Skip to main content

Biopolymers in Medical Implants

  • Chapter
  • First Online:
Excipient Applications in Formulation Design and Drug Delivery

Abstract

Many researchers are exploring the potential use of biopolymers as implants in a wide range of applications ranging from replacements of bone to the regeneration of nerves. Biocompatibility, biodegradability and versatility are the properties which make these biopolymers materials of choice. Studies in biopolymer based implants (till date) indicate significant developments in terms of innovative strategies and design of implants to regenerate/repair a damaged tissue or organ. This chapter reviews the present state-of-art of biopolymers and their applications as medical implants. Several biopolymers namely poly (3-hydroxyalkanoates), collagen, gelatin, chitosan and hyaluronic acid are discussed in detail with reference to their applications in orthopaedics, ophthalmology, cardiology, otolaryngology and a few others.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AMD:

Age related macular degeneration

BMP:

Bone morphogenic protein

BSP:

Bone sialoprotein

ECM:

Extracellular matrix

EDC:

1-Ethyl-3-(3-dimethyl aminopropyl) carbodiimide

HA:

Hydroxyapatite

HCEC:

Human corneal endothelial cells

HHx:

Hydroxyhexanoate

HyA:

Hyaluronic acid

KPro:

Keratoprostheses

LCL:

Long-chain-length

LEC:

Limbal epithelial cells

LESC:

Limbal epithelial stem cell

MCL:

Medium-chain-length

NHS:

N-hydroxysuccinimide

nSiO2 :

Nano-silica

PCL:

Polycaprolactone

PGA:

Polyglycolic acid

PHAs:

Poly (3-hydroxyalkanoates)

PHB:

Poly (3-hydroxybutyrate)

P(4HB):

Poly (4-hydroxybutyrate)

P (3HB-co-3HHx):

Poly (3:hydroxybutyrate-co-3hydroxyhexanoate)

PHBV:

Poly (3-hydroxybutyrate-co-3-hydroxyvalerate)

P(3HO):

Poly (3-hydroxyoctanoate)

PLGA:

Poly-dl-lactic-co-glycolic acid

PLLA:

Poly-l-lactic acid

SCL:

Short-chain-length

References

  • Al-Salihi KA, Samsudin AR (2004) Coral–polyhydroxybutrate composite scaffold for tissue engineering: prefabrication properties. Med J Malaysia 59(Suppl B):202–203

    PubMed  Google Scholar 

  • Allen B (2011) The eleven most implanted medical devices in America. http://247wallst.com/healthcare-economy/2011/07/18/the-eleven-most-implanted-medical-devices-in-america/3/. Accessed 22 Jan 2015

  • Anitha A, Sowmya S, Kumar PTS et al (2014) Chitin and chitosan in selected biomedical applications. Prog Polym Sci 39(9):1644–1667

    Article  CAS  Google Scholar 

  • Baier Leach J, Bivens KA, Patrick CW Jr et al (2003) Photocrosslinked hyaluronic acid hydrogels: natural, biodegradable tissue engineering scaffolds. Biotechnol Bioeng 82(5):578–589

    Article  PubMed  CAS  Google Scholar 

  • Bernd HE, Kunze C, Freier T et al (2009) Poly(3-hydroxybutyrate) (PHB) patches for covering anterior skull base defects—an animal study with minipigs. Acta Otolaryngol 129(9):1010–1017

    Article  PubMed  Google Scholar 

  • Bhatt R, Patel K, Trivedi U (2011) Chapter 10: Biodegradation of Poly (3-hydroxyalkanoates). In: Sharma S, Mudhoo A (eds) A Handbook of Applied Biopolymer Technology: Synthesis, Degradation and Applications, Royal Society of Chemistry, UK, p 311-331

    Google Scholar 

  • Bronzino J (ed) (2000) The biomedical engineering handbook. CRC Press, Boca Raton

    Google Scholar 

  • Builles N, Janin-Manificat H, Malbouyres M et al (2010) Use of magnetically oriented orthogonal collagen scaffolds for hemi-corneal reconstruction and regeneration. Biomaterials 31(32):8313–8322

    Article  CAS  PubMed  Google Scholar 

  • Bunge R (1994) The role of the Schwann cell in trophic support and regeneration. J Neurol 242(1):S19–S21

    Article  CAS  PubMed  Google Scholar 

  • Burg KJ, Porter S, Kellam JF (2000) Biomaterial developments for bone tissue engineering. Biomaterials 21(23):2347–2359

    Article  CAS  PubMed  Google Scholar 

  • Butler JE, Hammond TH, Gray SD (2001) Gender-related differences of hyaluronic acid distribution in the human vocal fold. Laryngoscope 111(5):907–911

    Article  CAS  PubMed  Google Scholar 

  • Caridade SG, Merino EG, Alves NM et al (2013) Chitosan membranes containing micro or nano-size bioactive glass particles: evolution of biomineralization followed by in situ dynamic mechanical analysis. J Mech Behav Biomed Mater 20(0):173–183

    Article  CAS  PubMed  Google Scholar 

  • Cass CA, Burg KJ (2012) Tannic acid cross-linked collagen scaffolds and their anti-cancer potential in a tissue engineered breast implant. J Biomater Sci Polym Ed 23(1–4):281–298

    Article  CAS  PubMed  Google Scholar 

  • Chachques JC, Trainini JC, Lago N et al (2008) Myocardial assistance by grafting a new bioartificial upgraded myocardium (MAGNUM trial): clinical feasibility study. Ann Thorac Surg 85(3):901–908

    Article  PubMed  Google Scholar 

  • Chae T, Yang H, Leung V et al (2013) Novel biomimetic hydroxyapatite/alginate nanocomposite fibrous scaffolds for bone tissue regeneration. J Mater Sci: Mater Med 24(8):1885–1894

    CAS  Google Scholar 

  • Chan RW, Gray SD, Titze IR (2001) The importance of hyaluronic acid in vocal fold biomechanics. Otolaryngol–Head Neck Surg: J Am Acad Otolaryngol-Head Neck Surg 124(6):607–614

    Article  CAS  Google Scholar 

  • Chang MC, Douglas WH (2007) Cross-linkage of hydroxyapatite/gelatin nanocomposite using imide-based zero-length cross-linker. J Mater Sci Mater Med 18(10):2045–2051

    Article  CAS  PubMed  Google Scholar 

  • Chen GQ, Wu Q (2005) The application of polyhydroxyalkanoates as tissue engineering materials. Biomaterials 26(33):6565–6578

    Article  CAS  PubMed  Google Scholar 

  • Cheng M, Deng J, Yang F et al (2003) Study on physical properties and nerve cell affinity of composite films from chitosan and gelatin solutions. Biomaterials 24(17):2871–2880

    Article  CAS  PubMed  Google Scholar 

  • Chiono V, Pulieri E, Vozzi G et al (2008) Genipin-crosslinked chitosan/gelatin blends for biomedical applications. J Mate Sci Mater Med 19(2):889–898

    Article  CAS  Google Scholar 

  • Chiu C-H, Shih H-C, Jwo S-C et al (2010) Effect of crosslinkers on physical properties of gelatin hollow tubes for tissue engineering application. In: Dössel O, Schlegel W (eds) World congress on medical physics and biomedical engineering, September 7–12, 2009. vol 25/10. IFMBE Proceedings. Springer Berlin Heidelberg, Munich, pp 293–296

    Google Scholar 

  • Chung TW, Yang J, Akaike T et al (2002) Preparation of alginate/galactosylated chitosan scaffold for hepatocyte attachment. Biomaterials 23(14):2827–2834

    Article  CAS  PubMed  Google Scholar 

  • Chupa JM, Foster AM, Sumner SR et al (2000) Vascular cell responses to polysaccharide materials: in vitro and in vivo evaluations. Biomaterials 21(22):2315–2322

    Article  CAS  PubMed  Google Scholar 

  • Cool SM, Kenny B, Wu A et al (2007) Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) composite biomaterials for bone tissue regeneration: in vitro performance assessed by osteoblast proliferation, osteoclast adhesion and resorption, and macrophage proinflammatory response. J Biomed Mater Res A 82(3):599–610

    Article  CAS  PubMed  Google Scholar 

  • Costa-Pinto AR, Correlo VM, Sol PC et al (2009) Osteogenic differentiation of human bone marrow mesenchymal stem cells seeded on melt based chitosan scaffolds for bone tissue engineering applications. Biomacromolecules 10(8):2067–2073

    Article  CAS  PubMed  Google Scholar 

  • Daamen WF, Veerkamp JH, van Hest JCM et al (2007) Elastin as a biomaterial for tissue engineering. Biomaterials 28(30):4378–4398

    Article  CAS  PubMed  Google Scholar 

  • de Bruin AF, Gosselink MP, van der Harst E et al (2010) Local application of gentamicin collagen implants in the prophylaxis of surgical site infections following gastrointestinal surgery: a review of clinical experience. Tech Coloproctol 14(4):301–310

    Article  PubMed Central  PubMed  Google Scholar 

  • De la Mata A, Nieto-Miguel T, Lopez-Paniagua M et al (2013) Chitosan-gelatin biopolymers as carrier substrata for limbal epithelial stem cells. J Mater Sci Mater Med 24(12):2819–2829

    Article  PubMed  CAS  Google Scholar 

  • Deng Y, Zhao K, Zhang XF et al (2002) Study on the three-dimensional proliferation of rabbit articular cartilage-derived chondrocytes on polyhydroxyalkanoate scaffolds. Biomaterials 23(20):4049–4056

    Article  CAS  PubMed  Google Scholar 

  • Di Martino A, Sittinger M, Risbud MV (2005) Chitosan: a versatile biopolymer for orthopaedic tissue-engineering. Biomaterials 26(30):5983–5990

    Article  PubMed  CAS  Google Scholar 

  • Dong Y, Li P, Chen CB et al (2010) The improvement of fibroblast growth on hydrophobic biopolyesters by coating with polyhydroxyalkanoate granule binding protein PhaP fused with cell adhesion motif RGD. Biomaterials 31(34):8921–8930

    Article  CAS  PubMed  Google Scholar 

  • Dong CL, Li SY, Wang Y et al (2012) The cytocompatability of polyhydroxyalkanoates coated with a fusion protein of PHA repressor protein (PhaR) and Lys-Gln-Ala-Gly-Asp-Val (KQAGDV) polypeptide. Biomaterials 33(9):2593–2599

    Article  CAS  PubMed  Google Scholar 

  • Doyle C, Tanner ET, Bonfield W (1991) In vitro and in vivo evaluation of polyhydroxybutyrate and of polyhydroxybutyrate reinforced with hydroxyapatite. Biomaterials 12(9):841–847

    Article  CAS  PubMed  Google Scholar 

  • Engelmayr GC Jr, Hildebrand DK, Sutherland FW et al (2003) A novel bioreactor for the dynamic flexural stimulation of tissue engineered heart valve biomaterials. Biomaterials 24(14):2523–2532

    Article  CAS  PubMed  Google Scholar 

  • Enrione J, Osorio F, López D et al (2010) Characterization of a Gelatin/Chitosan/Hyaluronan scaffold-polymer. Electron J Biotechnol 13:20–21

    Article  CAS  Google Scholar 

  • Fagerholm P, Lagali NS, Merrett K et al (2010) A biosynthetic alternative to human donor tissue for inducing corneal regeneration: 24-month follow-up of a phase 1 clinical study. Sci Transl Med 2(46):46–61

    Article  CAS  Google Scholar 

  • Fan W, Gu J, Hu W et al (2008) Repairing a 35-mm-long median nerve defect with a chitosan/PGA artificial nerve graft in the human: a case study. Microsurgery 28(4):238–242

    Article  PubMed  Google Scholar 

  • Fan J, Shang Y, Yuan Y et al (2010) Preparation and characterization of chitosan/galactosylated hyaluronic acid scaffolds for primary hepatocytes culture. J Mater Sci: Mater Med 21(1):319–327

    CAS  Google Scholar 

  • Franck D, Gil ES, Adam RM et al (2013) Evaluation of silk biomaterials in combination with extracellular matrix coatings for bladder tissue engineering with primary and pluripotent cells. PLoS One 8(2):1–10

    Article  CAS  Google Scholar 

  • Galego N, Rozsa C, Sánchez R et al (2000) Characterization and application of poly(β-hydroxyalkanoates) family as composite biomaterials. Polym Test 19(5):485–492

    Article  CAS  Google Scholar 

  • Gao Y, Yan J, Cui X-j et al (2012) Aligned fibrous scaffold induced aligned growth of corneal stroma cells in vitro culture. Chem Res Chin Univ 28(6):1022–1025

    CAS  Google Scholar 

  • Gelse K, Pöschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Delivery Rev 55(12):1531–1546

    Article  CAS  Google Scholar 

  • Ghezzi CE, Rnjak-Kovacina J, Weiss AS et al (2013) Multifunctional silk tropoelastin biomaterial systems. Isr J Chem 53(9–10):777–786

    PubMed Central  CAS  PubMed  Google Scholar 

  • Gómez-Guillén MC, Pérez-Mateos M, Gómez-Estaca J et al (2009) Fish gelatin: a renewable material for developing active biodegradable films. Trends Food Sci Technol 20(1):3–16

    Article  CAS  Google Scholar 

  • Gong H, Agustin J, Wootton D et al (2014) Biomimetic design and fabrication of porous chitosan-gelatin liver scaffolds with hierarchical channel network. J Mater Sci Mater Med 25(1):113–120

    Article  PubMed  CAS  Google Scholar 

  • Gotfredsen K, Nimb L, Hjorting-Hansen E (1994) Immediate implant placement using a biodegradable barrier, polyhydroxybutyrate-hydroxyvalerate reinforced with polyglactin 910. An experimental study in dogs. Clin Oral Implants Res 5(2):83–91

    Article  CAS  PubMed  Google Scholar 

  • Gredes T, Spassov A, Mai R et al (2009) Changes in insulin like growth factors, myostatin and vascular endothelial growth factor in rat musculus latissimus dorsi by poly-3-hydroxybutyrate implants. J Physiol Pharmacol 60(Suppl 3):77–81

    PubMed  Google Scholar 

  • GümüşderelioÄŸlu M, Aday S (2011) Heparin-functionalized chitosan scaffolds for bone tissue engineering. Carbohydr Res 346(5):606–613

    Article  PubMed  CAS  Google Scholar 

  • Haipeng G, Yinghui Z, Jianchun L et al (2000) Studies on nerve cell affinity of chitosan-derived materials. J Biomed Mater Res 52(2):285–295

    Article  CAS  PubMed  Google Scholar 

  • Han Y, Zeng Q, Li H et al (2013) The calcium silicate/alginate composite: Preparation and evaluation of its behavior as bioactive injectable hydrogels. Acta Biomater 9(11):9107–9117

    Article  CAS  PubMed  Google Scholar 

  • He X, Liu Y, Yuan X et al (2014) Enhanced healing of rat calvarial defects with MSCs loaded on BMP-2 releasing chitosan/alginate/hydroxyapatite scaffolds. PLoS One 9(8):1–9

    CAS  Google Scholar 

  • HertegÃ¥rd S, Hallén L, Laurent C et al (2002) Cross-linked hyaluronan used as augmentation substance for treatment of glottal insufficiency: safety aspects and vocal fold function. Laryngoscope 112(12):2211–2219

    Article  PubMed  Google Scholar 

  • Hoerstrup SP, Sodian R, Daebritz S et al (2000) Functional living trileaflet heart valves grown in vitro. Circulation 102(19 Suppl 3):III44–49

    Google Scholar 

  • Hori K, Sotozono C, Hamuro J et al (2007) Controlled-release of epidermal growth factor from cationized gelatin hydrogel enhances corneal epithelial wound healing. J Control Release 118(2):169–176

    Article  CAS  PubMed  Google Scholar 

  • Hou S, Xu Q, Tian W et al (2005) The repair of brain lesion by implantation of hyaluronic acid hydrogels modified with laminin. J Neurosci Methods 148(1):60–70

    Article  CAS  PubMed  Google Scholar 

  • Hsiue GH, Lai J-Y, Lin P-K (2002) Absorbable sandwich-like membrane for retinal-sheet transplantation. J Biomed Mater Res 61(1):19–25

    Article  CAS  PubMed  Google Scholar 

  • Hsiue GH, Lai JY, Chen KH et al (2006) A novel strategy for corneal endothelial reconstruction with a bioengineered cell sheet. Transplantation 81(3):473–476

    Article  CAS  PubMed  Google Scholar 

  • Huang Y-C, Huang C-C, Huang Y-Y et al (2007) Surface modification and characterization of chitosan or PLGA membrane with laminin by chemical and oxygen plasma treatment for neural regeneration. J Biomed Mater Res A 82A(4):842–851

    Article  CAS  Google Scholar 

  • Huang J, Hu X, Lu L et al (2010) Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J Biomed Mater Res A 93A(1):164–174

    CAS  Google Scholar 

  • Huang GP, Shanmugasundaram S, Masih P et al (2015) An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds. J Biomed Mater Res A 103(2):762–771

    Article  PubMed  CAS  Google Scholar 

  • Hutmacher DW, Schantz T, Zein I et al (2001) Mechanical properties and cell cultural response of polycaprolactone scaffolds designed and fabricated via fused deposition modeling. J Biomed Mater Res 55(2):203–216

    Article  CAS  PubMed  Google Scholar 

  • Im S, Cho S, Hwang J et al (2003) Growth factor releasing porous poly (epsilon-caprolactone)-chitosan matrices for enhanced bone regenerative rherapy. Arch Pharm Res 26(1):76–82

    Article  CAS  PubMed  Google Scholar 

  • Itoh S, Yamaguchi I, Suzuki M et al (2003) Hydroxyapatite-coated tendon chitosan tubes with adsorbed laminin peptides facilitate nerve regeneration in vivo. Brain Res 993(1–2):111–123

    Article  CAS  PubMed  Google Scholar 

  • Jaiswal AK, Kadam SS, Soni VP et al (2013) Improved functionalization of electrospun PLLA/gelatin scaffold by alternate soaking method for bone tissue engineering. Appl Surf Sci 268(0):477–488

    Article  CAS  Google Scholar 

  • Jiankang H, Dichen L, Yaxiong L et al (2009) Preparation of chitosan-gelatin hybrid scaffolds with well-organized microstructures for hepatic tissue engineering. Acta Biomater 5(1):453–461

    Article  PubMed  CAS  Google Scholar 

  • Jinchen S, Huaping T (2013) Alginate-based biomaterials for regenerative medicine applications. Materials (1996–1944) 6(4):1285

    Google Scholar 

  • Jones RR, Hamley IW, Connon CJ (2012) Ex vivo expansion of limbal stem cells is affected by substrate properties. Stem Cell Res 8(3):403–409

    Article  CAS  PubMed  Google Scholar 

  • Kavya KC, Jayakumar R, Nair S et al (2013) Fabrication and characterization of chitosan/gelatin/nSiO2 composite scaffold for bone tissue engineering. Int J Biol Macromol 59:255–263

    Article  CAS  PubMed  Google Scholar 

  • Khan S, Qian Z-J, Ryu B et al (2009) Isolation and biochemical characterization of collagens from seaweed pipefish, Syngnathus schlegeli. Biotechnol Bioproc E 14(4):436–442

    Article  CAS  Google Scholar 

  • Kim S, Nimni ME, Yang Z et al (2005) Chitosan/gelatin-based films crosslinked by proanthocyanidin. J Biomed Mater Res B Appl Biomater 75(2):442–450

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Garrity S, Erickson IE et al (2012) Optimization of macromer density in human MSC-laden hyaluronic acid (HA) hydrogels. In: Bioengineering Conference (NEBEC), 38th Annual Northeast, 16–18 March 2012. pp 211–212. doi:10.1109/NEBC.2012.6207038

    Google Scholar 

  • Kogan G, Soltes L, Stern R et al (2007) Hyaluronic acid: a natural biopolymer with a broad range of biomedical and industrial applications. Biotechnol Lett 29(1):17–25

    Article  CAS  PubMed  Google Scholar 

  • Kose GT, Korkusuz F, Ozkul A et al (2005) Tissue engineered cartilage on collagen and PHBV matrices. Biomaterials 26(25):5187–5197

    Article  PubMed  CAS  Google Scholar 

  • Kruger TE, Miller AH, Wang J (2013) Collagen scaffolds in bone sialoprotein-mediated bone regeneration. Sci World J 2013:6

    Article  CAS  Google Scholar 

  • Kuo YC, Lin CC (2013) Accelerated nerve regeneration using induced pluripotent stem cells in chitin-chitosan-gelatin scaffolds with inverted colloidal crystal geometry. Colloids and surfaces B. Biointerfaces 103:595–600

    Article  CAS  PubMed  Google Scholar 

  • Lai J (2009) The role of bloom index of gelatin on the interaction with retinal pigment epithelial cells. Int J Mol Sci 10(8):3442–3456

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lai J-Y (2013a) Corneal stromal cell growth on gelatin/chondroitin sulfate scaffolds modified at different NHS/EDC molar ratios. Int J Mol Sci 14(1):2036–2055

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lai J-Y (2013b) Influence of solvent composition on the performance of carbodiimide cross-linked gelatin carriers for retinal sheet delivery. J Mater Sci: Mater Med 24(9):2201–2210

    CAS  Google Scholar 

  • Lai JY, Li YT (2010) Functional assessment of cross-linked porous gelatin hydrogels for bioengineered cell sheet carriers. Biomacromolecules 11(5):1387–1397

    Article  CAS  PubMed  Google Scholar 

  • Lai JY, Chen KH, Hsu WM et al (2006) Bioengineered human corneal endothelium for transplantation. Arch Ophthalmol 124(10):1441–1448

    Article  CAS  PubMed  Google Scholar 

  • Lai JY, Chen KH, Hsiue GH (2007) Tissue-engineered human corneal endothelial cell sheet transplantation in a rabbit model using functional biomaterials. Transplantation 84(10):1222–1232

    Article  PubMed  Google Scholar 

  • Lai J-Y, Lin P-K, Hsiue G-H et al (2008) Low bloom strength gelatin as a carrier for potential use in retinal sheet encapsulation and transplantation. Biomacromolecules 10(2):310–319

    Article  CAS  Google Scholar 

  • Lai J-Y, Li Y-T, Cho C-H et al (2012) Nanoscale modification of porous gelatin scaffolds with chondroitin sulfate for corneal stromal tissue engineering. Int J Nanomed 7:1101–1114

    Article  CAS  Google Scholar 

  • Langley SM, Rooney SJ, Dalrymple-Hay MJ et al (1999) Replacement of the proximal aorta and aortic valve using a composite bileaflet prosthesis and gelatin-impregnated polyester graft (Carbo-Seal): early results in 143 patients. J Thorac Cardiovasc Surg 118(6):1014–1020

    Article  CAS  PubMed  Google Scholar 

  • Lapid O (2011) Use of gentamicin collagen sponges for the treatment of periprosthetic breast implant infection. J Plast Reconstr Aesthet Surg 64(12):e313–e316

    Article  PubMed  Google Scholar 

  • Lee H, Kim G (2014) Enhanced cellular activities of polycaprolactone/alginate-based cell-laden hierarchical scaffolds for hard tissue engineering applications. J Colloid Interface Sci 430:315–325

    Article  CAS  PubMed  Google Scholar 

  • Lee AY, Mahler N, Best C et al (2014) Regenerative implants for cardiovascular tissue engineering. Transl Res 163(4):321–341

    Article  CAS  PubMed  Google Scholar 

  • Lei Y, Rahim M, Ng Q et al (2011) Hyaluronic acid and fibrin hydrogels with concentrated DNA/PEI polyplexes for local gene delivery. J Control Release 153(3):255–261

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Li H, Chang J (2004) Fabrication and characterization of bioactive wollastonite/PHBV composite scaffolds. Biomaterials 25(24):5473–5480

    Article  CAS  PubMed  Google Scholar 

  • Li J, Pan J, Zhang L et al (2003a) Culture of primary rat hepatocytes within porous chitosan scaffolds. J Biomed Mater Res A 67A(3):938–943

    Article  CAS  Google Scholar 

  • Li J, Pan J, Zhang L et al (2003b) Culture of hepatocytes on fructose-modified chitosan scaffolds. Biomaterials 24(13):2317–2322

    Article  CAS  PubMed  Google Scholar 

  • Li J, Yun H, Gong Y et al (2005a) Effects of surface modification of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) on physicochemical properties and on interactions with MC3T3-E1 cells. J Biomed Mater Res A 75(4):985–998

    Article  PubMed  CAS  Google Scholar 

  • Li Z, Ramay HR, Hauch KD et al (2005b) Chitosan–alginate hybrid scaffolds for bone tissue engineering. Biomaterials 26(18):3919–3928

    Article  CAS  PubMed  Google Scholar 

  • Li H, Zhai W, Chang J (2008) In vitro biocompatibility assessment of PHBV/Wollastonite composites. J Mater Sci Mater Med 19(1):67–73

    Article  CAS  PubMed  Google Scholar 

  • Lien S-M, Chien C-H, Huang T-J (2009) A novel osteochondral scaffold of ceramic–gelatin assembly for articular cartilage repair. Mater Sci Eng: C 29(1):315–321

    Article  CAS  Google Scholar 

  • Lindahl U, Hook M (1978) Glycosaminoglycans and their binding to biological macromolecules. Annu Rev Biochem 47:385–417

    Article  CAS  PubMed  Google Scholar 

  • Linh N, Min Y, Lee B-T (2013) Fabrication and in vitro evaluations with osteoblast-like MG-63 cells of porous hyaluronic acid-gelatin blend scaffold for bone tissue engineering applications. J Mater Sci 48(12):4233–4242

    Article  CAS  Google Scholar 

  • Liu Y, Wang M (2007) Thermophysical and mechanical properties of b-tricalcium phosphate reinforced polyhydroxybutyrate and polyhydroxybutyrate-co- hydroxyvalerate composites. Key Eng Mater 334–335:1217–1220

    Article  Google Scholar 

  • Liu H, Slamovich EB, Webster TJ (2006a) Less harmful acidic degradation of poly(lactic-co-glycolic acid) bone tissue engineering scaffolds through titania nanoparticle addition. Int J Nanomed 1(4):541–545

    Article  CAS  Google Scholar 

  • Liu Y, Gan L, Carlsson DJ et al (2006b) A Simple, Cross-linked Collagen Tissue Substitute for Corneal Implantation. Investig Ophthalmol Vis Sci 47(5):1869–1875

    Article  Google Scholar 

  • Liu Y, Ren L, Wang Y (2013) Crosslinked collagen–gelatin–hyaluronic acid biomimetic film for cornea tissue engineering applications. Mater Sci Eng: C 33(1):196–201

    Article  CAS  Google Scholar 

  • Lozano D, Sanchez-Salcedo S, Portal-Nunez S et al (2014) Parathyroid hormone-related protein (107–111) improves the bone regeneration potential of gelatin-glutaraldehyde biopolymer-coated hydroxyapatite. Acta Biomater 10(7):3307–3316

    Article  CAS  PubMed  Google Scholar 

  • Lu HK, Lee SY, Lin FP (1998) Elastic modulus, permeation time and swelling ratio of a new porcine dermal collagen membrane. J Periodontal Res 33(5):243–248

    Article  CAS  PubMed  Google Scholar 

  • Lu L, Peter SJ, Lyman MD et al (2000) In vitro and in vivo degradation of porous poly(DL-lactic-co-glycolic acid) foams. Biomaterials 21(18):1837–1845

    Article  CAS  PubMed  Google Scholar 

  • Lu G, Liu S, Lin S et al (2014) Silk porous scaffolds with nanofibrous microstructures and tunable properties. Colloids Surf B 120:28–37

    Article  CAS  Google Scholar 

  • Luckachan G, Pillai CKS (2011) Biodegradable polymers- a review on recent trends and emerging perspectives. J Polym Environ 19(3):637–676

    Article  CAS  Google Scholar 

  • Luklinska ZB, Bonfield W (1997) Morphology and ultrastructure of the interface between hydroxyapatite-polyhydroxybutyrate composite implant and bone. J Mater Sci Mater Med 8(6):379–383

    Article  CAS  PubMed  Google Scholar 

  • Luklinska ZB, Schluckwerder H (2003) In vivo response to HA-polyhydroxybutyrate/polyhydroxyvalerate composite. J Microsc 211(Pt 2):121–129

    Article  CAS  PubMed  Google Scholar 

  • Mack HB, Mai R, Lauer G et al (2008) Adaptation of myosin heavy chain mRNA expression after implantation of poly(3)hydroxybutyrate scaffolds in rat m. latissimus dorsi. J Physiol Pharmacol 59(Suppl 5):95–103

    PubMed  Google Scholar 

  • Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20(12):1133–1142

    Article  CAS  PubMed  Google Scholar 

  • Manna F, Dentini M, Desideri P et al (1999) Comparative chemical evaluation of two commercially available derivatives of hyaluronic acid (hylaform from rooster combs and restylane from streptococcus) used for soft tissue augmentation. J Eur Acad Dermatol Venereol 13(3):183–192

    Article  CAS  PubMed  Google Scholar 

  • Mano JF, Hungerford G, Gómez Ribelles JL (2008) Bioactive poly(L-lactic acid)-chitosan hybrid scaffolds. Mater Sci Eng: C 28(8):1356–1365

    Article  CAS  Google Scholar 

  • Mansur HS, Costa HS (2008) Nanostructured poly(vinyl alcohol)/bioactive glass and poly(vinyl alcohol)/chitosan/bioactive glass hybrid scaffolds for biomedical applications. Chem Eng J 137(1):72–83

    Article  CAS  Google Scholar 

  • McDermott MK, Chen T, Williams CM et al (2004) Mechanical properties of biomimetic tissue adhesive based on the microbial transglutaminase-catalyzed crosslinking of gelatin. Biomacromolecules 5(4):1270–1279

    Article  CAS  PubMed  Google Scholar 

  • Meena C, Mengi SA, Deshpande SG (1999) Biomedical and industrial applications of collagen. Proc Indian Acad Sci (Chem Sci) 111(2):319–329

    CAS  Google Scholar 

  • Meimandi-Parizi A, Oryan A, Moshiri A (2013) Role of tissue engineered collagen based tridimensional implant on the healing response of the experimentally induced large Achilles tendon defect model in rabbits: a long term study with high clinical relevance. J Biomed Sci 20:28

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meinel L, Kaplan DL (2012) Silk constructs for delivery of musculoskeletal therapeutics. Adv Drug Delivery Rev 64(12):1111–1122

    Article  CAS  Google Scholar 

  • Mi S, Chen B, Wright B et al (2010a) Ex vivo construction of an artificial ocular surface by combination of corneal limbal epithelial cells and a compressed collagen scaffold containing keratocytes. Tissue Eng Part A 16(6):2091-2100

    Google Scholar 

  • Mi S, Chen B, Wright B et al (2010b) Plastic compression of a collagen gel forms a much improved scaffold for ocular surface tissue engineering over conventional collagen gels. J Biomed Mater Res A 95:447-453

    Google Scholar 

  • Mi S, Khutoryanskiy V, Jones R et al (2011) Photochemical cross-linking of a plastically compressed collagen gel produces an optimal scaffold for corneal tissue engineering. J Biomed Mater Res A 99:1-8

    Google Scholar 

  • Mimura T, Amano S, Yokoo S et al (2008) Tissue engineering of corneal stroma with rabbit fibroblast precursors and gelatin hydrogels. Mol Vis 14:1819–1828

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mimura T, Tabata Y, Amano S (2011) Transplantation of corneal stroma reconstructed with gelatin and multipotent precursor cells from corneal stroma. In: Eberli D (ed) Tissue engineering for tissue and organ regeneration. InTech, Rijeka

    Google Scholar 

  • Mimura T, Yamagami S, Amano S (2013) Corneal endothelial regeneration and tissue engineering. Prog Retin Eye Res 35:1–17

    Article  CAS  PubMed  Google Scholar 

  • Mingyu C, Kai G, Jiamou L et al (2004) Surface modification and characterization of chitosan film blended with poly-L-lysine. J Biomater Appl 19(1):59–75

    Article  PubMed  CAS  Google Scholar 

  • Mironov V, Kasyanov V, Markwald RR (2008) Nanotechnology in vascular tissue engineering: from nanoscaffolding towards rapid vessel biofabrication. Trends Biotechnol 26(6):338–344

    Article  CAS  PubMed  Google Scholar 

  • Mistry A, Mikos A (2005) Tissue engineering strategies for bone regeneration. In: Yannas I (ed) Regenerative medicine II, vol 94. Advances in biochemical engineering. Springer Verlag, Heidelberg, pp 1–22

    Google Scholar 

  • Mizuno M, Imai T, Fujisawa R et al (2000) Bone sialoprotein (BSP) is a crucial factor for the expression of osteoblastic phenotypes of bone marrow cells cultured on type I collagen matrix. Calcif Tissue Int 66(5):388–396

    Article  CAS  PubMed  Google Scholar 

  • Mizutani N, Kageyama S, Yamada M et al (2014) The behavior of ligament cells cultured on elastin and collagen scaffolds. J Artif Organs 17(1):50–59

    Article  CAS  PubMed  Google Scholar 

  • Muhd Julkapli N, Akil HMD, Ahmad Z (2011) Preparation, properties and applications of chitosan-based biocomposites/blend materials: a review. Compos Interfaces 18(6):449–507

    Article  CAS  Google Scholar 

  • Naeimi M, Fathi M, Rafienia M et al (2014) Silk fibroin-chondroitin sulfate-alginate porous scaffolds: structural properties and in vitro studies. J Appl Polym Sci 131(21):41048

    Google Scholar 

  • Nagai T, Suzuki N (2000) Isolation of collagen from fish waste material—skin, bone and fins. Food Chem 68(3):277–281

    Article  CAS  Google Scholar 

  • Natu MV, Sardinha JP, Correia IJ et al (2007) Controlled release gelatin hydrogels and lyophilisates with potential application as ocular inserts. Biomed Mater (Bristol. Engl) 2(4):241–249

    Article  CAS  Google Scholar 

  • Nevins AJ (1976) Endodontic composition and method. USA Patent

    Google Scholar 

  • Ni J, Wang M (2002) In vitro evaluation of hydroxyapatite reinforced polyhydroxybutyrate composite. Mater Sci Eng: C 20(1–2):101–109

    Article  Google Scholar 

  • Oh SH, Kang SG, Kim ES et al (2003) Fabrication and characterization of hydrophilic poly(lactic-co-glycolic acid)/poly(vinyl alcohol) blend cell scaffolds by melt-molding particulate-leaching method. Biomaterials 24(22):4011–4021

    Article  CAS  PubMed  Google Scholar 

  • Pannone PJ (ed) (2007) Trends in biomaterials research. Nova Science Publishers, New York

    Google Scholar 

  • Park JK, Shim J-H, Kang KS et al (2011) Solid free-form fabrication of tissue-engineering scaffolds with a poly(lactic-co-glycolic acid) grafted hyaluronic acid conjugate encapsulating an intact bone morphogenetic protein–2/poly(ethylene glycol) complex. Adv Funct Mater 21(15):2906–2912

    Article  CAS  Google Scholar 

  • Park H, Lee J, Lee O et al (2014) Fabrication of microporous three-dimensional scaffolds from silk fibroin for tissue engineering. Macromol Res 22(6):592

    Article  CAS  Google Scholar 

  • Pati F, Adhikari B, Dhara S (2010) Isolation and characterization of fish scale collagen of higher thermal stability. Bioresour Technol 101(10):3737–3742

    Article  CAS  PubMed  Google Scholar 

  • Patino MG, Neiders ME, Andreana S et al (2002) Collagen as an implantable material in medicine and dentistry. J Oral Implantol 28(5):220–225

    Article  PubMed  Google Scholar 

  • Perng CK, Wang YJ, Tsi CH et al (2011) In vivo angiogenesis effect of porous collagen scaffold with hyaluronic acid oligosaccharides. J Surg Res 168(1):9–15

    Article  CAS  PubMed  Google Scholar 

  • Peter M, Binulal NS, Nair SV et al (2010) Novel biodegradable chitosan—gelatin/nano-bioactive glass ceramic composite scaffolds for alveolar bone tissue engineering. Chem Eng J 158(2):353–361

    Article  CAS  Google Scholar 

  • Petter-Puchner AH, Fortelny RH, Glaser KS et al (2010) Collagen implants in inguinal and ventral hernia repair. J Invest Surg 23(5):280–284

    Article  CAS  PubMed  Google Scholar 

  • Pighinelli L, Kucharska M (2013) Chitosan-hydroxyapatite composites. Carbohydr polym 93(1):256–262

    Article  CAS  PubMed  Google Scholar 

  • Porter JR, Ruckh TT, Popat KC (2009) Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 25(6):1539–1560

    CAS  PubMed  Google Scholar 

  • Portocarrero G, Collins G, Livingston AT (2013) Challenges in cartilage tissue engineering. J Tissue Sci Eng 4:e120

    Google Scholar 

  • Ranjha NM, Khan S (2013) Chitosan/poly (vinyl alcohol) based hydrogels for biomedical applications: a review. J Pharm Altern Med 2(1):30–41

    Google Scholar 

  • Rao KP (1995) Recent developments of collagen-based materials for medical applications and drug delivery systems. J Biomater Sci Polym Ed 7(7):623–645

    CAS  PubMed  Google Scholar 

  • Ricotti L, Polini A, Genchi GG et al (2012) Proliferation and skeletal myotube formation capability of C2C12 and H9c2 cells on isotropic and anisotropic electrospun nanofibrous PHB scaffolds. Biomed mater (Bristol. Engl) 7(3):035010

    Article  CAS  Google Scholar 

  • Rieder E, Kasimir MT, Silberhumer G et al (2004) Decellularization protocols of porcine heart valves differ importantly in efficiency of cell removal and susceptibility of the matrix to recellularization with human vascular cells. J Thorac Cardiovasc Surg 127(2):399–405

    Article  PubMed  Google Scholar 

  • Rodkey WG, Steadman JR, Li ST (1999) A clinical study of collagen meniscus implants to restore the injured meniscus. Clin Orthop Relat Res (367 Suppl):S281–292

    Google Scholar 

  • Rodkey WG, DeHaven KE, Montgomery WH 3rd et al (2008) Comparison of the collagen meniscus implant with partial meniscectomy. A prospective randomized trial. J Bone Joint Surg Am 90(7):1413–1426

    Article  PubMed  Google Scholar 

  • Rose J, Pacelli S, Haj A et al (2014) Gelatin-based materials in ocular tissue engineering. Materials 7(4):3106–3135

    Article  CAS  Google Scholar 

  • Rowlands AS, Lim SA, Martin D et al (2007) Polyurethane/poly(lactic-co-glycolic) acid composite scaffolds fabricated by thermally induced phase separation. Biomaterials 28(12):2109–2121

    Article  CAS  PubMed  Google Scholar 

  • Salustri A, Fulop C (1998) Role of hyaluronan during ovulation and fertilization http://www.glycoforum.gr.jp/science/hyaluronan/HA03/HA03E.html. Accessed 4 Aug 2014

  • Saxena AK, Kofler K, Ainodhofer H et al (2009) Esophagus tissue engineering: hybrid approach with esophageal epithelium and unidirectional smooth muscle tissue component generation in vitro. J Gastrointest Surg 13(6):1037–1043

    Article  PubMed  Google Scholar 

  • Schenke-Layland K, Vasilevski O, Opitz F et al (2003) Impact of decellularization of xenogeneic tissue on extracellular matrix integrity for tissue engineering of heart valves. J Struct Biol 143(3):201–208

    Article  CAS  PubMed  Google Scholar 

  • Schmidt D, Stock UA, Hoerstrup SP (2007) Tissue engineering of heart valves using decellularized xenogeneic or polymeric starter matrices. Philos Trans R Soc B: Biol Sci 362(1484):1505–1512

    Article  CAS  Google Scholar 

  • Seidlits SK, Drinnan CT, Petersen RR et al (2011) Fibronectin-hyaluronic acid composite hydrogels for three-dimensional endothelial cell culture. Acta Biomater 7(6):2401–2409

    Article  CAS  PubMed  Google Scholar 

  • Shalumon KT, Sowmya S, Sathish D et al (2013) Effect of incorporation of nanoscale bioactive glass and hydroxyapatite in PCL/chitosan nanofibers for bone and periodontal tissue engineering. J biomed nanotechnol 9(3):430–440

    Article  CAS  PubMed  Google Scholar 

  • Shamsuria O, Fadilah AS, Asiah AB et al (2004) In vitro cytotoxicity evaluation of biomaterials on human osteoblast cells CRL-1543; hydroxyapatite, natural coral and polyhydroxybutarate. Med j Malaysia 59(Suppl B):174–175

    PubMed  Google Scholar 

  • She Z, Liu W, Feng Q (2009) Self-assembly model, hepatocytes attachment and inflammatory response for silk fibroin/chitosan scaffolds. Biomed mater (Bristol. Engl) 4(4):045014

    Article  CAS  Google Scholar 

  • Shi S, Cheng X, Wang J et al (2009) RhBMP-2 microspheres-loaded chitosan/collagen scaffold enhanced osseointegration: an experiment in dog. J Biomater Appl 23(4):331–346

    CAS  PubMed  Google Scholar 

  • Shishatskaya EI, Khlusov IA, Volova TG (2006) A hybrid PHB-hydroxyapatite composite for biomedical application: production, in vitro and in vivo investigation. J Biomater Sci Polym Ed 17(5):481–498

    Article  CAS  PubMed  Google Scholar 

  • Shum-Tim D, Stock U, Hrkach J et al (1999) Tissue engineering of autologous aorta using a new biodegradable polymer. Ann Thorac Surg 68(6):2298–2304 (discussion 2305)

    Article  CAS  PubMed  Google Scholar 

  • Sodian R, Sperling JS, Martin DP et al (1999) Tissue engineering of a trileaflet heart valve-early in vitro experiences with a combined polymer. Tissue Eng 5(5):489–494

    Article  CAS  PubMed  Google Scholar 

  • Sodian R, Hoerstrup SP, Sperling JS et al (2000a) Early in vivo experience with tissue-engineered trileaflet heart valves. Circulation 102(19 Suppl 3):III22–29

    CAS  PubMed  Google Scholar 

  • Sodian R, Hoerstrup SP, Sperling JS et al (2000b) Tissue engineering of heart valves: in vitro experiences. Ann Thorac Surg 70(1):140–144

    Article  CAS  PubMed  Google Scholar 

  • Sodian R, Hoerstrup SP, Sperling JS et al (2000c) Evaluation of biodegradable, three-dimensional matrices for tissue engineering of heart valves. ASAIO J (Am Soc Artif Intern Organs: 1992) 46(1):107–110

    Article  CAS  Google Scholar 

  • Sodian R, Sperling JS, Martin DP et al (2000d) Fabrication of a trileaflet heart valve scaffold from a polyhydroxyalkanoate biopolyester for use in tissue engineering. Tissue Eng 6(2):183–188

    Article  CAS  PubMed  Google Scholar 

  • Sodian R, Loebe M, Hein A et al (2002) Application of stereolithography for scaffold fabrication for tissue engineered heart valves. ASAIO J (Am Soc Artif Intern Organs: 1992) 48(1):12–16

    Article  Google Scholar 

  • Song E, Yeon Kim S, Chun T et al (2006) Collagen scaffolds derived from a marine source and their biocompatibility. Biomaterials 27(15):2951–2961

    Article  CAS  PubMed  Google Scholar 

  • Souren JE, Schneijdenberg C, Verkleij AJ et al (1992) Factors controlling the rhythmic contraction of collagen gels by neonatal heart cells. In vitro cell dev biol: j Tissue Cult Assoc 28a(3 Pt 1):199–204

    Article  CAS  Google Scholar 

  • Stamm C, Khosravi A, Grabow N et al (2004) Biomatrix/polymer composite material for heart valve tissue engineering. Ann Thorac Surg 78(6):2084–2092 (discussion 2092–2083)

    Article  PubMed  Google Scholar 

  • Stevens MM (2008) Biomaterials for bone tissue engineering. Mater Today 11(5):18–25

    Article  CAS  Google Scholar 

  • Stock UA, Degenkolbe I, Attmann T et al (2006) Prevention of device-related tissue damage during percutaneous deployment of tissue-engineered heart valves. J Thorac Cardiovasc Surg 131(6):1323–1330

    Article  CAS  PubMed  Google Scholar 

  • Stone KR, Rodkey WG, Webber RJ et al (1990) Future directions. Collagen-based prostheses for meniscal regeneration. Clin Orthop Relat Res (252):129–135

    Google Scholar 

  • Stone KR, Rodkey WG, Webber R et al (1992) Meniscal regeneration with copolymeric collagen scaffolds. In vitro and in vivo studies evaluated clinically, histologically, and biochemically. Am J Sports Med 20(2):104–111

    Article  CAS  PubMed  Google Scholar 

  • Stone KR, Steadman JR, Rodkey WG et al (1997) Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data. J Bone Joint Surg Am 79(12):1770–1777

    CAS  PubMed  Google Scholar 

  • Suh JK, Matthew HW (2000) Application of chitosan-based polysaccharide biomaterials in cartilage tissue engineering: a review. Biomaterials 21(24):2589–2598

    Article  CAS  PubMed  Google Scholar 

  • Sun J, Wu J, Li H et al (2005) Macroporous poly(3-hydroxybutyrate-co-3-hydroxyvalerate) matrices for cartilage tissue engineering. Eur Polym J 41(10):2443–2449

    Article  CAS  Google Scholar 

  • Takahashi H, Yokota T, Uchimura E et al (2009) Newly developed tissue-engineered material for reconstruction of vascular wall without cell seeding. Ann Thorac Surg 88(4):1269–1276

    Article  PubMed  Google Scholar 

  • Takimoto Y, Nakamura T, Yamamoto Y et al (1998) The experimental replacement of a cervical esophageal segment with an artificial prosthesis with the use of collagen matrix and a silicone stent. J Thorac Cardiovasc Surg 116(1):98–106

    Article  CAS  PubMed  Google Scholar 

  • Tejero R, Anitua E, Orive G (2014) Toward the biomimetic implant surface: biopolymers on titanium-based implants for bone regeneration. Prog Polym Sci 39(7):1406–1447

    Article  CAS  Google Scholar 

  • Thakor N, Patel K, Trivedi U (2006) Microbiological and biotechnological aspects of biodegradable plastics: poly (hydroxyalkanoates). Indian J Biotechnol 5:137–147

    CAS  Google Scholar 

  • The Women’s Health Group P.C (2013) Collagen Implants

    Google Scholar 

  • Thuaksuban N, Nuntanaranont T, Pattanachot W et al (2011) Biodegradable polycaprolactone-chitosan three-dimensional scaffolds fabricated by melt stretching and multilayer deposition for bone tissue engineering: assessment of the physical properties and cellular response. Biomed mater (Bristol. Engl) 6(1):015009

    Article  CAS  Google Scholar 

  • Tsai W-B, Chen Y-R, Li W-T et al (2012) RGD-conjugated UV-crosslinked chitosan scaffolds inoculated with mesenchymal stem cells for bone tissue engineering. Carbohydr Polym 89(2):379–387

    Article  CAS  PubMed  Google Scholar 

  • Venkatesan J, Bhatnagar I, Manivasagan P et al (2014) Alginate composites for bone tissue engineering: a review. Int J Biol Macromol 72:269–281

    Article  PubMed  CAS  Google Scholar 

  • Vepari C, Kaplan DL (2007) Silk as a biomaterial. Prog Polym Sci 32(8–9):991–1007

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang HL, MacNeil RL (1998) Guided tissue regeneration. Absorbable barriers. Dent Clin North Am 42(3):505–522

    CAS  PubMed  Google Scholar 

  • Wang XH, Li DP, Wang WJ et al (2003) Crosslinked collagen/chitosan matrix for artificial livers. Biomaterials 24(19):3213–3220

    Article  CAS  PubMed  Google Scholar 

  • Wang YW, Wu Q, Chen GQ (2004) Attachment, proliferation and differentiation of osteoblasts on random biopolyester poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) scaffolds. Biomaterials 25(4):669–675

    Article  PubMed  CAS  Google Scholar 

  • Wang Y-W, Wu Q, Chen J et al (2005a) Evaluation of three-dimensional scaffolds made of blends of hydroxyapatite and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for bone reconstruction. Biomaterials 26(8):899–904

    Article  CAS  PubMed  Google Scholar 

  • Wang Y-W, Yang F, Wu Q et al (2005b) Effect of composition of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) on growth of fibroblast and osteoblast. Biomaterials 26(7):755–761

    Article  CAS  PubMed  Google Scholar 

  • Wang YW, Wu Q, Chen GQ (2005c) Gelatin blending improves the performance of poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) films for biomedical application. Biomacromolecules 6(2):566–571

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhou HY, Salih E et al (2006) Site-specific in vivo calcification and osteogenesis stimulated by bone sialoprotein. Calcif Tissue Int 79(3):179–189

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Bian YZ, Wu Q et al (2008) Evaluation of three-dimensional scaffolds prepared from poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) for growth of allogeneic chondrocytes for cartilage repair in rabbits. Biomaterials 29(19):2858–2868

    Article  CAS  PubMed  Google Scholar 

  • Wang S, Liu W, Han B et al (2009) Study on a hydroxypropyl chitosan–gelatin based scaffold for corneal stroma tissue engineering. Appl Surf Sci 255(20):8701–8705

    Article  CAS  Google Scholar 

  • Ward PD, Thibeault SL, Gray SD (2002) Hyaluronic acid: Its role in voice. J Voice 16(3):303–309

    Article  PubMed  Google Scholar 

  • Williams D (ed) (1985) Biocompatibility of tissue analogs. CRC, Boca Raton

    Google Scholar 

  • Wise SG, Yeo GC, Hiob MA et al (2014) Tropoelastin: a versatile, bioactive assembly module. Acta Biomater 10(4):1532–1541

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wong C, Patel S, Chen R et al (2010) Biomimetic electrospun gelatin–chitosan polyurethane for heart valve leaflets. J Mech Med Biol 10(04):563–576

    Article  Google Scholar 

  • Wood A, Ogawa M, Portier RJ et al (2008) Biochemical properties of alligator (Alligator mississippiensis) bone collagen. Comp biochem physiol B, Biochem mol biol 151(3):246–249

    Article  PubMed  CAS  Google Scholar 

  • Wright B, Mi S, Connon CJ (2013) Towards the use of hydrogels in the treatment of limbal stem cell deficiency. Drug Discov Today 18(1–2):79–86

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wu S, Liu YL, Cui B et al (2007) Study on decellularized porcine aortic valve/poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) hybrid heart valve in sheep model. Artif Organs 31(9):689–697

    Article  PubMed  Google Scholar 

  • Wu S, Liu Y, Cui B et al (2008) Intravascular biocompatibility of Poly (3-hydroxybutyrate-co-3-hydroxyhexanoate, PHBHHx) for cardiovascular tissue engineering. Chin J Biotechnol 24(4):610–616

    Article  CAS  Google Scholar 

  • Wu Q, Wang Y, Chen GQ (2009) Medical application of microbial biopolyesters polyhydroxyalkanoates. Artif Cells Blood Substit Immobil Biotechnol 37(1):1–12

    Article  PubMed  CAS  Google Scholar 

  • Wu H, Wan Y, Dalai S et al (2010) Response of rat osteoblasts to polycaprolactone/chitosan blend porous scaffolds. J Biomed Mater Res A 92(1):238–245

    Article  PubMed  CAS  Google Scholar 

  • Xia Z, Yu X, Jiang X et al (2013) Fabrication and characterization of biomimetic collagen-apatite scaffolds with tunable structures for bone tissue engineering. Acta Biomater 9(7):7308–7319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Xin-Yuan S, Tian-Wei T (2004) New contact lens based on chitosan/gelatin composites. J Bioacti Compat Polym 19(6):467–479

    Article  CAS  Google Scholar 

  • Xu L, Anderson AL, Lu Q et al (2007) Role of fibrillar structure of collagenous carrier in bone sialoprotein-mediated matrix mineralization and osteoblast differentiation. Biomaterials 28(4):750–761

    Article  CAS  PubMed  Google Scholar 

  • Xu K, Cantu DA, Fu Y et al (2013) Thiol-ene Michael-type formation of gelatin/poly(ethylene glycol) biomatrices for three-dimensional mesenchymal stromal/stem cell administration to cutaneous wounds. Acta Biomater 9(11):8802–8814

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yan J, Qiang L, Gao Y et al (2012) Effect of fiber alignment in electrospun scaffolds on keratocytes and corneal epithelial cells behavior. J Biomed Mater Res A 100(2):527–535

    Article  PubMed  CAS  Google Scholar 

  • Yang Z, Mo L, Duan H et al (2010) Effects of chitosan/collagen substrates on the behavior of rat neural stem cells. Sci China Life Sci 53(2):215–222

    Article  CAS  PubMed  Google Scholar 

  • Yao CH, Liu BS, Hsu SH et al (2005) Calvarial bone response to a tricalcium phosphate-genipin crosslinked gelatin composite. Biomaterials 26(16):3065–3074

    Article  CAS  PubMed  Google Scholar 

  • Yilgor P, Tuzlakoglu K, Reis RL et al (2009) Incorporation of a sequential BMP-2/BMP-7 delivery system into chitosan-based scaffolds for bone tissue engineering. Biomaterials 30(21):3551–3559

    Article  CAS  PubMed  Google Scholar 

  • You M, Peng G, Li J et al (2011) Chondrogenic differentiation of human bone marrow mesenchymal stem cells on polyhydroxyalkanoate (PHA) scaffolds coated with PHA granule binding protein PhaP fused with RGD peptide. Biomaterials 32(9):2305–2313

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Liu W, Li G et al (2007) Isolation and partial characterization of pepsin-soluble collagen from the skin of grass carp (Ctenopharyngodon idella). Food Chem 103(3):906–912

    Article  CAS  Google Scholar 

  • Zhang J, Bi R, Hodge W et al (2013a) A nanocomposite contact lens for the delivery of hydrophilic protein drugs. J Mater Chem B 1(35):4388–4395

    Article  CAS  Google Scholar 

  • Zhang S, Chen L, Jiang Y et al (2013b) Bi-layer collagen/microporous electrospun nanofiber scaffold improves the osteochondral regeneration. Acta Biomater 9(7):7236–7247

    Article  CAS  PubMed  Google Scholar 

  • Zhao Q, Wang S, Kong M et al (2012) Phase morphology, physical properties, and biodegradation behavior of novel PLA/PHBHHx blends. J Biomed Mater Res B Appl Biomater 100B(1):23–31

    Article  CAS  Google Scholar 

  • Zheng Y-D, Wang Y-J, Chen X-F et al (2003) Chemical reaction of PHBV/Sol-gel bioglass foams for born tissue engineering in simulated body fluid. Chem J Chin Univ 24(7):1325–1328

    CAS  Google Scholar 

  • Zheng Y, Wang Y, Yang H et al (2007) Characteristic comparison of bioactive scaffolds based on polyhydroxyalkoanate/bioceramic hybrids. J Biomed Mater Res B Appl Biomater 80(1):236–243

    Article  PubMed  CAS  Google Scholar 

  • Zund G, Breuer CK, Shinoka T et al (1997) The in vitro construction of a tissue engineered bioprosthetic heart valve. Eur J Cardiothorac Surg 11(3):493–497

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rachana Bhatt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Bhatt, R., Jaffe, M. (2015). Biopolymers in Medical Implants. In: Narang, A., Boddu, S. (eds) Excipient Applications in Formulation Design and Drug Delivery. Springer, Cham. https://doi.org/10.1007/978-3-319-20206-8_11

Download citation

Publish with us

Policies and ethics