Skip to main content

Development of Structure and Sensitivity of the Fish Inner Ear

  • Chapter
Book cover Fish Hearing and Bioacoustics

Abstract

Fish represent the largest group of vertebrates and display the greatest diversity of auditory structures. However, studies addressing how the form and function of the auditory system change during development to enhance perception of the acoustic environment are rather sparse in this taxon compared to other vertebrate groups. An ontogenetic perspective of the auditory system in fishes provides a readily testable framework for understanding structure–function relationships. Additionally, studying ancestral models such as fish can convey valuable comparable information across vertebrates, as early developmental events are often evolutionary conserved. This chapter reviews the literature on the morphological development of the fish auditory system, with particular focus on the inner ear structures that evolve from an otic placode during early embryonic development and then continue to undergo differentiation and maturation in the postembryonic phase. Moreover, the chapter provides a systematic overview of how auditory sensitivity develops during ontogeny. Although most studies indicate a developmental improvement in auditory sensitivity, there is considerably species-specific variation. Lastly, the paucity of information and literature concerning the development of auditory capabilities for social communication in fishes is also discussed. Further investigation on the development of structure and function of the fish auditory system is recommended in order to obtain a deeper understanding of how ontogenetic morphological changes in the auditory pathway relate to modifications in acoustic reception, auditory processing, and the capacity to communicate acoustically.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alderks PW, Sisneros JA (2011) Ontogeny of auditory saccular sensitivity in the plainfin midshipman fish (Poricithys notatus). J Comp Physiol A 197:387–398

    Article  Google Scholar 

  • Alderks PW, Sisneros JA (2013) Development of the acoustically evoked behavioral response in larval plainfin midshipman fish, Porichthys notatus. PLoS One 8, e82182

    Article  PubMed Central  PubMed  Google Scholar 

  • Amorim MCP, Hawkins AD (2005) Ontogeny of acoustic and feeding behaviour in the grey gurnard, Eutrigla gurnardus. Ethology 111:255–269

    Article  Google Scholar 

  • Ayer-Le Liver CS, Le Douarin NM (1982) The early development of cranial sensory ganglia and the potentialities of their component cells studied in quail-chick chimeras. Dev Biol 94:291–310

    Article  Google Scholar 

  • Baird IL (1974) Anatomical features of the inner ear in submammalian vertebrates. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology: auditory system. Springer, Berlin, pp 159–212

    Google Scholar 

  • Barber VC, Yake KI, Clark VF, Pungur J (1985) Quantitative analyses of sex and size differences in the macula neglecta and ramus neglectus in the inner ear of the skate, Raja ocellata. Cell Tissue Res 241:597–605

    Article  Google Scholar 

  • Belanger AJ, Bobeica I, Higgs DM (2010) The effect of stimulus type and background noise on hearing abilities of the round goby Neogobius melanostomus. J Fish Biol 77:1488–1504

    Article  CAS  PubMed  Google Scholar 

  • Berrill NJ, Karp G (1976) Development. McGraw-Hill Book Co, NY, p 324

    Google Scholar 

  • Bhandiwad AA, Zeddies DG, Raible DW, Rubel EW, Sisneros JA (2013) Auditory sensitivity of larval zebrafish (Danio rerio) measured using a behavioral prepulse inhibition assay. J Exp Biol 15:3504–3513

    Google Scholar 

  • Bianchi LM, Cohan CS (1993) Effects of the neurotrophins and CNTF on developing statoacoustic neurons: comparison with an otocyst-derived factor. Dev Biol 159:353–365

    Article  CAS  PubMed  Google Scholar 

  • Blaxtey JHS, Batty RS (1985) The development of startle responses in herring larvae. J Mar Biol Assoc UK 65:737–750

    Article  Google Scholar 

  • Braun CB, Grande T (2008) Evolution of peripheral mechanisms for the enhancement of sound reception. In: Popper AN, Fay RR, Webb JL (eds) Handbook of auditory research: fish bioacoustics. Springer, NY, pp 99–144

    Chapter  Google Scholar 

  • Caiger PE, Montgomery JC, Bruce M, Lu J, Radford CA (2013) A proposed mechanism for the observed ontogenetic improvement in the hearing ability of hapuka (Polyprion oxygeneios). J Comp Physiol A 199:653–661

    Article  CAS  Google Scholar 

  • Coffin AB, Mohr RA, Sisneros JA (2012) Saccular-specific hair cell addition correlates with reproductive state-dependent changes in the auditory saccular sensitivity of a vocal fish. J Neurosci 32:1366–1376

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coombs S, Popper AN (1979) Hearing differences among Hawaiian squirrelfish (family Holocentridae) related to differences in the peripheral auditory system. J Comp Physiol A 132:203–207

    Article  Google Scholar 

  • Corwin JT (1981) Postembryonic production and aging in inner ear hair cells in sharks. J Comp Neurol 201:541–553

    Article  CAS  PubMed  Google Scholar 

  • Corwin JT (1983) Postembryonic growth of the macula neglecta auditory detector in the ray, Raja clavata: continual increases in hair cell number, neural convergence, and physiological sensitivity. J Comp Neurol 217:315–356

    Google Scholar 

  • D’Amico-Martel A, Noden DM (1983) Contribution of placode and neural crest cells to avian cranial peripheral ganglia. Am J Anat 166:445–468

    Article  PubMed  Google Scholar 

  • de Vries HL (1950) The mechanics of the labyrinth otoliths. Acta Otolaryngol 38:262–273

    Article  Google Scholar 

  • Detwiler SR, van Dyke RH (1950) The role of the medulla in the differentiation of the otic vesicle. J Exp Zool 113:179–199

    Article  Google Scholar 

  • Dijkgraaf S (1960) Hearing in bony fishes. Proc R Soc Lond B 152:51–54

    Article  CAS  PubMed  Google Scholar 

  • Egner SA, Mann DA (2005) Auditory sensitivity of sergeant major damselfish Abudefduf saxatilis from post-settlement juvenile to adult. Mar Ecol Prog Ser 285:213–222

    Article  Google Scholar 

  • Ekker M, Wegner J, Akimenko MA et al (1992) Coordinate embryonic expression of three zebrafish engrailed genes. Development 116:1001–1010

    CAS  PubMed  Google Scholar 

  • Fay RR (1984) The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 225:951–954

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (1988) Hearing in vertebrates: a psychophysics databook. Hill-Fay Associates, Winnetka

    Google Scholar 

  • Fay RR, Popper AN (1974) Acoustic stimulation of the ear of the goldfish (Carassius auratus). J Exp Biol 61:243–260

    CAS  PubMed  Google Scholar 

  • Fay RR, Popper AN (1975) Modes of stimulation of the teleost ear. J Exp Biol 62:379–387

    CAS  PubMed  Google Scholar 

  • Fay RR, Popper AN (1980) Structure and function in teleost auditory systems. In: Popper AN, Fay RR (eds) Comparative studies of hearing in vertebrates. Springer, New York, pp 3–42

    Chapter  Google Scholar 

  • Fay RR, Popper AN (2000) Evolution of hearing in vertebrates: the inner ears and processing. Hear Res 149:1–10

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Tessarollo L, Coppola E et al (2004) Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance. Prog Brain Res 146:265–278

    Article  CAS  PubMed  Google Scholar 

  • Fuiman LA, Smith ME, Malley VN (1999) Ontogeny of routine swimming speed and startle responses in red drum, with a comparison of responses to acoustic and visual stimuli. J Fish Biol 55:215–226

    Article  Google Scholar 

  • Gilland E, Baker R (1993) Conservation of neuroepithelial and mesodermal segments in the embryonic vertebrate head. Acta Anat 148:110–123

    Article  CAS  PubMed  Google Scholar 

  • Haddon CM, Lewis J (1996) Early ear development in the embryo of the zebrafish, Danio rerio. J Comp Neurol 365:113–128

    Article  CAS  PubMed  Google Scholar 

  • Harrison RG (1945) Relations of symmetry in the developing embryo. Trans Connecticut Acad Arts Sci 36:277–330

    Google Scholar 

  • Hemond SG, Morest DK (1992) Trophic effects of otic epithelium on cochleovestibular ganglion fiber growth in vitro. Anat Rec 232:273–284

    Article  CAS  PubMed  Google Scholar 

  • Henglmüller SM, Ladich F (1999) Development of agonistic behavior and vocalization in croaking gouramis. J Fish Biol 54:380–395

    Article  Google Scholar 

  • Henson OW Jr (1974) Comparative anatomy of the middle ear. In: Keidel WD, Neff WD (eds) Handbook of sensory physiology: auditory system. Springer, Berlin, pp 39–110

    Google Scholar 

  • Higgs DM, Souza MJ, Wilkins HR et al (2001) Age- and size-related changes in the inner ear and hearing ability of the adult zebrafish (Danio rerio). J Assoc Res Otolaryngol 03:174–184

    Article  Google Scholar 

  • Higgs DM, Rollo AK, Souza MJ, Popper AN (2003) Development of form and function in peripheral auditory structures of the zebrafish (Danio rerio). J Acoust Soc Am 113:1145–1154

    Article  PubMed  Google Scholar 

  • Higgs DM, Plachta DTT, Rollo AK, Singheiser M, Hastings MC, Popper AN (2004) Development of ultrasound detection in American shad (Alosa sapidissima). J Exp Biol 207:155–163

    Article  CAS  PubMed  Google Scholar 

  • Inoue M, Tanimoto M, Oda Y (2013) The role of ear stone in hair cell acoustic sensory transduction. Sci Rep 3:2114

    PubMed Central  PubMed  Google Scholar 

  • Jacobson AG, Sater AK (1988) Features of embryonic induction. Development 104:341–359

    CAS  PubMed  Google Scholar 

  • Kaan H (1930) The relation of the developing auditory vesicle to the formation of the cartilage capsule in Amblystoma punctatum. J Exp Zool 55:263–291

    Article  Google Scholar 

  • Kelly MW, Corwin JT (1992) Development of hair cell structure and function in fish and amphibians. In: Romand R (ed) Development of auditory and vestibular systems 2. Elsevier, Amsterdam, pp 139–159

    Google Scholar 

  • Kenyon TN (1996) Ontogenetic changes in the auditory sensitivity of the bicolor damselfish, Pomacentrus partitus (Poey). J Comp Physiol A 179:553–561

    Article  Google Scholar 

  • Kenyon TN, Ladich F, Yan HY (1998) A comparative study of hearing ability in fishes: the auditory brainstem response approach. J Comp Physiol A 182:307–318

    Article  CAS  PubMed  Google Scholar 

  • Kéver L, Boyle KS, Dragičević B, Dulčić J, Casadevall M, Parmentier E (2012) Sexual dimorphism of sonic apparatus and extreme intersexual variation of sounds in Ophidion rochei (Ophidiidae): first evidence of a tight relationship between morphology and sound characteristics in Ophidiidae. Front Zool 2012:9–34

    Google Scholar 

  • Keynes R, Krumlauf R (1994) Hox genes and regionalization of the nervous system. Annu Rev Neurosci 17:109–132

    Article  CAS  PubMed  Google Scholar 

  • Ladich F, Fay RR (2013) Auditory evoked potential audiometry in fish. Rev Fish Biol Fish 23:317–364

    Article  PubMed Central  PubMed  Google Scholar 

  • Lechner W, Wysocki LE, Ladich F (2010) Ontogenetic development of auditory sensitivity and sound production in the squeaker catfish Synodontis schoutedeni. BMC Biol 8:10

    Article  PubMed Central  PubMed  Google Scholar 

  • Lechner W, Heiss E, Schwaha T, Glösmann M, Ladich F (2011) Ontogenetic development of Weberian ossicles and hearing abilities in the African bullhead catfish. PLoS One 6, e18511

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lewis ER, Li CW (1973) Evidence concerning the morphogenesis of saccular receptors in the bullfrog (Rana catesbeiana). J Morphol 139:351–361

    Article  CAS  PubMed  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The vertebrate ear. CRC Press, Boca Raton

    Google Scholar 

  • Lombarte A, Popper AN (1994) Quantitative analyses of postembryonic hair cell addition in the otolithic endorgans of the inner ear of the European hake, Merluccius merluccius (Gadiformes, Teleostei). J Comp Neurol 345:419–428

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, DeSmidt AA (2013) Early development of hearing in zebrafish. J Assoc Res Otolaryngol 14:509–521

    Article  PubMed Central  PubMed  Google Scholar 

  • Mann DA, Wilson CD, Song J, Popper AN (2009) Hearing sensitivity of the walleye pollock. Trans Am Fish Soc 138:1000–1008

    Article  Google Scholar 

  • Mansour SL, Goddard JM, Capecchi MR (1993) Mice homozygous for a targeted disruption of the proto-oncogene int-2 have developmental defects in the tail and inner ear. Development 117:13–28

    CAS  PubMed  Google Scholar 

  • Model PG, Jarret LS, Bonazzoli R (1981) Cellular contacts between hindbrain and prospective ear during inductive interaction in the axolotl embryo. J Embryol Exp Morphol 66:27–41

    CAS  PubMed  Google Scholar 

  • Nelsen OE (1953) Comparative embryology of the vertebrates. McGraw-Hill Book Company, New York

    Google Scholar 

  • Parker GH (1903) The sense of hearing in fishes. Am Nat 37:185–203

    Article  Google Scholar 

  • Platt C (1977) Hair cell distribution and orientation in goldfish otolith organs. J Comp Neurol 172:283–297

    Article  CAS  PubMed  Google Scholar 

  • Platt C (1983) The peripheral vestibular system in fishes. In: Northcutt RG, Davis RE (eds) Fish neurobiology, vol 1. University of Michigan Press, Ann Arbor, pp 89–124

    Google Scholar 

  • Platt C, Popper AN (1981) Structure and function in the ear. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 3–38

    Chapter  Google Scholar 

  • Popper AN (1983) Organization of the inner ear and processing of acoustic information. In: Northcutt RG, Davis RE (eds) Fish neurobiology and behavior. University of Michigan Press, Ann Arbor, pp 125–178

    Google Scholar 

  • Popper AN, Fay RR (1993) Sound detection and processing by fish: critical review and major research questions. Brain Behav Evol 41:14–38

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Fay RR (1999) The auditory periphery in fishes. In: Fay RR, Popper AN (eds) Comparative hearing: fish and amphibians. Springer, New York, pp 43–100

    Chapter  Google Scholar 

  • Popper AN, Hoxter B (1984) Growth of a fish ear. I. Quantitative analysis of sensory hair cell and ganglion cell proliferation. Hear Res 15:133–142

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Hoxter B (1990) Growth of a fish ear: II. Locations of newly proliferated sensory hair cells in the saccular epithelium of Astronotus ocellatus. Hear Res 45:33–40

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Lu Z (2000) Structure–function relationships in fish otolith organs. Fish Res 46:15–25

    Article  Google Scholar 

  • Popper AN, Schilt CR (2008) Hearing and acoustic behavior (basic and applied). In: Webb JF, Fay RR, Popper AN (eds) Fish bioacoustics. Springer Science+Business Media, New York, pp 17–48

    Chapter  Google Scholar 

  • Popper AN, Tavolga WN (1981) Structure and function of the ear of the marine catfish, Arius felis. J Comp Physiol A 144:27–34

    Article  Google Scholar 

  • Popper AN, Platt C, Saidel WM (1982) Acoustic function in the fish ear. Trends Neurosci 5:276–280

    Article  Google Scholar 

  • Popper AN, Fay RR, Platt C et al (2003) Sound detection mechanisms and capabilities of teleost fishes. In: Collin SP, Marshall NJ (eds) Sensory processing in aquatic environments. Springer, New York, pp 3–38

    Chapter  Google Scholar 

  • Retzius G (1884) Gehörorgan des Wirbeltiere. II Das Gehörgan der, Reptilien, der Vögel, und der Säugetiere. Samson and Wallin, Stockholm

    Google Scholar 

  • Schellart NAM, Popper AN (1992) Functional aspects of the evolution of the auditory system of actinopterygian fish. In: Webster DB, Fay RR, Popper AN (eds) Comparative evolutionary biology of hearing. Springer, New York, pp 295–322

    Chapter  Google Scholar 

  • Schneider H (1964) Physiologische und morphologische Untersuchungen zur Bioakustik der Tigerfische (Pisces, Therapoidae). Z Vergl Physiol 47:493–558

    Article  Google Scholar 

  • Simpson SD, Yan HY, Wittenrich ML, Meekan MG (2005) Response of embryonic coral reef fishes (Pomacentridae: Amphiprion spp.) to noise. Mar Ecol Prog Ser 287:201–208

    Article  Google Scholar 

  • Sisneros JA, Bass AH (2005) Ontogenetic changes in the response properties of individual, primary auditory afferents in the vocal plainfin midshipman fish Porichthys notatus Girard. J Exp Biol 208:3121–3131

    Article  PubMed  Google Scholar 

  • Sokolowski BHA, Popper AN (1988) Transmission electron microscopic study or the saccule in the embryonic, larval, and adult toadfish Opsanus tau. J Morphol 198:49–69

    Article  CAS  PubMed  Google Scholar 

  • Sokolowski BHA, Stahl LM, Fuchs PA (1993) Morphological and physiological development of vestibular hair cells in the organ-cultured otocyst of the chick. Dev Biol 155:134–146

    Article  CAS  PubMed  Google Scholar 

  • Tanimoto M, Ota Y, Horikawa K et al (2009) Auditory input to CNS is acquired coincidentally with development of inner ear after formation of functional afferent pathway in zebrafish. J Neurosci 29:2762–2767

    Article  CAS  PubMed  Google Scholar 

  • Van De Water TR (1983) Embryogenesis of the inner ear: “in vitro studies”. In: Romand R (ed) Development of auditory and vestibular systems. Academic, New York, pp 337–374

    Google Scholar 

  • Vasconcelos RO, Ladich F (2008) Development of vocalization, auditory sensitivity and acoustic communication in the Lusitanian toadfish Halobatrachus didactylus. J Exp Biol 11:502–509

    Article  Google Scholar 

  • von Frisch K (1938) Über die Bedeutung des Sacculus und der Lagena für den Gehörsinn der Fische. Z Vergl Physiol 25:703–747

    Article  Google Scholar 

  • von Frisch K, Stetter H (1932) Untersuchungen über den Sitz des Gohörsinnes bei der Elritze. Z Vergl Physiol 17:686–801

    Article  Google Scholar 

  • Von Kupffer C (1895) Studien zur vergleichenden Entvicklungsgeschichte des Lopfes der Kranioten, vol 3. Die Entvicklung der Kopfnerven von Ammocoetes planeri. Lehmann, Munich

    Google Scholar 

  • Webb JF, Noden DM (1993) Ectodermal placodes: contributions to the development of the vertebrate head. Am Zool 33:434–447

    Article  Google Scholar 

  • Webb JF, Fay RR, Popper AN (eds) (2008) Fish bioacoustics. Springer Science+Business Media, New York

    Google Scholar 

  • Webb JF, Walsh RM, Casper BM, Mann DA, Kelly N, Cicchino N (2012) Development of the ear, hearing capabilities and laterophysic connection in the spotfin butterflyfish (Chaetodon ocellatus). Environ Biol Fish 95:275–290

    Article  Google Scholar 

  • Weber EH (1820) De Aure et Auditu Hominis et Animalium. Pars I. De Aure Animalium Aquatilium. Gerhard Fleischer, Leipzig

    Google Scholar 

  • Weiss T, Mulroya MJ, Turnera RG et al (1976) Tuning of single fibers in the cochlear nerve of the alligator lizard: relation to receptor morphology. Brain Res 115:71–90

    Article  CAS  PubMed  Google Scholar 

  • Whitfield TT, Riley BB, Chiang M, Phillips B (2002) Development of the zebrafish inner ear. Dev Dyn 233:427–458

    Article  Google Scholar 

  • Wright KJ, Higgs DM, Belanger AJ, Leis JM (2005) Auditory and olfactory abilities of pre-settlement larvae and post-settlement juveniles of a coral reef damselfish (Pisces: Pomacentridae). Mar Biol 147:1425–1434

    Article  Google Scholar 

  • Wright KJ, Higgs DM, Cato DH, Leis JM (2010) Auditory sensitivity in settlement-stage larvae of coral reef fishes. Coral Reefs 29:235–243

    Article  Google Scholar 

  • Wright KJ, Higgs DM, Leis JM (2011) Ontogenetic and interspecific variation in hearing ability in marine fish larvae. Mar Ecol Prog Ser 424:1–13

    Article  Google Scholar 

  • Wysocki LE, Ladich F (2001) The ontogenetic development of auditory sensitivity, vocalization and acoustic communication in the labyrinth fish Trichopsis vittata. J Comp Physiol A 187:177–187

    Article  CAS  PubMed  Google Scholar 

  • Yntema CL (1955) Ear and nose. In: Willier BH, Weiss PA, Amburger V (eds) Analysis of development. Saunders, Philadelphia, pp 415–428

    Google Scholar 

  • Zeddies DG, Fay RR (2005) Development of the acoustically evoked behavioral response in zebrafish to pure tones. J Exp Biol 208:1363–1372

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Drs. Richard Fay and Arthur Popper for their guidance, mentorship and for being role models for young scientists in the field of fish hearing and bioacoustics. All three authors (ROV, PWA, and JAS) had the privileged opportunity to work with Dick Fay. They are very grateful for his patience and thoughtfulness as a mentor, and for his guidance and kindness over the years. ROV thanks Dick Fay for the opportunity to work in his laboratory at the Marine Biological Laboratory (MBL), for his guidance during her Grass Fellowship working on directional and frequency sensitivity in the Lusitanian toadfish. ROV is grateful to both Dick Fay and Peggy Edds-Walton for being such an amazing team, for their inspirational work, constant support, and friendship. PWA has also been privileged to work with Dick Fay at the UC Bodega Marine Lab and has benefited greatly from the opportunity to discuss science and learning directly from him. PWA thanks Dick Fay for being such a benevolent teacher and masterful researcher, and for his availability to sit down and share his knowledge. JAS also had the privilege of working with Dick on a number of physiology and behavioral experiments since they first met at the MBL, during the Grass Fellowship of JAS.

All three of the authors would like to thank Art Popper for playing a major role in training virtually everyone active in the fish hearing research community. The extensive network of Popper’s Laboratory of Aquatic Bioacoustics alums has provided a great wealth of knowledge and personal assistance as we all have “learned the ropes” in the fish world.

Research conducted by ROV has been supported by FDCT, Macao (grant FDCT 019/2012/A1), and MCTES, Portugal (SFRH/BD/30491/2006). Research in the Sisneros Lab was supported by an NSF grant (IOS 0642214) and a Royal Research Fund grant to JAS and an NIH Auditory Neuroscience Training Fellowship (NIH NIDCD 2T32DC005361-06) to PWA.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raquel O. Vasconcelos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Vasconcelos, R.O., Alderks, P.W., Sisneros, J.A. (2016). Development of Structure and Sensitivity of the Fish Inner Ear. In: Sisneros, J. (eds) Fish Hearing and Bioacoustics. Advances in Experimental Medicine and Biology, vol 877. Springer, Cham. https://doi.org/10.1007/978-3-319-21059-9_14

Download citation

Publish with us

Policies and ethics