Skip to main content

3D Bioprinting and 3D Imaging for Stem Cell Engineering

  • Chapter
  • First Online:
Bioprinting in Regenerative Medicine

Abstract

Three-dimensional (3D) bio-printing, a technology to create 3D tissue through layer-by-layer approach, offers great capacity to engineer tissue with desired cells, growth factors and biomaterial scaffolds in spatial patterns to mimic the native tissue architecture. With its flexibility and power, the 3D bio-printing technology can also be used to control stem cell fate and creating 3D stem cell niches. Meanwhile, 3D bio-printed tissues often incorporate thick opaque scaffold, dense population of cells, and are often large in size (1–100 mm). Thus, there are significant difficulties in visualizing the biological events within thick tissue constructs using current microscopic techniques. To elucidate the interaction of stem cells with the microenvironment in tissue engineering applications, it is necessary to develop novel molecular imaging techniques to non-invasively observe stem cell fate, cell-cell interactions, and structural features of an engineered tissue in real time. In this chapter, we review the usage of bio-printing technologies in stem cell and tissue engineering application, and the most recent development in the optical molecular imaging techniques for thick tissue imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rodriguez-porcel M, Wu JC, Gambhir SS. Molecular imaging of stem cells. StemBook; 2009. pp. 1–19.

    Google Scholar 

  2. Wilson WC, Boland T. Cell and organ printing 1: protein and cell printers. Anat Rec A Discov Mol Cell Evol Biol. 2003;272:491–6.

    Article  PubMed  Google Scholar 

  3. Boland T, Mironov V, Gutowska A, Roth Ea, Markwald RR. Cell and organ printing 2: fusion of cell aggregates in three-dimensional gels. Anat Rec A Discov Mol Cell Evol Biol. 2003;272:497–502.

    Article  PubMed  Google Scholar 

  4. Boland T, Xu T, Damon B, Cui X. Application of inkjet printing to tissue engineering. Biotechnol J. 2006;1:910–7.

    Article  CAS  PubMed  Google Scholar 

  5. Cui X, Boland T, D’Lima DD, Lotz MK. Thermal inkjet printing in tissue engineering and regenerative medicine. Recent Pat Drug Deliv Formul. 2012;6:149–55.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Cui X, Boland T. Human microvasculature fabrication using thermal inkjet printing technology. Biomaterials. 2009;30:6221–7.

    Article  CAS  PubMed  Google Scholar 

  7. Xu T, Jin J, Gregory C, Hickman JJJJ, Boland T. Inkjet printing of viable mammalian cells. Biomaterials. 2005;26:93–9.

    Article  PubMed  CAS  Google Scholar 

  8. Saunders RE, Gough JE, Derby B. Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials. 2008;29:193–203.

    Article  CAS  PubMed  Google Scholar 

  9. Hsiehen HB. High throughput bio-printing with individualized piezoelectric ejectors commercial impact at PARC. Science. 2004;(80-.).

    Google Scholar 

  10. Kim JD, Choi JS, Kim BS, Chan Choi Y, Cho YW. Piezoelectric inkjet printing of polymers: stem cell patterning on polymer substrates. Polymer (Guildf). 2010;51:2147–54.

    Article  CAS  Google Scholar 

  11. Lee W, Lee V, Polio S, Keegan P, Lee J-H, Fischer K, Park J-K, Yoo S-S. On-demand three-dimensional freeform fabrication of multi-layered hydrogel scaffold with fluidic channels. Biotechnol Bioeng. 2010;105:1178–86.

    CAS  PubMed  Google Scholar 

  12. Demirci U, Montesano G. Cell encapsulating droplet vitrification. Lab Chip. 2007;7:1428–33.

    Article  CAS  PubMed  Google Scholar 

  13. Xu T, Gregory Ca, Molnar P, Cui X, Jalota S, Bhaduri SB, Boland T. Viability and electrophysiology of neural cell structures generated by the inkjet printing method. Biomaterials. 2006;27:3580–8.

    CAS  PubMed  Google Scholar 

  14. Stachowiak JC, Richmond DL, Li TH, Brochard-Wyart F, Fletcher Da. Inkjet formation of unilamellar lipid vesicles for cell-like encapsulation. Lab Chip. 2009;9:2003–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Lee W, Debasitis JC, Lee VK, Lee J-H, Fischer K, Edminster K, Park J-K, Yoo S-S. Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials. 2009;30:1587–95.

    Article  CAS  PubMed  Google Scholar 

  16. Lee VK, Singh G, Trasatti JP, Bjornsson C, Tran TN, Xu G, Yoo S-S, Dai G, Karande P. Design and fabrication of human skin by 3D bioprinting. Tissue Eng Part C Methods. 2013;1–44.

    Google Scholar 

  17. Stringer J, Derby B. Formation and stability of lines produced by inkjet printing. Langmuir. 2010;26:10365–72.

    Article  CAS  PubMed  Google Scholar 

  18. Nakamura M, Kobayashi A, Takagi F, Watanabe A, Hiruma Y, Ohuchi K, Iwasaki Y, Horie M, Morita I, Takatani S. Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng. 2005;11:1658–66.

    Article  CAS  PubMed  Google Scholar 

  19. Murphy SV, Atala A. 3D bioprinting of tissues and organs. Nat Biotechnol. 2014. doi:10.1038/nbt.2958.

    Google Scholar 

  20. Murphy SV, Skardal A, Atala A. (2013) Evaluation of hydrogels for bio-printing applications. J Biomed Mater Res–Part A. 101 A:272–84.

    Article  CAS  Google Scholar 

  21. Campbell PG, Miller ED, Fisher GW, Walker LM, Weiss LE. Engineered spatial patterns of FGF-2 immobilized on fibrin direct cell organization. Biomaterials. 2005;26:6762–70.

    Article  CAS  PubMed  Google Scholar 

  22. Phillippi JA, Miller E, Weiss L, Huard J, Waggoner A, Campbell P. Microenvironments engineered by inkjet bioprinting spatially direct adult stem cells toward muscle- and bone-like subpopulations. Stem Cells. 2008;26:127–34.

    Article  CAS  PubMed  Google Scholar 

  23. Lee Y-B, Polio S, Lee W, Dai G, Menon L, Carroll RS, Yoo S-S. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture. Exp Neurol. 2010;223:645–52.

    Article  CAS  PubMed  Google Scholar 

  24. Xu T. Complex heterogeneous tissue constructs containing multiple cell types prepared by inkjet printing technology. Biomaterials. 2013;34:130–9.

    Article  PubMed  CAS  Google Scholar 

  25. Lee VK, Lanzi AM, Ngo H, Yoo S-S, Vincent Pa, Dai G. Generation of multi-scale vascular network system within 3d hydrogel using 3d bio-printing technology. Cell Mol Bioeng. 2014. doi:10.1007/s12195-014-0340-0.

    Google Scholar 

  26. Lee VK, Kim DY, Ngo H, Lee Y, Seo L, Yoo S-S, Vincent Pa, Dai G. Creating perfused functional vascular channels using 3D bio-printing technology. Biomaterials. 2014;35:8092–102.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  27. Faulkner-Jones A, Greenhough S, King JA, Gardner J, Courtney A, Shu W. Development of a valve-based cell printer for the formation of human embryonic stem cell spheroid aggregates. Biofabrication. 2013;5:015013.

    Article  PubMed  CAS  Google Scholar 

  28. Tasoglu S, Demirci U. Bioprinting for stem cell research. Trends Biotechnol. 2013;31:10–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Hutmacher DW. Scaffolds in tissue engineering bone and cartilage. Biomaterials. 2000;21:2529–43.

    Article  CAS  PubMed  Google Scholar 

  30. Uadkat HV, Hulsman M, Cornelissen K, et al. An algorithm-based topographical biomaterials library to instruct cell fate. Proc Natl Acad Sci U S A. 2012;109:5905–5.

    Google Scholar 

  31. Reichert JC, Cipitria a, Epari DR, et al. A tissue engineering solution for segmental defect regeneration in load-bearing long bones. Sci Transl Med. 2012;4:141ra93.

    Article  PubMed  CAS  Google Scholar 

  32. Seitz H, Rieder W, Irsen S, Leukers B, Tille C. Three-dimensional printing of porous ceramic scaffolds for bone tissue engineering. J Biomed Mater Res–Part B Appl Biomater. 2005;74:782–8.

    Article  PubMed  CAS  Google Scholar 

  33. Chang CC, Boland ED, Williams SK, Hoying JB. Direct-write bioprinting three-dimensional biohybrid systems for future regenerative therapies. J Biomed Mater Res B Appl Biomater. 2011;98:160–70.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  34. Fedorovich NE, Swennen I, Girones J, Moroni L, van Blitterswijk CA, Schacht E, Alblas J, Dhert WJ. Evaluation of photocrosslinked Lutrol hydrogel for tissue printing applications. Biomacromolecules. 2009;10:1689–96.

    Article  CAS  PubMed  Google Scholar 

  35. Chang R, Nam J, Sun W. Effects of dispensing pressure and nozzle diameter on cell survival from solid freeform fabrication-based direct cell writing. Tissue Eng Part A. 2008;14:41–8.

    Article  CAS  PubMed  Google Scholar 

  36. Chang R, Nam J, Sun W. Direct cell writing of 3D microorgan for in vitro pharmacokinetic model. Tissue Eng Part C Methods. 2008;14:157–66.

    Article  CAS  PubMed  Google Scholar 

  37. Jakab K, Damon B, Neagu A, Kachurin A, Forgacs G. Three-dimensional tissue constructs built by bioprinting. Biorheology. 2006;43:509–13.

    PubMed  Google Scholar 

  38. Visser J. Biofabrication of multi-material anatomically shaped tissue constructs. Biofabrication. 2013;5:35007.

    Article  CAS  Google Scholar 

  39. Smith CM. Three-dimensional bioassembly tool for generating viable tissue-engineered constructs. Tissue Eng. 2004;10:1566–76.

    Article  CAS  PubMed  Google Scholar 

  40. Khalil S, Nam J, Sun W. Multi-nozzle deposition for construction of 3D biopolymer tissue scaffolds. Rapid Prototyp J. 2005;11:9–17.

    Article  Google Scholar 

  41. Khalil S, Sun W. Biopolymer deposition for freeform fabrication of hydrogel tissue constructs. Mater Sci Eng C. 2007;27:469–78.

    Article  CAS  Google Scholar 

  42. Peltola SM, Melchels FP, Grijpma DW, Kellomaki M. A review of rapid prototyping techniques for tissue engineering purposes. Ann Med. 2008;40:268–80.

    Article  CAS  PubMed  Google Scholar 

  43. Jones N. Science in three dimensions: the print revolution. Nat. 2012;487:22–3.

    Article  CAS  Google Scholar 

  44. Therriault D, White SR, Lewis JA. Chaotic mixing in three-dimensional microvascular networks fabricated by direct-write assembly. Nat Mater. 2003;2:265–71.

    Article  CAS  PubMed  Google Scholar 

  45. Duan B, Hockaday LA, Kang KH, Butcher JT. 3D bioprinting of heterogeneous aortic valve conduits with alginate/gelatin hydrogels. J Biomed Mater Res A. 2013;101:1255–64.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  46. Norotte C, Marga FS, Niklason LE, Forgacs G. Scaffold-free vascular tissue engineering using bioprinting. Biomaterials. 2009;30:5910–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Shim J-H, Lee J-S, Kim JY, Cho D-W. Bioprinting of a mechanically enhanced three-dimensional dual cell-laden construct for osteochondral tissue engineering using a multi-head tissue/organ building system. J Micromechanics Microengineering. 2012;22:085014.

    Article  CAS  Google Scholar 

  48. Liu Tsang V, Chen AA, Cho LM, Jadin KD, Sah RL, DeLong S, West JL, Bhatia SN. Fabrication of 3D hepatic tissues by additive photopatterning of cellular hydrogels. FASEB J. 2007;21:790–801.

    Article  PubMed  CAS  Google Scholar 

  49. Yan Y, Wang X, Pan Y, Liu H, Cheng J, Xiong Z, Lin F, Wu R, Zhang R, Lu Q. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique. Biomaterials. 2005;26:5864–71.

    Article  CAS  PubMed  Google Scholar 

  50. Xu F. A three-dimensional in vitro ovarian cancer coculture model using a high-throughput cell patterning platform. Biotechnol J. 2011;6:204–12.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Miller JS, Shen CJ, Legant WR, Baranski JD, Blakely BL, Chen CS. Bioactive hydrogels made from step-growth derived PEG-peptide macromers. Biomaterials. 2010;31:3736–43.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Miller JS, Stevens KR, Yang MT, et al. Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater. 2012;11:768–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  53. Mironov V, Visconti RP, Kasyanov V, Forgacs G, Drake CJ, Markwald RR. Organ printing: tissue spheroids as building blocks. Biomaterials. 2009;30:2164–74.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Mironov V, Kasyanov V, Markwald RR. Organ printing: from bioprinter to organ biofabrication line. Curr Opin Biotechnol. 2011;22:667–73.

    Article  CAS  PubMed  Google Scholar 

  55. Marga F. Toward engineering functional organ modules by additive manufacturing. Biofabrication. 2012;4:22001.

    Article  Google Scholar 

  56. Nair K, Gandhi M, Khalil S, Yan KC, Marcolongo M, Barbee K, Sun W. Characterization of cell viability during bioprinting processes. Biotechnol J. 2009;4:1168–77.

    Article  CAS  PubMed  Google Scholar 

  57. Kingsley DM, Dias AD, Chrisey DB, Corr DT. Single-step laser-based fabrication and patterning of cell-encapsulated alginate microbeads. Biofabrication. 2013;5:045006.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  58. Ringeisen BR, Wu PK, Kim H, Piqué A, Auyeung RYC, Young HD, Chrisey DB, Krizman DB. Picoliter-scale protein microarrays by laser direct write. Biotechnol Prog. 2002;18:1126–9.

    Article  CAS  PubMed  Google Scholar 

  59. Colina M, Serra P, Fernández-Pradas JM, Sevilla L, Morenza JL. DNA deposition through laser induced forward transfer. Biosens Bioelectron. 2005;20:1638–42.

    Article  CAS  PubMed  Google Scholar 

  60. Chrisey DB, Piqué A, McGill RA, Horwitz JS, Ringeisen BR, Bubb DM, Wu PK. Laser deposition of polymer and biomaterial films. Chem Rev. 2003;103:553–76.

    Article  CAS  PubMed  Google Scholar 

  61. Barron JA, Ringeisen BR, Kim H, Spargo BJ, Chrisey DB. Application of laser printing to mammalian cells. Thin Solid Films. 2004;453–454:383–7.

    Article  CAS  Google Scholar 

  62. Barron JA, Wu P, Ladouceur HD, Ringeisen BR. Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices. 2004;6:139–47.

    Article  CAS  PubMed  Google Scholar 

  63. Schiele NR, Koppes RA, Corr DT, Ellison KS, Thompson DM, Ligon LA, Lippert TKM, Chrisey DB. Laser direct writing of combinatorial libraries of idealized cellular constructs: biomedical applications. Appl Surf Sci. 2009;255:5444–7.

    Article  CAS  Google Scholar 

  64. Schiele NR, Chrisey DB, Corr DT. Gelatin-based laser direct-write technique for the precise spatial patterning of cells. Tissue Eng Part C Methods. 2011;17:289–98.

    Article  PubMed Central  PubMed  Google Scholar 

  65. Ringeisen BR, Kim H, Barron Ja, Krizman DB, Chrisey DB, Jackman S, Auyeung RYC, Spargo BJ. Laser printing of pluripotent embryonal carcinoma cells. Tissue Eng. 2004;10:483–91.

    Article  CAS  PubMed  Google Scholar 

  66. Hopp B, Smausz T, Kresz N, Barna N, Bor Z, Kolozsvári L, Chrisey DB, Szabó A, Nógrádi A. Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng. 2005;11:1817–23.

    Article  CAS  PubMed  Google Scholar 

  67. Chen C, Barron J, Ringeisen B. Cell patterning without chemical surface modification: cell–cell interactions between printed bovine aortic endothelial cells (BAEC) on a homogeneous cell-adherent hydrogel. Appl Surf Sci. 2006;252:8641–5.

    Article  CAS  Google Scholar 

  68. Guillemot F, Souquet A, Catros S, et al. High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater. 2010;6:2494–500.

    Article  CAS  PubMed  Google Scholar 

  69. Patz TM, Doraiswamy A, Narayan RJ, He W, Zhong Y, Bellamkonda R, Modi R, Chrisey DB. Three-dimensional direct writing of B35 neuronal cells. J Biomed Mater Res. 2006;78:124–30.

    Article  CAS  Google Scholar 

  70. Bauwens CL, Peerani R, Niebruegge S, Woodhouse KA, Kumacheva E, Husain M, Zandstra PW. Control of human embryonic stem cell colony and aggregate size heterogeneity influences differentiation trajectories. Stem Cells. 2008;26:2300–10.

    Article  PubMed  Google Scholar 

  71. Sun Y, Villa-Diaz LG, Lam RHW, Chen W, Krebsbach PH, Fu J. Mechanics regulates fate decisions of human embryonic stem cells. PLoS ONE. 2012;7:e37178.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Tang J, Peng R, Ding J. The regulation of stem cell differentiation by cell-cell contact on micropatterned material surfaces. Biomaterials. 2010;31:2470–6.

    Article  CAS  PubMed  Google Scholar 

  73. Song W, Lu H, Kawazoe N, Chen G. Adipogenic differentiation of individual mesenchymal stem cell on different geometric micropatterns. Langmuir. 2011;27:6155–62.

    Article  CAS  PubMed  Google Scholar 

  74. Sasai Y. Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell. 2013;12:520–30.

    Article  CAS  PubMed  Google Scholar 

  75. Raof NA, Schiele NR, Xie Y, Chrisey DB, Corr DT. The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells. Biomaterials. 2011;32:1802–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Hwang Y-SYS, Chung BGBG, Ortmann D, Hattori N, Moeller HCH-C, Khademhosseini A. Microwell-mediated control of embryoid body size regulates embryonic stem cell fate via differential expression of WNT5a and WNT11. Proc Natl Acad Sci U S A. 2009;106:16978–83.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  77. Koch L, Kuhn S, Sorg H, et al. Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods. 2010;16:847–54.

    Article  CAS  PubMed  Google Scholar 

  78. Gruene M, Deiwick A, Koch L, Schlie S, Unger C, Hofmann N, Bernemann I, Glasmacher B, Chichkov B. Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods. 2010;17:79–87.

    Article  PubMed  Google Scholar 

  79. Koch L, Deiwick A, Schlie S, et al. Skin tissue generation by laser cell printing. Biotechnol Bioeng. 2012;109:1855–63.

    Article  CAS  PubMed  Google Scholar 

  80. Ovsianikov A, Gruene M, Pflaum M, Koch L, Maiorana F, Wilhelmi M, Haverich A, Chichkov B. Laser printing of cells into 3D scaffolds. Biofabrication. 2010;2:014104.

    Article  CAS  PubMed  Google Scholar 

  81. Xu F, Sridharan B, Wang S, Gurkan UA, Syverud B, Demirci U. Embryonic stem cell bioprinting for uniform and controlled size embryoid body formation. Biomicrofluidics. 2011;5:22207.

    Article  PubMed  Google Scholar 

  82. Zhang Y, Xia Y. Formation of embryoid bodies with controlled sizes and maintained pluripotency in three-dimensional inverse opal scaffolds. Adv Funct Mater. 2012;22:121–9.

    Article  CAS  Google Scholar 

  83. Sakai Y, Yoshiura Y, Nakazawa K. Embryoid body culture of mouse embryonic stem cells using microwell and micropatterned chips. J Biosci Bioeng. 2011;111:85–91.

    Article  CAS  PubMed  Google Scholar 

  84. Mohr J, Zhang J, Azarin S, Soerens A, de Pablo JJ, Thomson JA, Lyons GE, Palacek SP, Kamp TJ. The microwell control of embryoid body size in order to regulate cardiac differentiation of human embryonic stem cells. Biomaterials. 2010;31:1–18.

    Article  CAS  Google Scholar 

  85. Konno T, Akita K, Kurita K, Ito Y. Formation of embryoid bodies by mouse embryonic stem cells on plastic surfaces. J Biosci Bioeng. 2005;100:88–93.

    Article  CAS  PubMed  Google Scholar 

  86. Bauwens CL, Song H, Thavandiran N, Ungrin M, Masse S, Nanthakumar K, Seguin C, Zandstra PW. Geometric control of cardiomyogenic induction in human pluripotent stem cells. Tissue Eng Part A. 2011;17:1901–9.

    Article  CAS  PubMed  Google Scholar 

  87. Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. Breaking down pluripotency in the porcine embryo reveals both a premature and reticent stem cell state in the inner cell mass and unique expression profiles of the naive and primed stem cell states. Nat Methods. 2014;11:847–54.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Dias aD, Unser aM, Xie Y, Chrisey DB, Corr DT. Generating size-controlled embryoid bodies using laser direct-write. Biofabrication. 2014;6:025007.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  89. Ferreira HA, Silva H, Rodrigues LM, Grande C. Magnetic resonance imaging a powerful tool for tissue engineering. Biomed Biopharm Res. 2012;9(2):159–65.

    Google Scholar 

  90. Berman SC, Walczak P, Bulte JWM. Tracking stem cells using magnetic nanoparticles. Wiley Interdiscip Rev Nanomed Nanobiotechnol. 2011;3(4):343–55.

    Article  CAS  Google Scholar 

  91. Andreas K, Georgieva R, Ladwig M, Mueller S, Notter M, Sittinger M, Ringe J. Highly efficient magnetic stem cell labeling with citrate-coated superparamagnetic iron oxide nanoparticles for MRI tracking. Biomaterials. 2012;33:4515–25.

    Article  CAS  PubMed  Google Scholar 

  92. Burgess A, Ayala-Grosso Ca, Ganguly M, Jordão JF, Aubert I, Hynynen K. Targeted delivery of neural stem cells to the brain using MRI-guided focused ultrasound to disrupt the blood-brain barrier. PLoS ONE. 2011;6:e27877.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Tarantal AF, Lee CCI, Batchelder Ca, Christensen JE, Prater D, Cherry SR. Radiolabeling and in vivo imaging of transplanted renal lineages differentiated from human embryonic stem cells in fetal rhesus monkeys. Mol Imaging Biol. 2012;14:197–204.

    Article  PubMed Central  PubMed  Google Scholar 

  94. Ramaswamy S, Schornack Pa, Smelko AG, Boronyak SM, Ivanova J, Mayer JE, Sacks MS. Superparamagnetic iron oxide (SPIO) labeling efficiency and subsequent MRI tracking of native cell populations pertinent to pulmonary heart valve tissue engineering studies. NMR Biomed. 2012;25:410–7.

    Article  CAS  PubMed  Google Scholar 

  95. Chouinard Ja, Rousseau Ja, Beaudoin J-F, Vermette P, Lecomte R. Positron emission tomography detection of human endothelial cell and fibroblast monolayers: effect of pretreament and cell density on 18FDG uptake. Vasc Cell. 2012;4:5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. DiFilippo FP, Patel S, Asosingh K, Erzurum SC. Small-animal imaging using clinical positron emission tomography/computed tomography and super-resolution. Mol Imaging. 2012;11:210–9.

    PubMed Central  PubMed  Google Scholar 

  97. Terrovitis J, Lautamäki R, Bonios M, et al. Noninvasive quantification and optimization of acute cell retention by in vivo positron emission tomography after intramyocardial cardiac-derived stem cell delivery. J Am Coll Cardiol. 2009;54:1619–26.

    Article  PubMed Central  PubMed  Google Scholar 

  98. Potter K, Sweet DE, Anderson P, Davis GR, Isogai N, Asamura S, Kusuhara H, Landis WJ. Non-destructive studies of tissue-engineered phalanges by magnetic resonance microscopy and X-ray microtomography. Bone. 2006;38:350–8.

    Article  CAS  PubMed  Google Scholar 

  99. Zhang Y, Wu C, Friis T, Xiao Y. The osteogenic properties of CaP/silk composite scaffolds. Biomaterials. 2010;31:2848–56.

    Article  CAS  PubMed  Google Scholar 

  100. Jones AC, Arns CH, Sheppard AP, Hutmacher DW, Milthorpe BK, Knackstedt Ma. Assessment of bone ingrowth into porous biomaterials using MICRO-CT. Biomaterials. 2007;28:2491–504.

    Article  CAS  PubMed  Google Scholar 

  101. Appel Aa, Anastasio Ma, Larson JC, Brey EM. Imaging challenges in biomaterials and tissue engineering. Biomaterials. 2013;34:6615–30.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  102. Zehbe R, Goebbels J, Ibold Y, Gross U, Schubert H. Three-dimensional visualization of in vitro cultivated chondrocytes inside porous gelatine scaffolds: a tomographic approach. Acta Biomater. 2010;6:2097–107.

    Article  CAS  PubMed  Google Scholar 

  103. Dorsey SM, Lin-Gibson S, Simon CG. X-ray microcomputed tomography for the measurement of cell adhesionand proliferation in polymer scaffolds. Biomaterials. 2009;30:2967–74.

    Article  CAS  PubMed  Google Scholar 

  104. Georgakoudi I, Rice WL, Hronik-Tupaj M, Kaplan DL. Optical spectroscopy and imaging for the noninvasive evaluation of engineered tissues. Tissue Eng Part B Rev. 2008;14:321–40.

    Article  PubMed Central  PubMed  Google Scholar 

  105. Tadrous PJ. Methods for imaging the structure and function of living tissues and cells: 3. Confocal microscopy and micro-radiology. J Pathol. 2000;191:345–54.

    Article  CAS  PubMed  Google Scholar 

  106. Ntziachristos V. Going deeper than microscopy: the optical imaging frontier in biology. Nat. 2010;7:603–14.

    CAS  Google Scholar 

  107. Durr NJ, Weisspfennig CT, Holfed Ba, Ben-Yakar A. Maximum imaging depth of two-photon autofluorescence microscopy in epithelial tissues. J Biomed Opt. 2011;16:026008.

    Article  PubMed Central  PubMed  Google Scholar 

  108. Rubart M. Two-photon microscopy of cells and tissue. Circ Res. 2004;95:1154–66.

    Article  CAS  PubMed  Google Scholar 

  109. Higashi T, Watanabe W, Matsunaga S. Application of visualization techniques for cell and tissue engineering. J Biosci Bioeng. 2013;115:122–6.

    Article  CAS  PubMed  Google Scholar 

  110. Huisken J, Stainier DYR. Selective plane illumination microscopy techniques in developmental biology. Dev. 2009;136:1963–75.

    Article  CAS  Google Scholar 

  111. Kaufmann A, Mickoleit M, Weber M, Huisken J. Multilayer mounting enables long-term imaging of zebrafish development in a light sheet microscope. Dev. 2012;139:3242–7.

    Article  CAS  Google Scholar 

  112. Swoger J, Muzzopappa M, López-Schier H, Sharpe J. 4D retrospective lineage tracing using SPIM for zebrafish organogenesis studies. J Biophotonics. 2011;4:122–34.

    Article  PubMed  Google Scholar 

  113. Tadrous PJ. Methods for imaging the structure and function of living tissues and cells: 1. Optical coherence tomography. J Pathol. 2000;191:115–9.

    Article  CAS  PubMed  Google Scholar 

  114. Schmitt JM. Optical coherence tomography (OCT): a review. IEEE J Sel Top Quantum Electron. 1999;5:1205–15.

    Article  CAS  Google Scholar 

  115. Calantog A, Hallajian L, Nabelsi T, Mansour S, Le A, Epstein J, Wilder-Smith P. A prospective study to assess in vivo optical coherence tomography imaging for early detection of chemotherapy-induced oral mucositis. Lasers Surg Med. 2013;45:22–7.

    Article  PubMed Central  PubMed  Google Scholar 

  116. Leitgeb RA. Optical coherence tomography–high resolution imaging of structure and function. Conf Proc Annu Int Conf IEEE Eng Med Biol Soc. 2007;2007:530–2.

    Google Scholar 

  117. Bassi A, Fieramonti L, D’Andrea C, Mione M, Valentini G. In vivo label-free three-dimensional imaging of zebrafish vasculature with optical projection tomography. J Biomed Opt. 2011;16:100502.

    Article  PubMed  Google Scholar 

  118. Sharpe J. Optical projection tomography. Annu Rev Biomed Eng. 2004;6:209–28.

    Article  CAS  PubMed  Google Scholar 

  119. Sharpe J, Ahlgren U, Perry P, Hill B, Ross A, Hecksher-Sørensen J, Baldock R, Davidson D. Optical projection tomography as a tool for 3D microscopy and gene expression studies. Sci. 2002;296:541–5.

    Article  CAS  Google Scholar 

  120. Sharpe J. Optical projection tomography as a new tool for studying embryo anatomy. J Anat. 2003;202:175–81.

    Article  PubMed Central  PubMed  Google Scholar 

  121. Dunn A, Boas D. Transport-based image reconstruction in turbid media with small source-detector separations. Opt Lett. 2000;25:1777–9.

    Article  CAS  PubMed  Google Scholar 

  122. Hillman EMC, Boas DA, Dale AM, Dunn AK. Laminar optical tomography:demonstration of millimeter-scale depth-resolved imaging in turbid media. Opt Lett. 2004;29:1650.

    Article  PubMed  Google Scholar 

  123. Hillman EMCMC, Devor A, Dunn AK, Boas Da. Laminar optical tomography: high-resolution 3D functional imaging of superficial tissues. Proc SPIE. 2006;6143:61431M–61431M–14.

    Article  Google Scholar 

  124. Ouakli N, Guevara E, Dubeau S, Beaumont E, Lesage F. Laminar optical tomography of the hemodynamic response in the lumbar spinal cord of rats. Opt Express. 2010;18:10068–77.

    Article  CAS  PubMed  Google Scholar 

  125. Zhao L, Lee VK, Yoo S-S, Dai G, Intes X. The integration of 3-D cell printing and mesoscopic fluorescence molecular tomography of vascular constructs within thick hydrogel scaffolds. Biomaterials. 2012;33:5325–32.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  126. Ozturk MS, Lee VK, Zhao L, Dai G, Intes X. Mesoscopic fluorescence molecular tomography of reporter genes in bioprinted thick tissue. J Biomed Opt. 2013;18:100501.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  127. Björn S, Ntziachristos V, Schulz R. Mesoscopic epifluorescence tomography: reconstruction of superficial and deep fluorescence in highly-scattering media. Opt Express. 2010;18:8422–9.

    Article  PubMed  CAS  Google Scholar 

  128. Chen C-W, Chen Y. Optimization of design parameters for fluorescence laminar optical tomography. J Innov Opt Health Sci. 2011;04:309–23.

    Article  Google Scholar 

  129. Burgess SA, Yuan B, Bouchard MB, Ratner D, Hillman EMC. Simultaneous multi-wavelength laminar optical tomography imaging of skin cancer. Biomed Opt. 2008;3–5.

    Google Scholar 

  130. Yang F, Ozturk M, Zhao L, Cong W, Wang G, Intes X. High-resolution mesoscopic fluorescence molecular tomography based on compressive sensing. IEEE Trans Biomed Eng. 2014. doi:10.1109/TBME.2014.2347284.

    Google Scholar 

  131. Chen C-W, Yeatts AB, Fisher JP, Chen Y. (2011) Three-dimensional imaging of stem cell distribution within tissue engineering scaffolds using angled fluorescent laminar optical tomography (aFLOT). IEEE Photonic Soc 24th Annu Meet. 4:729–30.

    Article  Google Scholar 

  132. Wang LV, Hu S. Photoacoustic tomography: in vivo imaging from organelles to organs. Sci. 2012;335:1458–62.

    Article  CAS  Google Scholar 

  133. Cai X, Zhang YS, Xia Y, Wang LV. Photoacoustic microscopy in tissue engineering. Mater Today (Kidlington). 2013;16:67–77.

    Article  CAS  Google Scholar 

  134. Cai X, Paratala BS, Hu S, Sitharaman B, Wang LV. Multiscale photoacoustic microscopy of single-walled carbon nanotube-incorporated tissue engineering scaffolds. Tissue Eng Part C Methods. 2012;18:310–7.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  135. Zhang Y, Cai X, Choi SW, Kim C, Wang LV, Xia Y. Chronic label-free volumetric photoacoustic microscopy of melanoma cells in three-dimensional porous Scaffolds. Biomaterials. 2010;31:8651–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  136. Cai X, Zhang Y, Li L, Choi S-W, MacEwan MR, Yao J, Kim C, Xia Y, Wang LV. Investigation of neovascularization in three-dimensional porous scaffolds in vivo by a combination of multiscale photoacoustic microscopy and optical coherence tomography. Tissue Eng Part C Methods. 2013;19:196–204.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  137. Nam SY, Ricles LM, Suggs LJ, Emelianov SY. In vivo ultrasound and photoacoustic monitoring of mesenchymal stem cells labeled with gold nanotracers. PLoS ONE. 2012;7:e37267.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  138. Chung E, Nam SY, Ricles LM, Emelianov SY, Suggs LJ. Evaluation of gold nanotracers to track adipose-derived stem cells in a PEGylated fibrin gel for dermal tissue engineering applications. Int J Nanomed. 2013;8:325–36.

    Article  CAS  Google Scholar 

  139. Wang B, Karpiouk A, Yeager D, Amirian J, Litovsky S, Smalling R, Emelianov S. In vivo intravascular ultrasound-guided photoacoustic imaging of lipid in plaques using an animal model of atherosclerosis. Ultrasound Med Biol. 2012;38:2098–103.

    Article  PubMed Central  PubMed  Google Scholar 

  140. Nguyen PK, Riegler J, Wu JC. Stem cell imaging: from bench to bedside. Cell Stem Cell. 2014;14:431–44.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  141. Chou S, Shau Y, Wu P, Yang Y. In vitro and in vivo studies of FePt nanoparticles for dual modal CT/MRI molecular imaging. J Am Chem Soc. 2010;132(38):13270–8.

    Article  CAS  PubMed  Google Scholar 

  142. Amado LC, Schuleri KH, Saliaris AP, et al. Multimodality noninvasive imaging demonstrates in vivo cardiac regeneration after mesenchymal stem cell therapy. J Am Coll Cardiol. 2006;48:2116–24.

    Article  PubMed  Google Scholar 

  143. Catana C, Procissi D, Wu Y, Judenhofer MS, Qi J, Pichler BJ, Jacobs RE, Cherry SR. Simultaneous in vivo positron emission tomography and magnetic resonance imaging. Proc Natl Acad Sci U S A. 2008;105:3705–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  144. Catana C, Drzezga A, Heiss W-D, Rosen BR. PET/MRI for neurologic applications. J Nucl Med. 2012;53:1916–25.

    Article  PubMed  Google Scholar 

  145. Kolesky DB, Truby RL, Gladman aS, Busbee Ta, Homan Ka, Lewis Ja. 3D bioprinting of vascularized, heterogeneous cell-laden tissue constructs. Adv Mater. 2014;26:3124–30.

    Article  CAS  PubMed  Google Scholar 

  146. Schiele NR, Corr DT, Huang Y, Raof NA, Xie Y, Chrisey DB. Laser-based direct-write techniques for cell printing. Biofabrication. 2010;2:32001.

    Article  CAS  Google Scholar 

  147. Smith CM, Christian JJ, Warren WL, Williams SK. Characterizing environmental factors that impact the viability of tissue-engineered constructs fabricated by a direct-write bioassembly tool. Tissue Eng. 2007;13:373–83.

    Article  CAS  PubMed  Google Scholar 

  148. Even-Ram S, Artym V, Yamada KM. Matrix control of stem cell fate. Cell. 2006;126:645–7.

    Article  CAS  PubMed  Google Scholar 

  149. Singh M, Haverinen HM, Dhagat P, Jabbour GE. Inkjet printing-process and its applications. Adv Mater. 2010;22:673–85.

    Article  CAS  PubMed  Google Scholar 

  150. Sekitani T, Noguchi Y, Zschieschang U, Klauk H, Someya T. Organic transistors manufactured using inkjet technology with subfemtoliter accuracy. Proc Natl Acad Sci USA. 2008;105:4976–80.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  151. Roth Ea, Xu T, Das M, Gregory C, Hickman JJ, Boland T. Inkjet printing for high-throughput cell patterning. Biomaterials. 2004;25:3707–15.

    Article  CAS  PubMed  Google Scholar 

  152. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR. Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol. 2003;21:157–61.

    Article  CAS  PubMed  Google Scholar 

  153. Morgan S, Rose F, Matcher S. Optical techniques in regenerative medicine. 2013. doi:10.1201/b15324.

    Google Scholar 

  154. Vielreicher M, Schürmann S, Detsch R, Schmidt Ma, Buttgereit A, Boccaccini A, Friedrich O. Taking a deep look: modern microscopy technologies to optimize the design and functionality of biocompatible scaffolds for tissue engineering in regenerative medicine. J R Soc Interface. 2013;10:20130263.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  155. Wang TD, Friedland S, Sahbaie P, Soetikno R, Hsiung PL, Liu JTC, Crawford JM, Contag CH. Functional imaging of colonic mucosa with a fibered confocal microscope for real-time in vivo pathology. Clin Gastroenterol Hepatol. 2007;5:1300–5.

    Article  PubMed Central  PubMed  Google Scholar 

  156. Pysz MA, Gambhir SS, Willmann JK. Molecular imaging: current status and emerging strategies. Clin Radiol. 2010;65:500–16.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  157. Andreu Z, Khan MA, González-Gómez P, et al. The cyclin-dependent kinase inhibitor p27 kip1 regulates radial stem cell quiescence and neurogenesis in the adult hippocampus. Stem Cells. 2015;33:219–29.

    Article  CAS  PubMed  Google Scholar 

  158. Zhou Y, Liu X, Engstrom EM, Nimchuk ZL, Pruneda-Paz JL, Tarr PT, Yan A, Kay Sa, Meyerowitz EM. Control of plant stem cell function by conserved interacting transcriptional regulators. Nature. 2014;517:377–80.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  159. Teo GSL, Yang Z, Carman CV, Karp JM, Lin CP. Intravital imaging of mesenchymal stem cell trafficking and association with platelets and neutrophils. Stem Cells. 2015;33:265–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Kempe M, Rudolph W. Comparative study of confocal and heterodyne microscopy for imaging through scattering media. J Opt Soc Am A. 1996;13:46–52.

    Article  Google Scholar 

  161. Peng T, Xie H, Ding Y, Wang W, Li Z, Jin D, Tang Y, Ren Q, Xi P. CRAFT: multimodality confocal skin imaging for early cancer diagnosis. J Biophotonics. 2012;5:469–76.

    Article  PubMed  Google Scholar 

  162. Ivanov DP, Parker TL, Walker Da, Alexander C, Ashford MB, Gellert PR, Garnett MC. In vitro co-culture model of medulloblastoma and human neural stem cells for drug delivery assessment. J Biotechnol. 2015;205:1–11.

    Article  CAS  Google Scholar 

  163. Tong PL, Roediger B, Kolesnikoff N, Biro M, Tay SS, Jain R, Shaw LE, Grimbaldeston Ma, Weninger W. The skin immune atlas: Three-dimensional analysis of cutaneous leukocyte subsets by in vivo microscopy. J Invest Dermatol. 2014. doi:10.1038/jid.2014.289.

    Google Scholar 

  164. Park Y II, Lee KT, Suh YD, Hyeon T. Upconverting nanoparticles: a versatile platform for wide-field two-photon microscopy and multi-modal in vivo imaging. Chem Soc rev. 2014. doi:10.1039/c4cs00173g.

    Google Scholar 

  165. Kobat D, Horton NG, Xu C. In vivo two-photon microscopy to 1.6-mm depth in mouse cortex. J Biomed Opt. 2011;16:106014.

    Article  PubMed  Google Scholar 

  166. Nam SY, Ricles LM, Suggs LJ, Emelianov SY. Imaging strategies for tissue engineering applications. Tissue Eng Part B Rev. 2014;21(1):88–102.

    Article  PubMed  Google Scholar 

  167. Fujimoto JG. Optical coherence tomography for ultrahigh resolution in vivo imaging. Nat Biotechnol. 2003;21:1361–7.

    Article  CAS  PubMed  Google Scholar 

  168. Yang Y, Dubois A, Qin X, Li J, El Haj A, Wang RK. Investigation of optical coherence tomography as an imaging modality in tissue engineering. Phys Med Biol. 2006;51:1649–59.

    Article  PubMed  Google Scholar 

  169. Lumbroso B, Huang D, Romano A, Rispoli M, Coscas G, Editors. Clinical En Face OCT Atlas, 1st ed. 2013. pp. 77–8.

    Google Scholar 

  170. Rompolas P, Deschene ER, Zito G, Gonzalez DG, Saotome I, Haberman AM, Greco V. Live imaging of stem cell and progeny behaviour in physiological hair-follicle regeneration. Nat. 2012;487:496–9.

    Article  CAS  Google Scholar 

  171. Assayag O, Grieve K, Devaux B, Harms F, Pallud J, Chretien F, Boccara C, Varlet P. Imaging of non-tumorous and tumorous human brain tissues with full-field optical coherence tomography. NeuroImage Clin. 2013;2:549–57.

    Article  PubMed Central  PubMed  Google Scholar 

  172. Subhash HM, Connolly E, Murphy M, Barron V, Leahy M. Photothermal optical coherence tomography for depth-resolved imaging of mesenchymal stem cells via single wall carbon nanotubes. Appl. San Fransisco: SPIE. Nanoscale Imaging, Sensing, Actuation Biomed; 2014. p 89540C.

    Google Scholar 

  173. Wang LV. Prospects of photoacoustic tomography. Med Phys. 2008;35:5758.

    Article  PubMed Central  PubMed  Google Scholar 

  174. Emelianov SY, Li P-C, O’Donnell M. Photoacoustics for molecular imaging and therapy. Phys Today. 2009;62:34–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  175. Margolis DJa, Hoffman JM, Herfkens RJ, Jeffrey RB, Quon A, Gambhir SS. Molecular imaging techniques in body imaging. Radiology. 2007;245:333–56.

    Article  PubMed  Google Scholar 

  176. Ballyns JJ, Bonassar LJ. Image-guided tissue engineering. J Cell Mol Med. 2009;13:1428–36.

    Article  PubMed Central  PubMed  Google Scholar 

  177. Hillman EMC, Burgess SA. Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography. Laser Photonics. 2009;179:159–79.

    Article  CAS  Google Scholar 

  178. Burgess SA, Ratner D, Chen BR, Hillman EMC. Fiber-optic and articulating arm implementations of laminar optical tomography for clinical applications. Biomed Opt Express. 2010;1:780–90.

    Article  PubMed Central  PubMed  Google Scholar 

  179. Ozturk MS, Lee VK, Dai G, Intes X, Zhao L. Laminar optical tomography applied to reporter genes imaging in engineered tissue constructs. Northeast Bioeng. Conf. Syracuse, NY, 2013. pp 129–130.

    Google Scholar 

  180. Björn S, Englmeier K-H, Ntziachristos V, Schulz R. Reconstruction of fluorescence distribution hidden in biological tissue using mesoscopic epifluorescence tomography. J Biomed Opt. 2011;16:046005.

    Article  PubMed  CAS  Google Scholar 

  181. Cherry SR, Shao Y, Silverman RW, et al. MicroPET: a high resolution PET scanner for imaging small animals. IEEE Trans Nucl Sci. 1997;44:1161–6.

    Article  CAS  Google Scholar 

  182. Wong MD, Dazai J, Walls JR, Gale NW, Henkelman RM. Design and implementation of a custom built optical projection tomography system. PLoS ONE. 2013. doi:10.1371/journal.pone.0073491.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guohao Dai Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Lee, V. et al. (2015). 3D Bioprinting and 3D Imaging for Stem Cell Engineering. In: Turksen, K. (eds) Bioprinting in Regenerative Medicine. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-21386-6_2

Download citation

Publish with us

Policies and ethics