Skip to main content

Utilization of Caged Ceramide and Ceramide 1-Phosphate Analogs for Monitoring Cellular Events after Photoactivation

  • Chapter
Bioactive Sphingolipids in Cancer Biology and Therapy

Abstract

Caged compounds possess a photolabile covalent bond. This chapter reviews studies of caged derivatives of two important sphingolipid signaling molecules, ceramide and ceramide 1-phosphate. Biophysical studies were carried out after a 6-bromo-7-hydroxycoumarinyl-ceramide conjugate was inserted into model bilayer membranes. Uncaging with long-wavelength UV light liberated N-palmitoylceramide, and reorganization of lipid domains in the bilayer was monitored. Two derivatives of N-palmitoyl-ceramide 1-phosphate in which the phosphate group was esterified to a caging group were investigated in macrophages; in one derivative the cage is 7-(N,N-diethylamino)coumarin (DECM-C1P)while in the other it is a 4-bromo-5-hydroxy-2-nitrobenzhydryl moiety (BHNB-C1P). The caged derivatives were delivered to macrophages in aqueous solution. The photolytic uncaging process then released ceramide 1-phosphate in the cytosol of macrophages, which was accompanied by stimulation of macrophage proliferation, reactive oxygen species production, and other intracellular signaling events. A distinction can thus be made in some cells between extracellular events evoked by ceramide 1-phosphate, as for example by its interaction with a putative cell-surface receptor, from its intracellular bioactivities. These studies show that elevation of ceramide or ceramide 1-phosphate levels by uncaging of their inactive caged forms enable investigations of a wide variety of biophysical and biochemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim YA, Carter Ramirez DM, Costain WJ, Johnston LJ, Bittman R (2011) A new tool to assess ceramide bioactivity: 6-bromo-7-hydroxycoumarinyl-caged ceramide. Chem Commun 47:9236–9238

    Article  CAS  Google Scholar 

  2. Lankalapalli RS, Ouro A, Arana L, Gomez-Munoz A, Bittman R (2009) Caged ceramide 1-phosphate analogues: synthesis and properties. J Org Chem 74:8844–8847

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Furata T, Wang SS-H, Dantzker JL, Dore TM, Bybee WJ, Callaway EM, Denk W, Tsien RY (1999) Brominated 7-hydroxycoumarin-4-ylmethyls: photolabile protecting groups with biologically useful cross-sections for two photon photolysis. Proc Natl Acad Sci U S A 96:1193–1200

    Article  Google Scholar 

  4. Fedoryak OD, Dore TM (2002) Brominated hydroxyquinoline as a photolabile protecting group with sensitivity to multiphoton excitation. Org Lett 4:3419–3422

    Article  CAS  PubMed  Google Scholar 

  5. Höglinger D, Nadler A, Schultz C (2014) Caged lipids as tools for investigating cellular signaling. Biochim Biophys Acta 1841:1085–1096

    Article  CAS  PubMed  Google Scholar 

  6. Ma J, Rea AC, An H, Ma C et al (2012) Unraveling the mechanism of the photodeprotection reaction of 8-bromo- and 8-chloro-7-hydroxyquinoline caged acetates. Chemistry 18:6854–6865

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Qiao L, Kozikowski AP, Olivera A, Spiegel S (1998) Synthesis and evaluation of a photolyzable derivative of sphingosine. Bioorg Med Chem Lett 8:711–714

    Article  CAS  PubMed  Google Scholar 

  8. Meyer zu Heringdorf D, Liliom K, Schaefer M, Danneberg K, Jaggar JH, Tigyi G, Jakobs KH (2003) Photolysis of intracellular caged sphingosine-1-phosphate causes Ca2+ mobilization independently of G-protein-coupled receptors. FEBS Lett 554:443–449

    Article  CAS  PubMed  Google Scholar 

  9. Usatyuk PV, He D, Bindokas V, Gorshkova IA, Berdyshev EV, Garcia JG, Natarajan V (2011) Photolysis of caged sphingosine-1-phosphate induces barrier enhancement and intracellular activation of lung endothelial cell signaling pathways. Am J Physiol Lung Cell Mol Physiol 300:L840–850

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Grösch S, Schiffmann S, Geisslinger G (2012) Chain length-specific properties of ceramides. Prog Lipid Res 51:50–62

    Article  CAS  PubMed  Google Scholar 

  11. Sot J, Goñi FM, Alonso A (2005) Molecular associations and surface-active properties of short- and Long-N-acyl chain ceramides. Biochim Biophys Acta 1711:12–19

    Article  CAS  PubMed  Google Scholar 

  12. Carter Ramirez DM, Kim YA, Bittman R, Johnston LJ (2013) Lipid phase separation and protein-ganglioside clustering in supported bilayers are induced by photorelease of ceramide. Soft Matter 9:4890–4899

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. Ira, Zou S, Vanderlip S et al (2009) Enzymatic generation of ceramide induces membrane restructuring: correlated AFM and fluorescence imaging of supported bilayers. J Struct Biol 168:78–89

    Article  CAS  PubMed  Google Scholar 

  14. Kunishima M, Tokaji M, Matsuoka K et al (2006) Spontaneous membrane fusion induced by chemical formation of ceramides in a lipid bilayer. J Am Chem Soc 128:14452–14453

    Article  CAS  PubMed  Google Scholar 

  15. Shigenaga A, Hirakawa H, Yamamoto J, Ogura K et al (2011) Design and synthesis of caged ceramide: UV-responsive ceramide releasing system based on UV-induced bond cleavage followed by O-N acyl transfer. Tetrahedron 67:3984–3990

    Article  CAS  Google Scholar 

  16. Carter Ramirez DM, Pitre S, Kim YA, Bittman R, Johnston LJ (2013) Photo-uncaging of ceramides promotes reorganization of liquid-ordered domains in supported lipid bilayers. Langmuir 29:338–347

    Google Scholar 

  17. Hannun YA, Obeid LM (2008) Principles of bioactive lipid signalling: lessons from sphingolipids. Nat Rev Mol Cell Biol 9:139–150

    Article  CAS  PubMed  Google Scholar 

  18. Fyrst H, Saba JD (2010) An update on sphingosine-1-phosphate and other sphingolipid mediators. Nat Chem Biol 6:489–497

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Gangoiti P, Camacho L, Arana L, Ouro A, Granado MH, Brizuela L, Casas J, Fabriás G, Abad JL, Delgado A, Gómez-Muñoz A (2010) Control of metabolism and signaling of simple bioactive sphingolipids. Implications in disease. Prog Lipid Res 49:316–334

    Article  CAS  PubMed  Google Scholar 

  20. Gomez-Muñoz A (2006) Ceramide 1-phosphate/ceramide, a switch between life and death. Biochim Biophys Acta 1758:2049–2056

    Article  CAS  PubMed  Google Scholar 

  21. Gomez-Muñoz A, Gangoiti P, Arana L, Ouro A, Rivera I-G, Ordoñez M, Trueba M (2013) New insights on the role of ceramide 1-phosphate in inflammation. Biochim Biophys Acta 1831:1060–1066

    Article  CAS  PubMed  Google Scholar 

  22. Chalfant CE, Spiegel S (2005) Sphingosine 1-phosphate and ceramide 1-phosphate: expanding roles in cell signaling. J Cell Sci 118:4605–4612

    Article  CAS  PubMed  Google Scholar 

  23. Lamour NF, Chalfant CE (2005) Ceramide-1-phosphate: the “missing” link in eicosanoid biosynthesis and inflammation. Mol Interv 5:358–367

    Article  CAS  PubMed  Google Scholar 

  24. Wijesinghe DS, Lamour NF, Gomez-Munoz A, Chalfant CE (2007) Ceramide kinase and ceramide-1-phosphate. Methods Enzymol 434:265–292

    Article  CAS  PubMed  Google Scholar 

  25. Ratajczak MZ, Kim C, Ratajczak J, Janowska-Wieczorek A (2013) Innate immunity as orchestrator of bone marrow homing for hematopoietic stem/progenitor cells. Adv Exp Med Biol 734:219–232

    Article  CAS  Google Scholar 

  26. Hinkovska-Galcheva V, Boxer LA, Kindzelskii A, Hiraoka M, Abe A, Goparju S, Spiegel S, Petty HR, Shayman JA (2005) Ceramide 1-phosphate, a mediator of phagocytosis. J Biol Chem 280:26612–26621

    Article  CAS  PubMed  Google Scholar 

  27. Mitsutake S, Kim TJ, Inagaki Y, Kato M, Yamashita T, Igarashi Y (2004) Ceramide kinase is a mediator of calcium-dependent degranulation in mast cells. J Biol Chem 279:17570–17577

    Article  CAS  PubMed  Google Scholar 

  28. Granado MH, Gangoiti P, Ouro A, Arana L, Gonzalez M, Trueba M, Gomez-Munoz A (2009) Ceramide 1-phosphate (C1P) promotes cell migration: involvement of a specific C1P receptor. Cell Signal 21:405–412

    Article  CAS  PubMed  Google Scholar 

  29. Arana L, Ordoñez M, Ouro A, Rivera I-G, Gangoiti P, Trueba M, Gomez-Muñoz A (2013) Ceramide 1-phosphate induces macrophage chemoattractant protein-1 release: involvement in ceramide 1-phosphate-stimulated cell migration. Am J Physiol Endocrinol Metab 304:E1213–E1226

    Article  CAS  PubMed  Google Scholar 

  30. Ouro A, Arana L, Gangoiti P, Rivera I-G, Ordoñez M, Trueba M, Lankalapalli RS, Bittman R, Gomez-Muñoz A (2013) Ceramide 1-phosphate stimulates glucose uptake in macrophages. Cell Signal 25:786–795

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Dressler KA, Kolesnick RN (1990) Ceramide-1-phosphate, a novel phospholipid in human leukemia (HL-60) cells. J Biol Chem 265:14917–14921

    CAS  PubMed  Google Scholar 

  32. Bini F, Frati A, Garcia-Gil M, Battistini C, Granado M, Martinesi M, Mainardi M, Vannini E, Luzzati F, Caleo M, Peretto P, Gomez-Munoz A, Meacci E (2012) New signalling pathway involved in the anti-proliferative action of vitamin D3 and its analogues in human neuroblastoma cells. A role for ceramide kinase. Neuropharmacology 63:524–537

    Article  CAS  PubMed  Google Scholar 

  33. Comalada M, Xaus J, Sanchez E, Valledor AF, Celada A (2004) Macrophage colony-stimulating factor-, granulocyte-macrophage colony-stimulating factor-, or IL-3-dependent survival of macrophages, but not proliferation, requires the expression of p21 (Waf1) through the phosphatidylinositol 3-kinase/Akt pathway. Eur J Immunol 34:2257–2267

    Article  CAS  PubMed  Google Scholar 

  34. Arana L, Gangoiti P, Ouro A, Rivera I-G, Ordoñez M, Trueba M, Lankalapalli RS, Bittman R, Gomez-Muñoz A (2012) Generation of reactive oxygen species (ROS) is a key factor for stimulation of macrophage proliferation by ceramide 1-phosphate. Exp Cell Res 318:350–360

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledegements

We are grateful for financial support of the work with caged Cer and caged C1P from the National Institutes of Health (Grant HL-083187 to R.B.) and Grants IT-705-13 from the Departamento de EducaciĂłn, Universidades e InvestigaciĂłn del Gobierno Vasco (Gazteiz-Vitoria, Basque Country), and S-PE13UN017 from Departamento de Industria, Comercio y Turismo del Gobierno Vasco (Gazteiz-Vitoria, Basque Country) (to A. G. M.).

We are indebted to Dr. Patricia Gangoiti for providing Fig. 6. We also thank our many collaborators, especially Dr. Linda J. Johnston, Dr. Daniel M. Carter Ramirez, Dr. Young Ah Kim, and Dr. Ravi S. Lankalapalli, who worked with us on the caged ceramide and caged ceramide 1-phosphate projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert Bittman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bittman, R., Gomez-Muñoz, A. (2015). Utilization of Caged Ceramide and Ceramide 1-Phosphate Analogs for Monitoring Cellular Events after Photoactivation. In: Hannun, Y., Luberto, C., Mao, C., Obeid, L. (eds) Bioactive Sphingolipids in Cancer Biology and Therapy. Springer, Cham. https://doi.org/10.1007/978-3-319-20750-6_17

Download citation

Publish with us

Policies and ethics