Skip to main content

Propagation of Myocardial Fibre Architecture Uncertainty on Electromechanical Model Parameter Estimation: A Case Study

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9126))

Abstract

Computer models of the heart are of increasing interest for clinical applications due to their discriminative and predictive power. However the personalisation step to go from a generic model to a patient-specific one is still a scientific challenge. In particular it is still difficult to quantify the uncertainty on the estimated parameters and predicted values. In this manuscript we present a new pipeline to evaluate the impact of fibre uncertainty on the personalisation of an electromechanical model of the heart from ECG and medical images. We detail how we estimated the variability of the fibre architecture among a given population and how the uncertainty generated by this variability impacts the following personalisation. We first show the variability of the personalised simulations, with respect to the principal variations of the fibres. Then discussed how the variations in this (small) healthy population of fibres impact the parameters of the personalised simulations.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.cgal.org – computational geometry algorithms library.

References

  1. Xi, J., Lamata, P., Niederer, S., Land, S., Shi, W., Zhuang, X., Ourselin, S., Duckett, S.G., Shetty, A.K., Rinaldi, C.A., et al.: The estimation of patient-specific cardiac diastolic functions from clinical measurements. Med. Image Anal. 17(2), 133–146 (2013)

    Article  Google Scholar 

  2. Krishnamurthy, A., Villongco, C.T., Chuang, J., Frank, L.R., Nigam, V., Belezzuoli, E., Stark, P., Krummen, D.E., Narayan, S., Omens, J.H., et al.: Patient-specific models of cardiac biomechanics. J. Comput. Phys. 244, 4–21 (2013)

    Article  Google Scholar 

  3. Marchesseau, S., Delingette, H., Sermesant, M., Ayache, N.: Fast parameter calibration of a cardiac electromechanical model from medical images based on the unscented transform. Biomech. Model. Mechanobiol. 12(4), 815–831 (2013)

    Article  Google Scholar 

  4. Zettinig, O., Mansi, T., Neumann, D., Georgescu, B., Rapaka, S., Seegerer, P., Kayvanpour, E., Sedaghat-Hamedani, F., Amr, A., Haas, J., Steen, H., Katus, H., Meder, B., Navab, N., Kamen, A., Comaniciu, D.: Data-driven estimation of cardiac electrical diffusivity from 12-lead ECG signals. Med. Image Anal. 18(8), 1361–1376 (2014)

    Article  Google Scholar 

  5. Neumann, D., Mansi, T., Georgescu, B., Kamen, A., Kayvanpour, E., Amr, A., Sedaghat-Hamedani, F., Haas, J., Katus, H., Meder, B., Hornegger, J., Comaniciu, D.: Robust image-based estimation of cardiac tissue parameters and their uncertainty from noisy data. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014, Part II. LNCS, vol. 8674, pp. 9–16. Springer, Heidelberg (2014)

    Google Scholar 

  6. Konukoglu, E., Relan, J., Cilingir, U., Menze, B., Chinchapatnam, P., Jadidi, A., Cochet, H., Hocini, M., Delingette, H., Jaïs, P., Haïssaguerre, M., Ayache, N., Sermesant, M.: Efficient probabilistic model personalization integrating uncertainty on data and parameters: application to eikonal-diffusion models in cardiac electrophysiology. Prog. Biophys. Mol. Biol. 107(1), 134–146 (2011)

    Article  Google Scholar 

  7. Wang, Y., Georgescu, B., Chen, T., Wu, W., Wang, P., Lu, X., Lonasec, R., Zheng, Y., Comaniciu, D.: Learning-based detection and tracking in medical imaging: a probabilistic approach. In: Hidalgo, M.G., Torres, A.M., Gómez, J.V. (eds.) Deformation Models. LNVCB, pp. 209–235. Springer, Dordrecht (2013)

    Chapter  Google Scholar 

  8. Neumann, D., Mansi, T., Grbic, S., Voigt, I., Georgescu, B., Kayvanpour, E., Amr, A., Sedaghat-Hamedani, F., Haas, J., Katus, H., et al.: Automatic image-to-model framework for patient-specific electromechanical modeling of the heart. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI), pp. 935–938. IEEE (2014)

    Google Scholar 

  9. Seegerer, P., Mansi, T., Jolly, M.-P., Neumann, D., Georgescu, B., Kamen, A., Kayvanpour, E., Amr, A., Sedaghat-Hamedani, F., Haas, J., Katus, H., Meder, B., Comaniciu, D.: Estimation of regional electrical properties of the heart from 12-lead ECG and images. In: Camara, O., Mansi, T., Pop, M., Rhode, K., Sermesant, M., Young, A. (eds.) STACOM 2014. LNCS, vol. 8896, pp. 204–212. Springer, Heidelberg (2015)

    Google Scholar 

  10. Chapelle, D., Le Tallec, P., Moireau, P., Sorine, M.: Energy-preserving muscle tissue model: formulation and compatible discretizations. Int. J. Multiscale Comput. Eng. 10(2), 189–211 (2012)

    Article  Google Scholar 

  11. Julier, S.J., Uhlmann, J.K.: A new extension of the kalman filter to nonlinear systems. In: International Symposium on Aerospace/Defense Sensing, Simulation and Controls, Orlando, FL, vol. 3, pp. 182–193 (1997)

    Google Scholar 

  12. Lombaert, H., Peyrat, J.-M., Croisille, P., Rapacchi, S., Fanton, L., Clarysse, P., Delingette, H., Ayache, N.: Statistical analysis of the human cardiac fiber architecture from DT-MRI. In: Metaxas, D.N., Axel, L. (eds.) FIMH 2011. LNCS, vol. 6666, pp. 171–179. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  13. Helm, P.A., Tseng, H.J., Younes, L., McVeigh, E.R., Winslow, R.L.: Ex vivo 3d diffusion tensor imaging and quantification of cardiac laminar structure. Magn. Reson. Med. 54, 850–859 (2005)

    Article  Google Scholar 

  14. Arsigny, V., Commowick, O., Ayache, N., Pennec, X.: A fast and log-Euclidean polyaffine framework for locally linear registration. J. Math. Imaging Vis. 33(2), 222–238 (2009)

    Article  MathSciNet  Google Scholar 

  15. Vercauteren, T., Pennec, X., Perchant, A., Ayache, N.: Diffeomorphic demons: Efficient non-parametric image registration. NeuroImage 45(1, Supp. 1), S61–S72 (2009)

    Article  Google Scholar 

  16. Peyrat, J.M., Sermesant, M., Pennec, X., Delingette, H., Xu, C., McVeigh, E.R., Ayache, N.: A computational framework for the statistical analysis of cardiac diffusion tensors: application to a small database of canine hearts. IEEE Transa. Med. Imaging 26(11), 1500–1514 (2007)

    Article  Google Scholar 

Download references

Ackowledgements

This work has been partially funded by the EU FP7-funded project MD-Paedigree (Grant Agreement 600932)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maxime Sermesant .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Molléro, R. et al. (2015). Propagation of Myocardial Fibre Architecture Uncertainty on Electromechanical Model Parameter Estimation: A Case Study. In: van Assen, H., Bovendeerd, P., Delhaas, T. (eds) Functional Imaging and Modeling of the Heart. FIMH 2015. Lecture Notes in Computer Science(), vol 9126. Springer, Cham. https://doi.org/10.1007/978-3-319-20309-6_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-20309-6_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-20308-9

  • Online ISBN: 978-3-319-20309-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics