lead to progression of temporal lobe epilepsy. Brain. 2007;130:521–34.

    Article  PubMed  Google Scholar 

  86. Ivens S, Kaufer D, Flores LP, Bechmann I, Zumsteg D, Tomkins O, et al. TGF-beta receptor-mediated albumin uptake into astrocytes is involved in neocortical epileptogenesis. Brain. 2007;130:535–47.

    Article  PubMed  Google Scholar 

  87. David Y, Cacheaux LP, Ivens S, Lapilover E, Heinemann U, Kaufer D, et al. Astrocytic dysfunction in epileptogenesis: consequence of altered potassium and glutamate homeostasis? J Neurosci. 2009;29:10588–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Loscher W, Potschka H. Drug resistance in brain diseases and the role of drug efflux transporters. Nat Rev Neurosci. 2005;6:591–602.

    Article  PubMed  CAS  Google Scholar 

  89. Tauck DL, Nadler JV. Evidence of functional mossy fiber sprouting in hippocampal formation of kainic acid-treated rats. J Neurosci. 1985;5:1016–22.

    CAS  PubMed  Google Scholar 

  90. Cavazos JE, Golarai G, Sutula TP. Mossy fiber synaptic reorganization induced by kindling: time course of development, progression, and permanence. J Neurosci. 1991;11:2795–803.

    CAS  PubMed  Google Scholar 

  91. Nadler JV, Perry BW, Gentry C, Cotman CW. Degeneration of hippocampal CA3 pyramidal cells induced by intraventricular kainic acid. J Comp Neurol. 1980;192:333–59.

    Article  CAS  PubMed  Google Scholar 

  92. Sutula T, Cascino G, Cavazos J, Parada I, Ramirez L. Mossy fiber synaptic reorganization in the epileptic human temporal lobe. Ann Neurol. 1989;26:321–30.

    Article  CAS  PubMed  Google Scholar 

  93. Cronin J, Dudek FE. Chronic seizures and collateral sprouting of dentate mossy fibers after kainic acid treatment in rats. Brain Res. 1988;474:181–4.

    Article  CAS  PubMed  Google Scholar 

  94. Masukawa LM, Uruno K, Sperling M, O’Connor MJ, Burdette LJ. The functional relationship between antidromically evoked field responses of the dentate gyrus and mossy fiber reorganization in temporal lobe epileptic patients. Brain Res. 1992;579:119–27.

    Article  CAS  PubMed  Google Scholar 

  95. Heng K, Haney MM, Buckmaster PS. High-dose rapamycin blocks mossy fiber sprouting but not seizures in a mouse model of temporal lobe epilepsy. Epilepsia. 2013;54:1535–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Schirle NT, MacRae IJ. The crystal structure of human Argonaute2. Science. 2012;336:1037–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Esquela-Kerscher A, Slack FJ. Oncomirs—microRNAs with a role in cancer. Nat Rev Cancer. 2006;6:259–69.

    Article  CAS  PubMed  Google Scholar 

  98. Selbach M, Schwanhausser B, Thierfelder N, Fang Z, Khanin R, Rajewsky N. Widespread changes in protein synthesis induced by microRNAs. Nature. 2008;455:58–63.

    Article  CAS  PubMed  Google Scholar 

  99. Lagos-Quintana M, Rauhut R, Yalcin A, Meyer J, Lendeckel W, Tuschl T. Identification of tissue-specific microRNAs from mouse. Curr Biol. 2002;12:735–9.

    Article  CAS  PubMed  Google Scholar 

  100. Krichevsky AM, King KS, Donahue CP, Khrapko K, Kosik KS. A microRNA array reveals extensive regulation of microRNAs during brain development. RNA. 2003;9:1274–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Jimenez-Mateos EM, Henshall DC. Epilepsy and microRNA. Neuroscience. 2013;238:218–29.

    Article  CAS  PubMed  Google Scholar 

  102. O’Carroll D, Schaefer A. General principals of miRNA biogenesis and regulation in the brain. Neuropsychopharmacology. 2013;38:39–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  103. Siegel C, Li J, Liu F, Benashski SE, McCullough LD. miR-23a regulation of X-linked inhibitor of apoptosis (XIAP) contributes to sex differences in the response to cerebral ischemia. Proc Natl Acad Sci U S A. 2011;108:11662–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lugli G, Torvik VI, Larson J, Smalheiser NR. Expression of microRNAs and their precursors in synaptic fractions of adult mouse forebrain. J Neurochem. 2008;106:650–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Davis TH, Cuellar TL, Koch SM, Barker AJ, Harfe BD, McManus MT, et al. Conditional loss of Dicer disrupts cellular and tissue morphogenesis in the cortex and hippocampus. J Neurosci. 2008;28:4322–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. De Pietri TD, Pulvers JN, Haffner C, Murchison EP, Hannon GJ, Huttner WB. miRNAs are essential for survival and differentiation of newborn neurons but not for expansion of neural progenitors during early neurogenesis in the mouse embryonic neocortex. Development. 2008;135:3911–21.

    Article  CAS  Google Scholar 

  107. Babiarz JE, Hsu R, Melton C, Thomas M, Ullian EM, Blelloch R. A role for noncanonical microRNAs in the mammalian brain revealed by phenotypic differences in Dgcr8 versus Dicer1 knockouts and small RNA sequencing. RNA. 2011;17:1489–501.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Tao J, Wu H, Lin Q, Wei W, Lu XH, Cantle JP, et al. Deletion of astroglial Dicer causes non-cell-autonomous neuronal dysfunction and degeneration. J Neurosci. 2011;31:8306–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Knuckles P, Vogt MA, Lugert S, Milo M, Chong MM, Hautbergue GM, et al. Drosha regulates neurogenesis by controlling neurogenin 2 expression independent of microRNAs. Nat Neurosci. 2012;15:962–9.

    Article  CAS  PubMed  Google Scholar 

  110. Hsu R, Schofield CM, Dela Cruz CG, Jones-Davis DM, Blelloch R, Ullian EM. Loss of microRNAs in pyramidal neurons leads to specific changes in inhibitory synaptic transmission in the prefrontal cortex. Mol Cell Neurosci. 2012;50:283–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Morita S, Horii T, Kimura M, Goto Y, Ochiya T, Hatada I. One Argonaute family member, Eif2c2 (Ago2), is essential for development and appears not to be involved in DNA methylation. Genomics. 2007;89:687–96.

    Article  CAS  PubMed  Google Scholar 

  112. Kawase-Koga Y, Otaegi G, Sun T. Different timings of Dicer deletion affect neurogenesis and gliogenesis in the developing mouse central nervous system. Dev Dyn. 2009;238:2800–12.

    Article  PubMed  PubMed Central  Google Scholar 

  113. McKiernan RC, Jimenez-Mateos EM, Bray I, Engel T, Brennan GP, Sano T, et al. Reduced mature microRNA levels in association with dicer loss in human temporal lobe epilepsy with hippocampal sclerosis. PLoS One. 2012;7, e35921.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Jimenez-Mateos EM, Bray I, Sanz-Rodriguez A, Engel T, McKiernan RC, Mouri G, et al. miRNA Expression profile after status epilepticus and hippocampal neuroprotection by targeting miR-132. Am J Pathol. 2011;179:2519–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Nakagawa A, Shi Y, Kage-Nakadai E, Mitani S, Xue D. Caspase-dependent conversion of Dicer ribonuclease into a death-promoting deoxyribonuclease. Science. 2010;328:327–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Schindler CK, Pearson EG, Bonner HP, So NK, Simon RP, Prehn JH, et al. Caspase-3 cleavage and nuclear localization of caspase-activated DNase in human temporal lobe epilepsy. J Cereb Blood Flow Metab. 2006;26:583–9.

    Article  CAS  PubMed  Google Scholar 

  117. Bicker S, Lackinger M, Weiss K, Schratt G. MicroRNA-132, -134, and -138: a microRNA troika rules in neuronal dendrites. Cell Mol Life Sci. 2014;71:3987–4005.

    Article  CAS  PubMed  Google Scholar 

  118. Friedman RC, Farh KK, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19:92–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Pitkanen A, Lukasiuk K. Mechanisms of epileptogenesis and potential treatment targets. Lancet Neurol. 2011;10:173–86.

    Article  PubMed  Google Scholar 

  120. Dogini DB, Avansini SH, Vieira AS, Lopes-Cendes I. MicroRNA regulation and dysregulation in epilepsy. Front Cell Neurosci. 2013;7:172.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol Neurosci. 2013;6:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  122. Tan CL, Plotkin JL, Veno MT, von Schimmelmann M, Feinberg P, Mann S, et al. MicroRNA-128 governs neuronal excitability and motor behavior in mice. Science. 2013;342:1254–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Letellier M, Elramah S, Mondin M, Soula A, Penn A, Choquet D, et al. miR-92a regulates expression of synaptic GluA1-containing AMPA receptors during homeostatic scaling. Nat Neurosci. 2014;17:1040–2.

    Article  CAS  PubMed  Google Scholar 

  124. Siegel G, Saba R, Schratt G. microRNAs in neurons: manifold regulatory roles at the synapse. Curr Opin Genet Dev. 2011;21:491–7.

    Article  CAS  PubMed  Google Scholar 

  125. Sheedy FJ, O’Neill LA. Adding fuel to fire: microRNAs as a new class of mediators of inflammation. Ann Rheum Dis. 2008;67 Suppl 3:iii50–5.

    Article  CAS  PubMed  Google Scholar 

  126. Aronica E, Fluiter K, Iyer A, Zurolo E, Vreijling J, van Vliet EA, et al. Expression pattern of miR-146a, an inflammation-associated microRNA, in experimental and human temporal lobe epilepsy. Eur J Neurosci. 2010;31:1100–7.

    Article  CAS  PubMed  Google Scholar 

  127. Omran A, Peng J, Zhang C, Xiang QL, Xue J, Gan N, et al. Interleukin-1beta and microRNA-146a in an immature rat model and children with mesial temporal lobe epilepsy. Epilepsia. 2012;53:1215–24.

    Article  CAS  PubMed  Google Scholar 

  128. de Araujo MA, Marques TE, Taniele-Silva J, Souza FM, de Andrade TG, Garcia-Cairasco N, et al. Identification of endogenous reference genes for the analysis of microRNA expression in the hippocampus of the pilocarpine-induced model of mesial temporal lobe epilepsy. PLoS One. 2014;9, e100529.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  129. Iyer A, Zurolo E, Prabowo A, Fluiter K, Spliet WG, van Rijen PC, et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PLoS One. 2012;7, e44789.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Taganov KD, Boldin MP, Chang KJ, Baltimore D. NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci U S A. 2006;103:12481–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol Neurosci. 2013;6:1–11.

    Article  CAS  Google Scholar 

  132. Risbud RM, Porter BE. Changes in microRNA expression in the whole hippocampus and hippocampal synaptoneurosome fraction following pilocarpine induced status epilepticus. PLoS One. 2013;8, e53464.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Gorter JA, Iyer A, White I, Colzi A, van Vliet EA, Sisodiya S, et al. Hippocampal subregion-specific microRNA expression during epileptogenesis in experimental temporal lobe epilepsy. Neurobiol Dis. 2014;62:508–20.

    Article  CAS  PubMed  Google Scholar 

  134. Liu DZ, Tian Y, Ander BP, Xu H, Stamova BS, Zhan X, et al. Brain and blood microRNA expression profiling of ischemic stroke, intracerebral hemorrhage, and kainate seizures. J Cereb Blood Flow Metab. 2010;30:92–101.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  135. Hu K, Zhang C, Long L, Long X, Feng L, Li Y, et al. Expression profile of microRNAs in rat hippocampus following lithium-pilocarpine-induced status epilepticus. Neurosci Lett. 2011;488:252–7.

    Article  CAS  PubMed  Google Scholar 

  136. Ge XT, Lei P, Wang HC, Zhang AL, Han ZL, Chen X, et al. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci Rep. 2014;4:6718.

    Article  PubMed  PubMed Central  Google Scholar 

  137. Hu K, Xie YY, Zhang C, Ouyang DS, Long HY, Sun DN, et al. MicroRNA expression profile of the hippocampus in a rat model of temporal lobe epilepsy and miR-34a-targeted neuroprotection against hippocampal neurone cell apoptosis post-status epilepticus. BMC Neurosci. 2012;13:115.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Pichardo-Casas I, Goff LA, Swerdel MR, Athie A, Davila J, Ramos-Brossier M, et al. Expression profiling of synaptic microRNAs from the adult rat brain identifies regional differences and seizure-induced dynamic modulation. Brain Res. 2012;1436:20–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Peng J, Omran A, Ashhab MU, Kong H, Gan N, He F, et al. Expression patterns of miR-124, miR-134, miR-132, and miR-21 in an immature rat model and children with mesial temporal lobe epilepsy. J Mol Neurosci. 2013;50:291–7.

    Article  CAS  PubMed  Google Scholar 

  140. Ashhab MU, Omran A, Kong H, Gan N, He F, Peng J, et al. Expressions of tumor necrosis factor alpha and microRNA-155 in immature rat model of status epilepticus and children with mesial temporal lobe epilepsy. J Mol Neurosci. 2013;51:950–8.

    Article  CAS  PubMed  Google Scholar 

  141. Sano T, Reynolds JP, Jimenez-Mateos EM, Matsushima S, Taki W, Henshall DC. MicroRNA-34a upregulation during seizure-induced neuronal death. Cell Death Dis. 2012;3, e287.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Song YJ, Tian XB, Zhang S, Zhang YX, Li X, Li D, et al. Temporal lobe epilepsy induces differential expression of hippocampal miRNAs including let-7e and miR-23a/b. Brain Res. 2011;1387:134–40.

    Article  CAS  PubMed  Google Scholar 

  143. Li MM, Jiang T, Sun Z, Zhang Q, Tan CC, Yu JT, et al. Genome-wide microRNA expression profiles in hippocampus of rats with chronic temporal lobe epilepsy. Sci Rep. 2014;4:4734.

    PubMed  PubMed Central  Google Scholar 

  144. Kan AA, van Erp S, Derijck AA, de Wit M, Hessel EV, O’Duibhir E, et al. Genome-wide microRNA profiling of human temporal lobe epilepsy identifies modulators of the immune response. Cell Mol Life Sci. 2012;69:3127–45.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lee JY, Park AK, Lee ES, Park WY, Park SH, Choi JW, et al. miRNA expression analysis in cortical dysplasia: regulation of mTOR and LIS1 pathway. Epilepsy Res. 2014;108:433–41.

    Article  CAS  PubMed  Google Scholar 

  146. Zucchini S, Marucci G, Paradiso B, Lanza G, Roncon P, Cifelli P, et al. Identification of miRNAs differentially expressed in human epilepsy with or without granule cell pathology. PLoS One. 2014;9, e105521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  147. Fiore R, Khudayberdiev S, Christensen M, Siegel G, Flavell SW, Kim TK, et al. Mef2-mediated transcription of the miR379-410 cluster regulates activity-dependent dendritogenesis by fine-tuning Pumilio2 protein levels. EMBO J. 2009;28:697–710.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Boison D, Sandau US, Ruskin DN, Kawamura Jr M, Masino SA. Homeostatic control of brain function—new approaches to understand epileptogenesis. Front Cell Neurosci. 2013;7:109.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Roopra A, Dingledine R, Hsieh J. Epigenetics and epilepsy. Epilepsia. 2012;53 Suppl 9:2–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Miller-Delaney SF, Bryan K, Das S, McKiernan RC, Bray IM, Reynolds JP, et al. Differential DNA methylation profiles of coding and non-coding genes define hippocampal sclerosis in human temporal lobe epilepsy. Brain. 2015;138:616–31.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Risbud RM, Lee C, Porter BE. Neurotrophin-3 mRNA a putative target of miR21 following status epilepticus. Brain Res. 2011;1424:53–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Jimenez-Mateos EM, Engel T, Merino-Serrais P, McKiernan RC, Tanaka K, Mouri G, et al. Silencing microRNA-134 produces neuroprotective and prolonged seizure-suppressive effects. Nat Med. 2012;18:1087–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Bot AM, Debski KJ, Lukasiuk K. Alterations in miRNA levels in the dentate gyrus in epileptic rats. PLoS One. 2013;8, e76051.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Sun Z, Yu JT, Jiang T, Li MM, Tan L, Zhang Q, et al. Genome-wide microRNA profiling of rat hippocampus after status epilepticus induced by amygdala stimulation identifies modulators of neuronal apoptosis. PLoS One. 2013;8, e78375.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Moon J, Lee ST, Choi J, Jung KH, Yang H, Khalid A, et al. Unique behavioral characteristics and microRNA signatures in a drug resistant epilepsy model. PLoS One. 2014;9, e85617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  156. Matos G, Scorza FA, Mazzotti DR, Guindalini C, Cavalheiro EA, Tufik S, et al. The effects of sleep deprivation on microRNA expression in rats submitted to pilocarpine-induced status epilepticus. Prog Neuropsychopharmacol Biol Psychiatry. 2014;51:159–65.

    Article  CAS  PubMed  Google Scholar 

  157. Li MM, Jiang T, Sun Z, Zhang Q, Tan CC, Yu JT, Tan L. Genome-wide microRNA expression profiles in hippocampus of rats with chronic temporal lobe epilepsy. Sci Rep. 2014; 4, 4734.

    Google Scholar 

  158. Kretschmann A, Danis B, Andonovic L, Abnaof K, van Rikxoort M, Siegel F, et al. Different microRNA profiles in chronic epilepsy versus acute seizure mouse models. J Mol Neurosci. 2015;55:466–79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Sosanya NM, Brager DH, Wolfe S, Niere F, Raab-Graham KF. Rapamycin reveals an mTOR-independent repression of Kv1.1 expression during epileptogenesis. Neurobiol Dis. 2015;73:96–105.

    Article  CAS  PubMed  Google Scholar 

  160. Guo J, Wang H, Wang Q, Chen Y, Chen S. Expression of p-CREB and activity-dependent miR-132 in temporal lobe epilepsy. Int J Clin Exp Med. 2014;7:1297–306.

    CAS  PubMed  PubMed Central  Google Scholar 

  161. Kaalund SS, Veno MT, Bak M, Moller RS, Laursen H, Madsen F, et al. Aberrant expression of miR-218 and miR-204 in human mesial temporal lobe epilepsy and hippocampal sclerosis-convergence on axonal guidance. Epilepsia. 2014;55:2017–27.

    Article  CAS  PubMed  Google Scholar 

  162. Dombkowski AA, Batista CE, Cukovic D, Carruthers NJ, Ranganathan R, Shukla U, et al. Cortical tubers: windows into dysregulation of epilepsy risk and synaptic signaling genes by microRNAs. Cereb Cortex. 2014.

    Google Scholar 

  163. Jiang G, Zhou R, He X, Shi Z, Huang M, Yu J, et al. Expression levels of microRNA-199 and hypoxia-inducible factor-1 alpha in brain tissue of patients with intractable epilepsy. Int J Neurosci. 2014:1–29.

    Google Scholar 

  164. Brown BD, Naldini L. Exploiting and antagonizing microRNA regulation for therapeutic and experimental applications. Nat Rev Genet. 2009;10:578–85.

    Article  CAS  PubMed  Google Scholar 

  165. Bhalala OG, Srikanth M, Kessler JA. The emerging roles of microRNAs in CNS injuries. Nat Rev Neurol. 2013;9:328–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Edbauer D, Neilson JR, Foster KA, Wang CF, Seeburg DP, Batterton MN, et al. Regulation of synaptic structure and function by FMRP-associated microRNAs miR-125b and miR-132. Neuron. 2010;65:373–84.

    Article  CAS  PubMed  Google Scholar 

  167. Wayman GA, Davare M, Ando H, Fortin D, Varlamova O, Cheng HY, et al. An activity-regulated microRNA controls dendritic plasticity by down-regulating p250GAP. Proc Natl Acad Sci U S A. 2008;105:9093–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Huang Y, Guo J, Wang Q, Chen Y. MicroRNA-132 silencing decreases the spontaneous recurrent seizures. Int J Clin Exp Med. 2014;7:1639–49.

    PubMed  PubMed Central  Google Scholar 

  169. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene. 2007;26:5017–22.

    Article  CAS  PubMed  Google Scholar 

  170. Morrison RS, Wenzel HJ, Kinoshita Y, Robbins CA, Donehower LA, Schwartzkroin PA. Loss of the p53 tumor suppressor gene protects neurons from kainate—induced cell death. J Neurosci. 1996;16:1337–45.

    CAS  PubMed  Google Scholar 

  171. Engel T, Tanaka K, Jimenez-Mateos EM, Caballero-Caballero A, Prehn JH, Henshall DC. Loss of p53 results in protracted electrographic seizures and development of an aggravated epileptic phenotype following status epilepticus. Cell Death Dis. 2010;1, e79.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. McKiernan RC, Jimenez-Mateos EM, Sano T, Bray I, Stallings RL, Simon RP, et al. Expression profiling the microRNA response to epileptic preconditioning identifies miR-184 as a modulator of seizure-induced neuronal death. Exp Neurol. 2012;237:346–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Schratt GM, Tuebing F, Nigh EA, Kane CG, Sabatini ME, Kiebler M, et al. A brain-specific microRNA regulates dendritic spine development. Nature. 2006;439:283–9.

    Article  CAS  PubMed  Google Scholar 

  174. Jimenez-Mateos EM, Engel T, Merino-Serrais P, Fernaud-Espinosa I, Rodriguez-Alvarez N, Reynolds J, et al. Antagomirs targeting microRNA-134 increase hippocampal pyramidal neuron spine volume in vivo and protect against pilocarpine-induced status epilepticus. Brain Struct Funct. 2015;220(4):2387–99.

    Article  CAS  PubMed  Google Scholar 

  175. Wang XM, Jia RH, Wei D, Cui WY, Jiang W. MiR-134 blockade prevents status epilepticus like-activity and is neuroprotective in cultured hippocampal neurons. Neurosci Lett. 2014;572:20–5.

    Article  CAS  PubMed  Google Scholar 

  176. Scholer N, Langer C, Dohner H, Buske C, Kuchenbauer F. Serum microRNAs as a novel class of biomarkers: a comprehensive review of the literature. Exp Hematol. 2010;38:1126–30.

    Article  PubMed  CAS  Google Scholar 

  177. De Smaele E, Ferretti E, Gulino A. MicroRNAs as biomarkers for CNS cancer and other disorders. Brain Res. 2010;1338:100–11.

    Article  PubMed  CAS  Google Scholar 

  178. Chen X, Ba Y, Ma L, Cai X, Yin Y, Wang K, et al. Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res. 2008;18:997–1006.

    Article  CAS  PubMed  Google Scholar 

  179. Fichtlscherer S, De Rosa S, Fox H, Schwietz T, Fischer A, Liebetrau C, et al. Circulating microRNAs in patients with coronary artery disease. Circ Res. 2010;107:677–84.

    Article  CAS  PubMed  Google Scholar 

  180. Corsten MF, Dennert R, Jochems S, Kuznetsova T, Devaux Y, Hofstra L, et al. Circulating MicroRNA-208b and MicroRNA-499 reflect myocardial damage in cardiovascular disease. Circ Cardiovasc Genet. 2010;3:499–506.

    Article  PubMed  Google Scholar 

  181. Valadi H, Ekstrom K, Bossios A, Sjostrand M, Lee JJ, Lotvall JO. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 2007;9:654–9.

    Article  CAS  PubMed  Google Scholar 

  182. Jin XF, Wu N, Wang L, Li J. Circulating microRNAs: a novel class of potential biomarkers for diagnosing and prognosing central nervous system diseases. Cell Mol Neurobiol. 2013;33:601–13.

    Article  CAS  PubMed  Google Scholar 

  183. Reid G, Kirschner MB, van Zandwijk N. Circulating microRNAs: association with disease and potential use as biomarkers. Crit Rev Oncol Hematol. 2011;80:193–208.

    Article  PubMed  Google Scholar 

  184. Creemers EE, Tijsen AJ, Pinto YM. Circulating microRNAs: novel biomarkers and extracellular communicators in cardiovascular disease? Circ Res. 2012;110:483–95.

    Article  CAS  PubMed  Google Scholar 

  185. Mo MH, Chen L, Fu Y, Wang W, Fu SW. Cell-free circulating miRNA biomarkers in cancer. J Cancer Educ. 2012;3:432–48.

    Article  CAS  Google Scholar 

  186. Janssen HL, Reesink HW, Lawitz EJ, Zeuzem S, Rodriguez-Torres M, Patel K, et al. Treatment of HCV infection by targeting microRNA. N Engl J Med. 2013;368:1685–94.

    Article  CAS  PubMed  Google Scholar 

  187. Boudreau RL, Rodriguez-Lebron E, Davidson BL. RNAi medicine for the brain: progresses and challenges. Hum Mol Genet. 2011;20:R21–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Davidson BL, McCray Jr PB. Current prospects for RNA interference-based therapies. Nat Rev Genet. 2011;12:329–40.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors apologize to those authors whose relevant work was not cited here. microRNA research in the authors’ group is currently supported by grants from Health Research Board (HRA-POR-2013-325), European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement n° 602130, Science Foundation Ireland (12/RC/2272, 12/COEN/18, 13/IA/1891, 14/ADV/RC2721), and Irish Research Council (GOIPD/2014/566).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David C. Henshall Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Reschke, C.R., Henshall, D.C. (2015). microRNA and Epilepsy. In: Santulli, G. (eds) microRNA: Medical Evidence. Advances in Experimental Medicine and Biology, vol 888. Springer, Cham. https://doi.org/10.1007/978-3-319-22671-2_4

Download citation

Publish with us

Policies and ethics