Skip to main content

Abstract

Cancer stem cells (CSCs) in a variety of tumor types have intrinsically greater resistance to ionizing radiation (IR) than the remaining cancer cells. Since surviving CSCs have the capacity to regenerate tumor deposits, CSC radioresistance represents an important clinical problem. Here we discuss mechanisms that CSCs employ to resist IR and therapeutic strategies that are currently being used in the clinic or are in various stages of development for overcoming these. While much ongoing work shows promise for increasing the efficacy of IR through rational targeting of CSCs, well-designed clinical trials testing such strategies will be required to bring these approaches into the clinic.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Armanios M, Greider CW (2005) Telomerase and cancer stem cells. Cold Spring Harb Symp Quant Biol 70:205–208

    Article  CAS  PubMed  Google Scholar 

  • Babashah S (ed) (2014) MicroRNAs: key regulators of oncogenesis. Springer International Publishing Switzerland, Cham

    Google Scholar 

  • Babashah S, Soleimani M (2011) The oncogenic and tumour suppressive roles of microRNAs in cancer and apoptosis. Eur J Cancer 47(8):1127–1137

    Article  CAS  PubMed  Google Scholar 

  • Bao S, Wu Q, McLendon RE, Hao Y, Shi Q, Hjelmeland AB et al (2006) Glioma stem cells promote radioresistance by preferential activation of the DNA damage response. Nature 444(7120):756–760

    Article  CAS  PubMed  Google Scholar 

  • Bettegowda C, Sausen M, Leary RJ, Kinde I, Wang Y, Agrawal N et al (2014) Detection of circulating tumor DNA in early- and late-stage human malignancies. Sci Transl Med 6(224):224ra224

    Article  Google Scholar 

  • Biswas SK, McClure D, Jimenez LA, Megson IL, Rahman I (2005) Curcumin induces glutathione biosynthesis and inhibits NF-kappaB activation and interleukin-8 release in alveolar epithelial cells: mechanism of free radical scavenging activity. Antioxid Redox Signal 7(1–2):32–41

    Article  CAS  PubMed  Google Scholar 

  • Brody JD, Ai WZ, Czerwinski DK, Torchia JA, Levy M, Advani RH et al (2010) In situ vaccination with a TLR9 agonist induces systemic lymphoma regression: a phase I/II study. J Clin Oncol 28(28):4324–4332

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown JM, Diehn M, Loo BW Jr (2010) Stereotactic ablative radiotherapy should be combined with a hypoxic cell radiosensitizer. Int J Radiat Oncol Biol Phys 78(2):323–327

    Article  PubMed Central  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006a) MicroRNA signatures in human cancers. Nat Rev Cancer 6(11):857–866

    Article  CAS  PubMed  Google Scholar 

  • Calin GA, Croce CM (2006b) MicroRNA-cancer connection: the beginning of a new tale. Cancer Res 66(15):7390–7394

    Article  CAS  PubMed  Google Scholar 

  • Cao C, Mu Y, Hallahan DE, Lu B (2004) XIAP and survivin as therapeutic targets for radiation sensitization in preclinical models of lung cancer. Oncogene 23(42):7047–7052

    Article  CAS  PubMed  Google Scholar 

  • Carlson DJ, Keall PJ, Loo BW Jr, Chen ZJ, Brown JM (2011) Hypofractionation results in reduced tumor cell kill compared to conventional fractionation for tumors with regions of hypoxia. Int J Radiat Oncol Biol Phys 79(4):1188–1195

    Article  PubMed Central  PubMed  Google Scholar 

  • Chao MP, Alizadeh AA, Tang C, Myklebust JH, Varghese B, Gill S et al (2010) Anti-CD47 antibody synergizes with rituximab to promote phagocytosis and eradicate non-Hodgkin lymphoma. Cell 142(5):699–713

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chao MP, Alizadeh AA, Tang C, Jan M, Weissman-Tsukamoto R, Zhao F et al (2011) Therapeutic antibody targeting of CD47 eliminates human acute lymphoblastic leukemia. Cancer Res 71(4):1374–1384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaudhuri AA, So AY, Sinha N, Gibson WS, Taganov KD, O’Connell RM et al (2011) MicroRNA-125b potentiates macrophage activation. J Immunol 187(10):5062–5068

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chaudhuri AA, So AY, Mehta A, Minisandram A, Sinha N, Jonsson VD et al (2012) Oncomir miR-125b regulates hematopoiesis by targeting the gene Lin28A. Proc Natl Acad Sci USA 109(11):4233–4238

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Corbin AS, Agarwal A, Loriaux M, Cortes J, Deininger MW, Druker BJ (2011) Human chronic myeloid leukemia stem cells are insensitive to imatinib despite inhibition of BCR-ABL activity. J Clin Invest 121(1):396–409

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN et al (2009) Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature 458(7239):780–783

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ebert MS, Neilson JR, Sharp PA (2007) MicroRNA sponges: competitive inhibitors of small RNAs in mammalian cells. Nat Methods 4(9):721–726

    Article  CAS  PubMed  Google Scholar 

  • Eyler CE, Rich JN (2008) Survival of the fittest: cancer stem cells in therapeutic resistance and angiogenesis. J Clin Oncol 26(17):2839–2845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Fan X, Khaki L, Zhu TS, Soules ME, Talsma CE, Gul N et al (2010) NOTCH pathway blockade depletes CD133-positive glioblastoma cells and inhibits growth of tumor neurospheres and xenografts. Stem Cells 28(1):5–16

    PubMed Central  CAS  PubMed  Google Scholar 

  • Garcia-Barros M, Paris F, Cordon-Cardo C, Lyden D, Rafii S, Haimovitz-Friedman A et al (2003) Tumor response to radiotherapy regulated by endothelial cell apoptosis. Science 300(5622):1155–1159

    Article  CAS  PubMed  Google Scholar 

  • Golden EB, Demaria S, Schiff PB, Chachoua A, Formenti SC (2013) An abscopal response to radiation and ipilimumab in a patient with metastatic non-small cell lung cancer. Cancer Immunol Res 1(6):365–372

    Article  PubMed Central  PubMed  Google Scholar 

  • Hahn WC, Stewart SA, Brooks MW, York SG, Eaton E, Kurachi A et al (1999) Inhibition of telomerase limits the growth of human cancer cells. Nat Med 5(10):1164–1170

    Article  CAS  PubMed  Google Scholar 

  • Hiniker SM, Chen DS, Knox SJ (2012a) Abscopal effect in a patient with melanoma. N Engl J Med 366(21):2035; author reply 2035–2036

    Article  CAS  PubMed  Google Scholar 

  • Hiniker SM, Chen DS, Reddy S, Chang DT, Jones JC, Mollick JA et al (2012b) A systemic complete response of metastatic melanoma to local radiation and immunotherapy. Transl Oncol 5(6):404–407

    Article  PubMed Central  PubMed  Google Scholar 

  • Hiyama E, Hiyama K (2007) Telomere and telomerase in stem cells. Br J Cancer 96(7):1020–1024

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ishimoto T, Nagano O, Yae T, Tamada M, Motohara T, Oshima H et al (2011) CD44 variant regulates redox status in cancer cells by stabilizing the xCT subunit of system xc(−) and thereby promotes tumor growth. Cancer Cell 19(3):387–400

    Article  CAS  PubMed  Google Scholar 

  • Iwata H, Sato K, Tatewaki K, Yokota N, Inoue M, Baba Y et al (2011) Hypofractionated stereotactic radiotherapy with CyberKnife for nonfunctioning pituitary adenoma: high local control with low toxicity. Neuro Oncol 13(8):916–922

    Article  PubMed Central  PubMed  Google Scholar 

  • Jaiswal S, Jamieson CH, Pang WW, Park CY, Chao MP, Majeti R et al (2009) CD47 is upregulated on circulating hematopoietic stem cells and leukemia cells to avoid phagocytosis. Cell 138(2):271–285

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kim NW, Piatyszek MA, Prowse KR, Harley CB, West MD, Ho PL et al (1994) Specific association of human telomerase activity with immortal cells and cancer. Science 266(5193):2011–2015

    Article  CAS  PubMed  Google Scholar 

  • Kim YH, Gratzinger D, Harrison C, Brody JD, Czerwinski DK, Ai WZ et al (2012) In situ vaccination against mycosis fungoides by intratumoral injection of a TLR9 agonist combined with radiation: a phase 1/2 study. Blood 119(2):355–363

    Article  PubMed Central  PubMed  Google Scholar 

  • Kinde I, Bettegowda C, Wang Y, Wu J, Agrawal N, Shih Ie M et al (2013) Evaluation of DNA from the Papanicolaou test to detect ovarian and endometrial cancers. Sci Transl Med 5(167):167ra164

    Article  Google Scholar 

  • Kobayashi CI, Suda T (2012) Regulation of reactive oxygen species in stem cells and cancer stem cells. J Cell Physiol 227(2):421–430

    Article  CAS  PubMed  Google Scholar 

  • LaCasse EC, Mahoney DJ, Cheung HH, Plenchette S, Baird S, Korneluk RG (2008) IAP-targeted therapies for cancer. Oncogene 27(48):6252–6275

    Article  CAS  PubMed  Google Scholar 

  • Levina V, Marrangoni A, Wang T, Parikh S, Su Y, Herberman R et al (2010) Elimination of human lung cancer stem cells through targeting of the stem cell factor-c-kit autocrine signaling loop. Cancer Res 70(1):338–346

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li Z, Bao S, Wu Q, Wang H, Eyler C, Sathornsumetee S et al (2009) Hypoxia-inducible factors regulate tumorigenic capacity of glioma stem cells. Cancer Cell 15(6):501–513

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lu Y, Xiao J, Lin H, Bai Y, Luo X, Wang Z et al (2009) A single anti-microRNA antisense oligodeoxyribonucleotide (AMO) targeting multiple microRNAs offers an improved approach for microRNA interference. Nucleic Acids Res 37(3), e24

    Article  PubMed Central  PubMed  Google Scholar 

  • Moding EJ, Lee CL, Castle KD, Oh P, Mao L, Zha S et al (2014) Atm deletion with dual recombinase technology preferentially radiosensitizes tumor endothelium. J Clin Invest 124(8):3325–3338

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morrison R, Schleicher SM, Sun Y, Niermann KJ, Kim S, Spratt DE et al (2011) Targeting the mechanisms of resistance to chemotherapy and radiotherapy with the cancer stem cell hypothesis. J Oncol 2011:941876

    Article  PubMed Central  PubMed  Google Scholar 

  • Newman AM, Bratman SV, To J, Wynne JF, Eclov NC, Modlin LA et al (2014) An ultrasensitive method for quantitating circulating tumor DNA with broad patient coverage. Nat Med 20(5):548–554

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • O’Connell RM, Rao DS, Chaudhuri AA, Boldin MP, Taganov KD, Nicoll J et al (2008) Sustained expression of microRNA-155 in hematopoietic stem cells causes a myeloproliferative disorder. J Exp Med 205(3):585–594

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Connell RM, Chaudhuri AA, Rao DS, Gibson WS, Balazs AB, Baltimore D (2010a) MicroRNAs enriched in hematopoietic stem cells differentially regulate long-term hematopoietic output. Proc Natl Acad Sci USA 107(32):14235–14240

    Article  PubMed Central  PubMed  Google Scholar 

  • O’Connell RM, Rao DS, Chaudhuri AA, Baltimore D (2010b) Physiological and pathological roles for microRNAs in the immune system. Nat Rev Immunol 10(2):111–122

    Article  PubMed  Google Scholar 

  • Phatak P, Cookson JC, Dai F, Smith V, Gartenhaus RB, Stevens MF et al (2007) Telomere uncapping by the G-quadruplex ligand RHPS4 inhibits clonogenic tumour cell growth in vitro and in vivo consistent with a cancer stem cell targeting mechanism. Br J Cancer 96(8):1223–1233

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Phillips TM, McBride WH, Pajonk F (2006) The response of CD24(−/low)/CD44+ breast cancer-initiating cells to radiation. J Natl Cancer Inst 98(24):1777–1785

    Article  PubMed  Google Scholar 

  • Postow MA, Callahan MK, Barker CA, Yamada Y, Yuan J, Kitano S et al (2012) Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med 366(10):925–931

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ren R (2005) Mechanisms of BCR-ABL in the pathogenesis of chronic myelogenous leukaemia. Nat Rev Cancer 5(3):172–183

    Article  CAS  PubMed  Google Scholar 

  • Rubio MA, Davalos AR, Campisi J (2004) Telomere length mediates the effects of telomerase on the cellular response to genotoxic stress. Exp Cell Res 298(1):17–27

    Article  CAS  PubMed  Google Scholar 

  • Ruggieri R, Naccarato S, Nahum AE (2010) Severe hypofractionation: non-homogeneous tumour dose delivery can counteract tumour hypoxia. Acta Oncol 49(8):1304–1314

    Article  PubMed  Google Scholar 

  • Senan S, Palma DA, Lagerwaard FJ (2011) Stereotactic ablative radiotherapy for stage I NSCLC: recent advances and controversies. J Thorac Dis 3(3):189–196

    PubMed Central  PubMed  Google Scholar 

  • Shay JW, Bacchetti S (1997) A survey of telomerase activity in human cancer. Eur J Cancer 33(5):787–791

    Article  CAS  PubMed  Google Scholar 

  • Sheridan C (2014) Immune-checkpoint inhibitors march on, now in combinations. Nat Biotechnol 32(4):297–299

    Article  CAS  PubMed  Google Scholar 

  • Shimura T, Kakuda S, Ochiai Y, Kuwahara Y, Takai Y, Fukumoto M (2011) Targeting the AKT/GSK3beta/cyclin D1/Cdk4 survival signaling pathway for eradication of tumor radioresistance acquired by fractionated radiotherapy. Int J Radiat Oncol Biol Phys 80(2):540–548

    Article  CAS  PubMed  Google Scholar 

  • Shimura T, Fukumoto M, Kunugita N (2013) The role of cyclin D1 in response to long-term exposure to ionizing radiation. Cell Cycle 12(17):2738–2743

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Simone NL, Soule BP, Ly D, Saleh AD, Savage JE, Degraff W et al (2009) Ionizing radiation-induced oxidative stress alters miRNA expression. PLoS One 4(7), e6377

    Article  PubMed Central  PubMed  Google Scholar 

  • Slovin SF, Higano CS, Hamid O, Tejwani S, Harzstark A, Alumkal JJ et al (2013) Ipilimumab alone or in combination with radiotherapy in metastatic castration-resistant prostate cancer: results from an open-label, multicenter phase I/II study. Ann Oncol 24(7):1813–1821

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • So AY, Sookram R, Chaudhuri AA, Minisandram A, Cheng D, Xie C et al (2014) Dual mechanisms by which miR-125b represses IRF4 to induce myeloid and B-cell leukemias. Blood 124(9):1502–1512

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soto-Pantoja DR, Terabe M, Ghosh A, Ridnour LA, DeGraff WG, Wink DA et al (2014) CD47 in the tumor microenvironment limits cooperation between antitumor T-cell immunity and radiotherapy. Cancer Res 74(23):6771–6783

    Google Scholar 

  • Taganov KD, Boldin MP, Chang KJ, Baltimore D (2006) NF-kappaB-dependent induction of microRNA miR-146, an inhibitor targeted to signaling proteins of innate immune responses. Proc Natl Acad Sci USA 103(33):12481–12486

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson PA, Drissi R, Muscal JA, Panditharatna E, Fouladi M, Ingle AM et al (2013) A phase I trial of imetelstat in children with refractory or recurrent solid tumors: a children’s oncology group phase I consortium study (ADVL1112). Clin Cancer Res 19(23):6578–6584

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Verbrugge I, Hagekyriakou J, Sharp LL, Galli M, West A, McLaughlin NM et al (2012) Radiotherapy increases the permissiveness of established mammary tumors to rejection by immunomodulatory antibodies. Cancer Res 72(13):3163–3174

    Article  CAS  PubMed  Google Scholar 

  • Willingham SB, Volkmer JP, Gentles AJ, Sahoo D, Dalerba P, Mitra SS et al (2012) The CD47-signal regulatory protein alpha (SIRPa) interaction is a therapeutic target for human solid tumors. Proc Natl Acad Sci USA 109(17):6662–6667

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woodward WA, Chen MS, Behbod F, Alfaro MP, Buchholz TA, Rosen JM (2007) WNT/beta-catenin mediates radiation resistance of mouse mammary progenitor cells. Proc Natl Acad Sci USA 104(2):618–623

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu X, Smavadati S, Nordfjall K, Karlsson K, Qvarnstrom F, Simonsson M et al (2012) Telomerase antagonist imetelstat inhibits esophageal cancer cell growth and increases radiation-induced DNA breaks. Biochim Biophys Acta 1823(12):2130–2135

    Article  CAS  PubMed  Google Scholar 

  • Yamada Y, Bilsky MH, Lovelock DM, Venkatraman ES, Toner S, Johnson J et al (2008) High-dose, single-fraction image-guided intensity-modulated radiotherapy for metastatic spinal lesions. Int J Radiat Oncol Biol Phys 71(2):484–490

    Article  PubMed  Google Scholar 

  • Zeng J, See AP, Phallen J, Jackson CM, Belcaid Z, Ruzevick J et al (2013) Anti-PD-1 blockade and stereotactic radiation produce long-term survival in mice with intracranial gliomas. Int J Radiat Oncol Biol Phys 86(2):343–349

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao JL, Rao DS, Boldin MP, Taganov KD, O’Connell RM, Baltimore D (2011) NF-kappaB dysregulation in microRNA-146a-deficient mice drives the development of myeloid malignancies. Proc Natl Acad Sci USA 108(22):9184–9189

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maximilian Diehn .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Chaudhuri, A.A., Binkley, M.S., Diehn, M. (2015). Cancer Stem Cells and Tumor Radioresistance. In: Babashah, S. (eds) Cancer Stem Cells: Emerging Concepts and Future Perspectives in Translational Oncology. Springer, Cham. https://doi.org/10.1007/978-3-319-21030-8_18

Download citation

Publish with us

Policies and ethics