Skip to main content

In Pursuit of Bio-inspired Triboluminescent Multifunctional Composites

  • Conference paper
Mechanics of Composite and Multi-functional Materials, Volume 7

Abstract

In the last three decades, much research work has gone into efforts to utilize the triboluminescence properties of some crystals for damage monitoring in engineering structures such as bridges and aircrafts. The key challenge from practical application point of view has to do with integrating the sensor in opaque composite structures and successfully transmitting and characterizing the TL signals generated due to damage in these structures. To solve this problem, we have developed the bio-inspired in-situ triboluminescent optical fiber (ITOF) sensor that mimics the sensory neurons of the human nervous system with an integrated sensing and transmission system. The integration of the TL-based sensing component and the transmission component has greatly enhanced the efficiency of side-coupling making distributed sensing along the entire coated length of the polymer optical fiber possible. Our group is the first to apply TL-based damage sensing to cementitious composite systems such as concrete structures to create multifunctional composites with both load carrying and in situ damage monitoring capabilities. This work will highlight key results and advances made in the development of cementitious as well as fiber reinforced polymer composites with in situ damage monitoring capabilities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chong, K.P., Carino, N.J., Washer, G.: Health monitoring of civil infrastructures. Smart Mater. Struct. 12, 483–493 (2003)

    Article  Google Scholar 

  2. Zhou, G., Sim, L.M.: Damage detection and assessment in fibre-reinforced composite structures with embedded fibre optic sensors—review. Smart Mater. Struct. 11, 925–939 (2002)

    Article  Google Scholar 

  3. Olawale, D.O., Dickens, T., Sullivan, W.G., Okoli, O.I., Sobanjo, J.O., Wang, B.: Progress in triboluminescence-based smart optical sensor system. J. Lumin. 131, 1407–1418 (2011)

    Article  Google Scholar 

  4. Kawaguchi, Y.: Fractoluminescence spectra in crystalline quartz. Jpn. J. Appl. Phys. Part 1 37, 1892–1896 (1998)

    Article  Google Scholar 

  5. Reynolds, G.T.: Piezoluminescence from a ferroelectric polymer and quartz. J. Lumin. 75, 295–299 (1997)

    Article  Google Scholar 

  6. Chandra, B.P., Elyas, M., Majumdar, B.: Dislocation models of mechanoluminescence in [gamma]- and X-irradiated alkali halides crystals. Solid State Commun. 42, 753–757 (1982)

    Article  Google Scholar 

  7. Sweeting, L.M.: Triboluminescence with and without Air. Chem. Mater. 13, 854–870 (2001)

    Article  Google Scholar 

  8. Bergeron, N.P., Hollerman, W.A., Goedeke, S.M., Hovater, M., Hubbs, W., Finchum, A., Moore, R.J., Allison, S.W., Edwards, D.L.: Experimental evidence of triboluminescence induced by hypervelocity impact. Int. J. Impact Eng. 33, 91–99 (2006)

    Article  Google Scholar 

  9. Walton, A.J.: Triboluminesence. Adv. Phys. 26, 887–948 (1977)

    Article  Google Scholar 

  10. Womack, F.N., Goedeke, S.M., Bergeron, N.P., Hollerman, W.A., Allison, S.W.: Measurement of triboluminescence and proton half brightness dose for ZnS:Mn. IEEE Trans. Nucl. Sci 51, 1737–1741 (2004)

    Article  Google Scholar 

  11. Sage, I., Humberstone, L., Oswald, I., Lloyd, P., Bourhill, G.: Getting light through black composites: embedded triboluminescent structural damage sensors. Smart Mater. Struct. 10, 332–337 (2001)

    Article  Google Scholar 

  12. Xu, C.N., Watanabe, T., Akiyama, M., Zheng, X.G.: Preparation and characteristics of highly triboluminescent ZnS film. Mater. Res. Bull. 34, 1491–1500 (1999)

    Article  Google Scholar 

  13. Olawale, D.O., Dickens, T., Lim, A., Okoli, O., Wang, B., Sobanjo, J.O.: Characterization of the triboluminescence (TL) performance of ZnS:Mn under repeated mechanical loading for smart optical damage sensor system. Presented at the NDE/NDT for Highways and Bridges: Structural materials and Technology (SMT) 2010, New York, USA, 2010

    Google Scholar 

  14. Sage, I., Badcock, R.A., Humberstone, L., Geddes, N., Kemp, M., Bishop, S., Bourhill, G.: Squeezing light out of crystals: triboluminescent sensors. In: Smart Structures and Materials 1999: Smart Materials Technologies, Newport Beach, CA, USA (1999), pp. 169–179

    Google Scholar 

  15. Sage, I., Bourhill, G.: Triboluminescent materials for structural damage monitoring. J. Mater. Chem. 11, 231–245 (2001)

    Article  Google Scholar 

  16. Chandra, B.P., Zink, J.I.: Triboluminescence and the dynamics of crystal fracture. Phys. Rev. B 21, 816–826 (1980)

    Article  Google Scholar 

  17. Chandra, B.P., Baghel, R.N., Chandra, V.K.: Mechanoluminescenct glow curve of ZnS:Mn. Chalcogenide Lett. 7, 1–9 (2010)

    Google Scholar 

  18. Xu, C.N., Zheng, X.G., Akiyama, M., Nonaka, K., Watanabe, T.: Dynamic visualization of stress distribution by mechanoluminescence image. Appl. Phys. Lett. 76, 179–181 (2000)

    Article  Google Scholar 

  19. Sohn, K.S., Seo, S.Y., Kwon, Y.N., Park, H.D.: Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4:(Eu, Dy, Nd). J. Am. Ceram. Soc. 85, 712–714 (2002)

    Article  Google Scholar 

  20. Kim, J.S., Kwon, Y.N., Shin, N., Sohn, K.S.: Mechanoluminescent SrAl2O4: Eu, Dy phosphor for use in visualization of quasidynamic crack propagation. Appl. Phys. Lett. 90, 241916 (2007)

    Article  Google Scholar 

  21. Olawale, D.O., Sullivan, G., Dickens, T., Tsalickis, S., Okoli, O., Sobanjo, J.O., Wang, B.: Development of a triboluminescence-based sensor system for concrete structures. Struct. Health Monit. 11, 139–147 (2012)

    Article  Google Scholar 

  22. Measures, R.M.: Structural monitoring with fiber optic technology. Academic, San Diego, CA (2001)

    Google Scholar 

  23. Bourhill, G., Pålsson, L.O., Samuel, I.D.W., Sage, I.C., Oswald, I.D.H., Duignan, J.P.: The solid-state photoluminescent quantum yield of triboluminescent materials. Chem. Phys. Lett. 336, 234–241 (2001)

    Article  Google Scholar 

  24. Olawale, D.O., Kliewer, K., Dickens, T., Uddin, M.J., Okoli, O.I.: Multifunctional cementitious composites with structural and damage monitoring capabilities for smart bridges. Presented at the SAMPE 2013, Society for the Advancement of Material and Process Engineering, Long Beach, CA, USA (2013)

    Google Scholar 

  25. Olawale, D.O., Kliewer, K., Dickens, T., Uddin, M.J., Okoli, O.I.: Triboluminescent optical nerves for smart concrete structures. Presented at the IWSHM 2013, The 9th International Workshop on Structural Health Monitoring—Stanford University, Stanford, CA, USA (2013)

    Google Scholar 

  26. Olawale, D.O., Kliewer, K., Okoye, A., Dickens, T.J., Uddin, M.J., Okoli, O.I.: Getting light through cementitious composites with in situ triboluminescent damage sensor. Struct. Health Monit. 13, 177–189 (2014)

    Article  Google Scholar 

  27. Chung, D.D.L.: Damage detection using self-sensing concepts. pp. 509–520, 19 April 2007

    Google Scholar 

  28. Hirano, Y., Katsumata, S., Iwahori, Y., Todoroki, A.: Artificial lightning testing on graphite/epoxy composite laminate. Compos. A: Appl. Sci. Manuf. 41, 1461–1470 (2010)

    Article  Google Scholar 

  29. Gagné, M., Therriault, D.: Lightning strike protection of composites. Prog. Aerosp. Sci. 64, 1–16 (2014)

    Article  Google Scholar 

Download references

Acknowledgement

The authors wish to acknowledge the support of the National Science Foundation (NSF) under NSF Awards No.: CMMI-0969413and EEC-1005016; and the Department of Energy under DOE Award No.: DE-NA0000728.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 The Society for Experimental Mechanics, Inc.

About this paper

Cite this paper

Olawale, D.O., Yan, J., Bhakta, D.H., Carey, D., Dickens, T.J., Okoli, O.I. (2016). In Pursuit of Bio-inspired Triboluminescent Multifunctional Composites. In: Ralph, C., Silberstein, M., Thakre, P., Singh, R. (eds) Mechanics of Composite and Multi-functional Materials, Volume 7. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-319-21762-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-21762-8_7

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-21761-1

  • Online ISBN: 978-3-319-21762-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics