Skip to main content

Cellular Interactions with Self-assembled Biomaterials and Composites for Bone Tissue Engineering

  • Chapter
  • First Online:

Part of the book series: Biosystems & Biorobotics ((BIOSYSROB,volume 9))

Abstract

Bone is an extremely important tissue with great versatility that provides support, movement, and protection for the organs of the body. Various bone related pathologies such as osteoporosis have the potential to create large defects that do not have the capability to heal with only basic clinical intervention. In these circumstances, the principles of tissue engineering are utilized in order to provide additional material to either replace or repair the damaged bone regions. Tissue engineering involves the utilization of various combinations of growth factors, cells, and biomaterials to recreate organs or lost tissue regions. Currently, the most prominent materials for this purpose are limited by issues such as availability for autografts, possible antigenicity for allografts, or insufficient of bioactivity as is the case with many synthetic materials. To address these concerns, research has shifted focus towards development of synthetic materials that faithfully mimic native bone’s natural structure and function. Bone formation and regeneration are dependent upon the dynamic interactions between bone cells and extracellular matrix components. Therefore, it is important that the native extracellular matrix components are recapitulated to the greatest extent possible. Specifically, this new paradigm shift requires the development of scaffolds that recreate both the structural and functional qualities of bone tissue. These materials are intended to enhance the interactions of bone forming cells and biomaterials. Adopting this strategy, many groups have developed self-assembling materials to serve as functionalized scaffolds for enhancing the dynamic interactions between the bone cells and the biomaterials for subsequent bone tissue regeneration. In this chapter, the underlying principles of bone tissue engineering, bone cell interactions, various bioactive, self-assembling biomaterial technologies, and the means by which they improve interactions with bone forming cells are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Meghji, S.: Bone remodelling. Br. Dent. J. 172, 235–242 (1992)

    Google Scholar 

  2. Robinson, R.A.: Bone tissue: composition and function. Johns Hopkins Med. J. 145, 10–24 (1979)

    Google Scholar 

  3. Eastoe, J.E.: The Chemical Composition of Bone and Tooth. Adv. Fluorine. Res. 21, 5–17 (1965)

    Google Scholar 

  4. Ashman, R.F., Buckwalter, J.A., Devane, P., Dobbs, M.B., Ferguson, P.J., Flatow, E.L., France, J.C., Green, N.E., Guyton, G.P., Horne, G.: Turek’s Orthopaedics: Principles and Their Application, 6th edn. Lippincott Williams and Wilkins, Iowa City (2005)

    Google Scholar 

  5. Couchman, J.R., Austria, M.R., Woods, A.: Fibronectin-cell interactions. J. Invest. Dermatol. 94, 7S–14S (1990)

    Google Scholar 

  6. Fung, Y.-C.: Biomechanics: Mechanical properties of living tissues, 2nd edn. Springer, New York (1993)

    Google Scholar 

  7. Nijweide, P.J., Burger, E.H., Feyen, J.H.: Cells of bone: proliferation, differentiation, and hormonal regulation. Physiol. Rev. 66, 855–886 (1986)

    Google Scholar 

  8. Heino, T.J., Kurata, K., Higaki, H., Vaananen, H.K.: Evidence for the role of osteocytes in the initiation of targeted remodeling. Technol. Health Care 17, 49–56 (2009)

    Google Scholar 

  9. Pittenger, M.F., Mackay, A.M., Beck, S.C., Jaiswal, R.K., Douglas, R., Mosca, J.D., Moorman, M.A., Simonetti, D.W., Craig, S., Marshak, D.R.: Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999)

    Google Scholar 

  10. Muller-Sieburg, C.E., Cho, R.H., Thoman, M., Adkins, B., Sieburg, H.B.: Deterministic regulation of hematopoietic stem cell self-renewal and differentiation. Blood 100, 1302–1309 (2002)

    Google Scholar 

  11. Marieb, E.N., Hoehn, K.: Human anatomy & physiology, 7th edn. Pearson Benjamin Cummings, San Francisco (2007)

    Google Scholar 

  12. Gilbert, S.F.: Paraxial and intermediate mesoderm Developmental biology, 6th edn., vol. xviii, 749 p. Sinauer Associates, Sunderland (2000)

    Google Scholar 

  13. Cruess, R.L., Dumont, J.: Fracture healing. Can. J. Surg. 18, 403–413 (1975)

    Google Scholar 

  14. Ketenjian, A.Y., Jafri, A.M., Arsenis, C.: Studies on the mechanism of callus cartilage differentiation and calcification during fracture healing. Orthop. Clin. North Am. 9, 43–65 (1978)

    Google Scholar 

  15. Tsunoda, M., Mizuno, K., Matsubara, T.: The osteogenic potential of fracture hematoma and its mechanism on bone formation–through fracture hematoma culture and transplantation of freeze-dried hematoma. Kobe J. Med. Sci. 39, 35–50 (1993)

    Google Scholar 

  16. Macmahon, P., Eustace, S.J.: General principles. Semin. Musculoskelet. Radiol. 10, 243–248 (2006)

    Google Scholar 

  17. Sfeir, C., Ho, L., Doll, B.A., Azari, K., Hollinger, J.O.: Fracture repair. In: Lieberman, J.R., Friedlander, G.E. (eds.) Bone Regeneration and Repair: Biology and Clinical Applications. Humana Press Inc., Totowa (2005)

    Google Scholar 

  18. Greer, R.B.: 3rd. Wolff’s Law. Orthopaedic Review 22, 1087–1088 (1993)

    Google Scholar 

  19. Cowin, S.C.: Wolff’s law of trabecular architecture at remodeling equilibrium. J. Biomech. Eng. 108, 83–88 (1986)

    Google Scholar 

  20. Alberts, B., Alexander, J., Lewis, J., Raff, M., Roberts, K., Walter, P.: Cell Communication Molecular biology of the cell, 4th edn., vol. xxxiv, 1548 p. Garland Science, New York (2002)

    Google Scholar 

  21. Cooper, G.M., Hausman, R.E.: Cell Signaling The cell : a molecular approach, 5th edn., vol. xix, 820 p. ASM Press/Sinauer Associates, Washington, D.C./Sunderland (2009)

    Google Scholar 

  22. Lafrenie, R.M., Yamada, K.M.: Integrin-dependent signal transduction. J. Cell. Biochem. 61, 543–553 (1996)

    Google Scholar 

  23. Martin, G.R., Kleinman, H.K., Terranova, V.P., Ledbetter, S., Hassell, J.R.: The regulation of basement membrane formation and cell-matrix interactions by defined supramolecular complexes. Ciba Found. Symp. 108, 197–212 (1984)

    Google Scholar 

  24. Keselowsky, B.G., Collard, D.M., Garcia, A.J.: Integrin binding specificity regulates biomaterial surface chemistry effects on cell differentiation. Proc. Natl. Acad. Sci. U.S.A. 102, 5953–5957 (2005)

    Google Scholar 

  25. Freeman, S., Hamilton, H.: Biological science / Scott Freeman; contributors, Healy Hamilton … [et al.], 2nd edn. Pearson Prentice Hall, Upper Saddle River (2005)

    Google Scholar 

  26. Lodish, H.F., Berk, A., Zipursky, S.L.: Cell-to-Cell Signaling: Hormones and Receptors Molecular cell biology, 4th edn. W.H. Freeman, New York (2000)

    Google Scholar 

  27. Silverthorn, D.U.: Human physiology : an integrated approach, 3rd edn. Pearson/Benjamin Cummings, San Francisco (2004)

    Google Scholar 

  28. Arrington, E.D., Smith, W.J., Chambers, H.G., Bucknell, A.L., Davino, N.A.: Complications of iliac crest bone graft harvesting. Clin. Orthop. Relat. Res., 300–309 (1996)

    Google Scholar 

  29. Jager, M., Herten, M., Fochtmann, U., Fischer, J., Hernigou, P., Zilkens, C., Hendrich, C., Krauspe, R.: Bridging the gap: bone marrow aspiration concentrate reduces autologous bone grafting in osseous defects. J. Orthop. Res. 29, 173–180 (2011)

    Google Scholar 

  30. Arora, N.S., Ramanayake, T., Ren, Y.F., Romanos, G.E.: Platelet-rich plasma: a literature review. Implant Dent. 18, 303–310 (2009)

    Google Scholar 

  31. Griffin, X.L., Smith, C.M., Costa, M.L.: The clinical use of platelet-rich plasma in the promotion of bone healing: a systematic review. Injury 40, 158–162 (2009)

    Google Scholar 

  32. Cowan, C.M., Soo, C., Ting, K., Wu, B.: Evolving concepts in bone tissue engineering. Curr. Top. Dev. Biol. 66, 239–285 (2005)

    Google Scholar 

  33. Urist, M.R.: Bone: formation by autoinduction. Clin. Orthop. Relat. Res. 2002, 4–10 (1965)

    Google Scholar 

  34. Giannoudis, P.V., Dinopoulos, H., Tsiridis, E.: Bone substitutes: an update. Injury 36(Suppl. 3), S20–S27 (2005)

    Google Scholar 

  35. Kennady, M.C., Tucker, M.R., Lester, G.E., Buckley, M.J.: Stress shielding effect of rigid internal fixation plates on mandibular bone grafts. A photon absorption densitometry and quantitative computerized tomographic evaluation. Int. J. Oral Maxillofac. Surg. 18, 307–310 (1989)

    Google Scholar 

  36. Murugan, R., Kumar, T.S.S., Ramakrishna, S.: Scaffolds for Bone Tissue Restoration from Biological Apatite. Trends Biomater. Artif. Organs 20, 35–39 (2006)

    Google Scholar 

  37. Langer, R., Vacanti, J.P.: Tissue engineering. Science 260, 920–926 (1993)

    Google Scholar 

  38. MacArthur, B.D., Oreffo, R.O.: Bridging the gap. Nature 433, 19 (2005)

    Google Scholar 

  39. Ruoslahti, E., Pierschbacher, M.D.: New perspectives in cell adhesion: RGD and integrins. Science 238, 491–497 (1987)

    Google Scholar 

  40. Rezania, A., Healy, K.E.: Integrin subunits responsible for adhesion of human osteoblast-like cells to biomimetic peptide surfaces. J. Orthop. Res. 17, 615–623 (1999)

    Google Scholar 

  41. Hersel, U., Dahmen, C., Kessler, H.: RGD modified polymers: biomaterials for stimulated cell adhesion and beyond. Biomaterials 24, 4385–4415 (2003)

    Google Scholar 

  42. Horii, A., Wang, X., Gelain, F., Zhang, S.: Biological designer self-assembling Peptide nanofiber scaffolds significantly enhance osteoblast proliferation, differentiation and 3-D migration. PLoS One 2, e190 (2007)

    Google Scholar 

  43. Schonmeyr, B.H., Wong, A.K., Li, S., Gewalli, F., Cordiero, P.G., Mehrara, B.J.: Treatment of hydroxyapatite scaffolds with fibronectin and fetal calf serum increases osteoblast adhesion and proliferation in vitro. Plast. Reconstr. Surg. 121, 751–762 (2008)

    Google Scholar 

  44. Sogo, Y., Ito, A., Matsuno, T., Oyane, A., Tamazawa, G., Satoh, T., Yamazaki, A., Uchimura, E., Ohno, T.: Fibronectin-calcium phosphate composite layer on hydroxyapatite to enhance adhesion, cell spread and osteogenic differentiation of human mesenchymal stem cells in vitro. Biomed. Mater. 2, 116–123 (2007)

    Google Scholar 

  45. Mizuno, M., Fujisawa, R., Kuboki, Y.: Type I collagen-induced osteoblastic differentiation of bone-marrow cells mediated by collagen-alpha2beta1 integrin interaction. J. Cell. Physiol. 184, 207–213 (2000)

    Google Scholar 

  46. Priya, A., Nath, S., Biswas, K., Basu, B.: In vitro dissolution of calcium phosphate-mullite composite in simulated body fluid. J. Mater. Sci. Mater. Med. 21, 1817–1828 (2010)

    Google Scholar 

  47. Kong, Y.M., Bae, C.J., Lee, S.H., Kim, H.W., Kim, H.E.: Improvement in biocompatibility of ZrO2-Al2O3 nano-composite by addition of HA. Biomaterials 26, 509–517 (2005)

    Google Scholar 

  48. Kong, Y.M., Kim, D.H., Kim, H.E., Heo, S.J., Koak, J.Y.: Hydroxyapatite-based composite for dental implants: an in vivo removal torque experiment. J. Biomed. Mater. Res. 63, 714–721 (2002)

    Google Scholar 

  49. Dulgar-Tulloch, A.J., Bizios, R., Siegel, R.W.: Human mesenchymal stem cell adhesion and proliferation in response to ceramic chemistry and nanoscale topography. J. Biomed. Mater. Res. A 90, 586–594 (2009)

    Google Scholar 

  50. Zhang, S.: Emerging biological materials through molecular self-assembly. Biotechnol. Adv. 20, 321–339 (2002)

    Google Scholar 

  51. Zhang, S., Holmes, T., Lockshin, C., Rich, A.: Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proc. Natl. Acad. Sci. U.S.A. 90, 3334–3338 (1993)

    Google Scholar 

  52. Zhang, S., Holmes, T.C., DiPersio, C.M., Hynes, R.O., Su, X., Rich, A.: Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials 16, 1385–1393 (1995)

    Google Scholar 

  53. Holmes, T.C., de Lacalle, S., Su, X., Liu, G., Rich, A., Zhang, S.: Extensive neurite outgrowth and active synapse formation on self-assembling peptide scaffolds. Proceedings of the National Academy of Sciences of the United States of America 97, 6728–6733 (2000)

    Google Scholar 

  54. Zhang, S., Rich, A.: Direct conversion of an oligopeptide from a beta-sheet to an alpha-helix: a model for amyloid formation. Proc. Natl. Acad. Sci. U.S.A. 94, 23–28 (1997)

    Google Scholar 

  55. Altman, M., Lee, P., Rich, A., Zhang, S.: Conformational behavior of ionic self-complementary peptides. Protein Sci. 9, 1095–1105 (2000)

    Google Scholar 

  56. Zhang, S., Yan, L., Altman, M., Lassle, M., Nugent, H., Frankel, F., Lauffenburger, D.A., Whitesides, G.M., Rich, A.: Biological surface engineering: a simple system for cell pattern formation. Biomaterials 20, 1213–1220 (1999)

    Google Scholar 

  57. Vauthey, S., Santoso, S., Gong, H., Watson, N., Zhang, S.: Molecular self-assembly of surfactant-like peptides to form nanotubes and nanovesicles. Proc. Natl. Acad. Sci. U.S.A. 99, 5355–5360 (2002)

    Google Scholar 

  58. Tarasevicius, S., Tarasevicius, R., Zegunis, V., Smailys, A., Kalesinskas, R.J.: Metal type of the femoral stem in total hip arthroplasty. Medicina (Kaunas) 41, 932–935 (2005)

    Google Scholar 

  59. Endres, S., Bartsch, I., Sturz, S., Kratz, M., Wilke, A.: Polyethylene and cobalt-chromium molybdenium particles elicit a different immune response in vitro. J. Mater. Sci. Mater. Med. 19, 1209–1214 (2008)

    Google Scholar 

  60. Gosheger, G., Goetze, C., Hardes, J., Joosten, U., Winkelmann, W., von Eiff, C.: The influence of the alloy of megaprostheses on infection rate. J. Arthroplasty 23, 916–920 (2008)

    Google Scholar 

  61. Collier, J.P., Mayor, M.B., Jensen, R.E., Surprenant, V.A., Surprenant, H.P., McNamar, J.L., Belec, L.: Mechanisms of failure of modular prostheses. Clin. Orthop. Relat. Res., 129–139 (1992)

    Google Scholar 

  62. Sargeant, T.D., Rao, M.S., Koh, C.Y., Stupp, S.I.: Covalent functionalization of NiTi surfaces with bioactive peptide amphiphile nanofibers. Biomaterials 29, 1085–1098 (2008)

    Google Scholar 

  63. Thieme, M., Wieters, K.P., Bergner, F., Scharnweber, D., Worch, H., Ndop, J., Kim, T.J., Grill, W.: Titanium powder sintering for preparation of a porous functionally graded material destined for orthopaedic implants. J. Mater. Sci. Mater. Med. 12, 225–231 (2001)

    Google Scholar 

  64. Bandyopadhyay, A., Espana, F., Balla, V.K., Bose, S., Ohgami, Y., Davies, N.M.: Influence of porosity on mechanical properties and in vivo response of Ti6Al4 V implants. Acta Biomater. 6, 1640–1648 (2010)

    Google Scholar 

  65. Sargeant, T.D., Oppenheimer, S.M., Dunand, D.C., Stupp, S.I.: Titanium foam-bioactive nanofiber hybrids for bone regeneration. J. Tissue Eng. Regen. Med. 2, 455–462 (2008)

    Google Scholar 

  66. Anderson, J.M., Kushwaha, M., Tambralli, A., Bellis, S.L., Camata, R.P., Jun, H.W.: Osteogenic differentiation of human mesenchymal stem cells directed by extracellular matrix-mimicking ligands in a biomimetic self-assembled peptide amphiphile nanomatrix. Biomacromolecules 10, 2935–2944 (2009)

    Google Scholar 

  67. Yoshimi, R., Yamada, Y., Ito, K., Nakamura, S., Abe, A., Nagasaka, T., Okabe, K., Kohgo, T., Baba, S., Ueda, M.: Self-assembling peptide nanofiber scaffolds, platelet-rich plasma, and mesenchymal stem cells for injectable bone regeneration with tissue engineering. J. Craniofac. Surg. 20, 1523–1530 (2009)

    Google Scholar 

  68. Hartgerink, J.D., Beniash, E., Stupp, S.I.: Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001)

    Google Scholar 

  69. Muller, P., Bulnheim, U., Diener, A., Luthen, F., Teller, M., Klinkenberg, E.D., Neumann, H.G., Nebe, B., Liebold, A., Steinhoff, G., Rychly, J.: Calcium phosphate surfaces promote osteogenic differentiation of mesenchymal stem cells. J. Cell. Mol. Med. 12, 281–291 (2008)

    Google Scholar 

  70. Matsumine, A., Myoui, A., Kusuzaki, K., Araki, N., Seto, M., Yoshikawa, H., Uchida, A.: Calcium hydroxyapatite ceramic implants in bone tumour surgery. A long-term follow-up study. J. Bone Joint Surg. Br. 86, 719–725 (2004)

    Google Scholar 

  71. White, E., Shors, E.C.: Biomaterial aspects of Interpore-200 porous hydroxyapatite. Dent. Clin. North Am. 30, 49–67 (1986)

    Google Scholar 

  72. Vuola, J., Taurio, R., Goransson, H., Asko-Seljavaara, S.: Compressive strength of calcium carbonate and hydroxyapatite implants after bone-marrow-induced osteogenesis. Biomaterials 19, 223–227 (1998)

    Google Scholar 

  73. Vines, J.B., Lim, D.J., Anderson, J.M., Jun, H.W.: Hydroxyapatite nanoparticle reinforced peptide amphiphile nanomatrix enhances the osteogenic differentiation of mesenchymal stem cells by compositional ratios. Acta Biomater. 8, 4053–4063 (2012)

    Google Scholar 

  74. Anderson, J.M., Patterson, J.L., Vines, J.B., Javed, A., Gilbert, S.R., Jun, H.W.: Biphasic peptide amphiphile nanomatrix embedded with hydroxyapatite nanoparticles for stimulated osteoinductive response. ACS Nano 5, 9463–9479 (2011)

    Google Scholar 

  75. Phan, P.V., Grzanna, M., Chu, J., Polotsky, A., el-Ghannam, A., Van Heerden, D., Hungerford, D.S., Frondoza, C.G.: The effect of silica-containing calcium-phosphate particles on human osteoblasts in vitro. J. Biomed. Mater. Res. A 67, 1001–1008 (2003)

    Google Scholar 

  76. Tyagi, P., Catledge, S.A., Stanishevsky, A., Thomas, V., Vohra, Y.K.: Nanomechanical properties of electrospun composite scaffolds based on polycaprolactone and hydroxyapatite. J. Nanosci. Nanotechnol. 9, 4839–4845 (2009)

    Google Scholar 

  77. Catledge, S.A., Clem, W.C., Shrikishen, N., Chowdhury, S., Stanishevsky, A.V., Koopman, M., Vohra, Y.K.: An electrospun triphasic nanofibrous scaffold for bone tissue engineering. Biomed. Mater. 2, 142–150 (2007)

    Google Scholar 

  78. Thomas, V., Jagani, S., Johnson, K., Jose, M.V., Dean, D.R., Vohra, Y.K., Nyairo, E.: Electrospun bioactive nanocomposite scaffolds of polycaprolactone and nanohydroxyapatite for bone tissue engineering. J. Nanosci. Nanotechnol. 6, 487–493 (2006)

    Google Scholar 

  79. Kanczler, J.M., Oreffo, R.O.: Osteogenesis and angiogenesis: the potential for engineering bone. Eur. Cell. Mater. 15, 100–114 (2008)

    Google Scholar 

  80. Moon, J.J., West, J.L.: Vascularization of engineered tissues: approaches to promote angio-genesis in biomaterials. Curr. Top. Med. Chem. 8, 300–310 (2008)

    Google Scholar 

  81. Mikos, A.G., Sarakinos, G., Lyman, M.D., Ingber, D.E., Vacanti, J.P., Langer, R.: Prevascularization of porous biodegradable polymers. Biotechnol. Bioeng. 42, 716–723 (1993)

    Google Scholar 

  82. Nomi, M., Atala, A., Coppi, P.D., Soker, S.: Principals of neovascularization for tissue engineering. Mol. Aspects Med. 23, 463–483 (2002)

    Google Scholar 

  83. Lokmic, Z., Mitchell, G.M.: Engineering the microcirculation. Tissue Eng. Part B Rev. 14, 87–103 (2008)

    Google Scholar 

  84. Jain, R.K.: Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307, 58–62 (2005)

    Google Scholar 

  85. Koike, Y., Uzuki, M., Kokubun, S., Sawai, T.: Angiogenesis and inflammatory cell infiltration in lumbar disc herniation. Spine (Phila Pa 1976) 28, 1928–1933 (2003)

    Google Scholar 

  86. Ochoa, E.R., Vacanti, J.P.: An overview of the pathology and approaches to tissue engineering. Ann. N.Y. Acad. Sci. 979, 10–26 (2002). discussion 35-8

    Google Scholar 

  87. Santos, M.I., Reis, R.L.: Vascularization in bone tissue engineering: physiology, current strategies, major hurdles and future challenges. Macromol. Biosci. 10, 12–27 (2010)

    Google Scholar 

  88. Koike, N., Fukumura, D., Gralla, O., Au, P., Schechner, J.S., Jain, R.K.: Tissue engineering: creation of long-lasting blood vessels. Nature 428, 138–139 (2004)

    Google Scholar 

  89. Yu, H., VandeVord, P.J., Mao, L., Matthew, H.W., Wooley, P.H., Yang, S.Y.: Improved tissue-engineered bone regeneration by endothelial cell mediated vascularization. Biomaterials 30, 508–517 (2009)

    Google Scholar 

  90. Kaully, T., Kaufman-Francis, K., Lesman, A., Levenberg, S.: Vascularization–the conduit to viable engineered tissues. Tissue Eng. Part B Rev. 15, 159–169 (2009)

    Google Scholar 

  91. Epstein, S.E., Kornowski, R., Fuchs, S., Dvorak, H.F.: Angiogenesis therapy: amidst the hype, the neglected potential for serious side effects. Circulation 104, 115–119 (2001)

    Google Scholar 

  92. Moioli, E.K., Clark, P.A., Chen, M., Dennis, J.E., Erickson, H.P., Gerson, S.L., Mao, J.J.: Synergistic actions of hematopoietic and mesenchymal stem/progenitor cells in vascularizing bioengineered tissues. PLoS One 3, e3922 (2008)

    Google Scholar 

  93. Holder, W.D., Gruber, H.E., Roland, W.D., Moore, A.L., Culberson, C.R., Loebsack, A.B., Burg, K.J.L., Mooney, D.J.: Increased Vascularization and Heterogeneity of Vascular Structures Occurring in Polyglycolide Matrices Containing Aortic Endothelial Cells Implanted in the Rat. Tissue Eng. 3, 149–160 (1997)

    Google Scholar 

  94. Schechner, J.S., Nath, A.K., Zheng, L., Kluger, M.S., Hughes, C.C., Sierra-Honigmann, M.R., Lorber, M.I., Tellides, G., Kashgarian, M., Bothwell, A.L., Pober, J.S.: In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc.Natl. Acad. Sci. U.S.A. 97, 9191–9196 (2000)

    Google Scholar 

  95. Kaigler, D., Krebsbach, P.H., Wang, Z., West, E.R., Horger, K., Mooney, D.J.: Transplanted endothelial cells enhance orthotopic bone regeneration. J. Dent. Res. 85, 633–637 (2006)

    Google Scholar 

  96. Kaigler, D., Krebsbach, P.H., West, E.R., Horger, K., Huang, Y.C., Mooney, D.J.: Endothelial cell modulation of bone marrow stromal cell osteogenic potential. Faseb J. 19, 665–667 (2005)

    Google Scholar 

  97. Stahl, A., Wenger, A., Weber, H., Stark, G.B., Augustin, H.G., Finkenzeller, G.: Bi-directional cell contact-dependent regulation of gene expression between endothelial cells and osteoblasts in a three-dimensional spheroidal coculture model. Biochem. Biophys. Res. Commun. 322, 684–692 (2004)

    Google Scholar 

  98. Wenger, A., Stahl, A., Weber, H., Finkenzeller, G., Augustin, H.G., Stark, G.B., Kneser, U.: Modulation of in vitro angiogenesis in a three-dimensional spheroidal coculture model for bone tissue engineering. Tissue Eng. 10, 1536–1547 (2004)

    Google Scholar 

  99. Grellier, M., Granja, P.L., Fricain, J.C., Bidarra, S.J., Renard, M., Bareille, R., Bourget, C., Amedee, J., Barbosa, M.A.: The effect of the co-immobilization of human osteoprogenitors and endothelial cells within alginate microspheres on mineralization in a bone defect. Biomaterials 30, 3271–3278 (2009)

    Google Scholar 

  100. Ko, H.C., Milthorpe, B.K., McFarland, C.D.: Engineering thick tissues–the vascularisation problem. Eur. Cell. Mater. 14, 1–18 (2007). discussion 18-9

    Google Scholar 

  101. Rouwkema, J., de Boer, J., Van Blitterswijk, C.A.: Endothelial cells assemble into a 3-dimensional prevascular network in a bone tissue engineering construct. Tissue Eng. 12, 2685–2693 (2006)

    Google Scholar 

  102. Unger, R.E., Sartoris, A., Peters, K., Motta, A., Migliaresi, C., Kunkel, M., Bulnheim, U., Rychly, J., Kirkpatrick, C.J.: Tissue-like self-assembly in cocultures of endothelial cells and osteoblasts and the formation of microcapillary-like structures on three-dimensional porous biomaterials. Biomaterials 28, 3965–3976 (2007)

    Google Scholar 

  103. Au, P., Tam, J., Fukumura, D., Jain, R.K.: Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood 111, 4551–4558 (2008)

    Google Scholar 

  104. Guillotin, B., Bourget, C., Remy-Zolgadri, M., Bareille, R., Fernandez, P., Conrad, V., Amedee-Vilamitjana, J.: Human primary endothelial cells stimulate human osteoprogenitor cell differentiation. Cell. Physiol. Biochem. 14, 325–332 (2004)

    Google Scholar 

  105. Villars, F., Guillotin, B., Amedee, T., Dutoya, S., Bordenave, L., Bareille, R., Amedee, J.: Effect of HUVEC on human osteoprogenitor cell differentiation needs heterotypic gap junction communication. Am. J. Physiol. Cell Physiol. 282, C775–C785 (2002)

    Google Scholar 

  106. Gomes, M.E., Sikavitsas, V.I., Behravesh, E., Reis, R.L., Mikos, A.G.: Effect of flow perfusion on the osteogenic differentiation of bone marrow stromal cells cultured on starch-based three-dimensional scaffolds. J. Biomed. Mater. Res. A 67, 87–95 (2003)

    Google Scholar 

  107. Grellier, M., Bordenave, L., Amedee, J.: Cell-to-cell communication between osteogenic and endothelial lineages: implications for tissue engineering. Trends Biotechnol. 27, 562–571 (2009)

    Google Scholar 

  108. Fuchs, S., Hofmann, A., Kirkpatrick, C.J.: Microvessel-like structures from outgrowth endothelial cells from human peripheral blood in 2-dimensional and 3-dimensional co-cultures with osteoblastic lineage cells. Tissue Eng. 13, 2577–2588 (2007)

    Google Scholar 

  109. Bouletreau, P.J., Warren, S.M., Spector, J.A., Peled, Z.M., Gerrets, R.P., Greenwald, J.A., Longaker, M.T.: Hypoxia and VEGF up-regulate BMP-2 mRNA and protein expression in microvascular endothelial cells: implications for fracture healing. Plast. Reconstr. Surg. 109, 2384–2397 (2002)

    Google Scholar 

  110. Yamaguchi, A., Ishizuya, T., Kintou, N., Wada, Y., Katagiri, T., Wozney, J.M., Rosen, V., Yoshiki, S.: Effects of BMP-2, BMP-4, and BMP-6 on osteoblastic differentiation of bone marrow-derived stromal cell lines, ST2 and MC3T3-G2/PA6. Biochem. Biophys. Res. Commun. 220, 366–371 (1996)

    Google Scholar 

  111. Santos, M.I., Unger, R.E., Sousa, R.A., Reis, R.L., Kirkpatrick, C.J.: Crosstalk between osteoblasts and endothelial cells co-cultured on a polycaprolactone-starch scaffold and the in vitro development of vascularization. Biomaterials 30, 4407–4415 (2009)

    Google Scholar 

  112. Sun, H., Qu, Z., Guo, Y., Zang, G., Yang, B.: In vitro and in vivo effects of rat kidney vascular endothelial cells on osteogenesis of rat bone marrow mesenchymal stem cells growing on polylactide-glycoli acid (PLGA) scaffolds. Biomed. Eng. Online 6, 41 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ho-Wook Jun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vines, J.B., Alexander, G.C., Deng, L., Hwang, P.T.J., Patel, D., Jun, HW. (2016). Cellular Interactions with Self-assembled Biomaterials and Composites for Bone Tissue Engineering. In: Jo, H., Jun, HW., Shin, J., Lee, S. (eds) Biomedical Engineering: Frontier Research and Converging Technologies. Biosystems & Biorobotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-319-21813-7_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21813-7_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21812-0

  • Online ISBN: 978-3-319-21813-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics