Skip to main content

Mutation-Driven Evolution: Microsatellite Instability Drives Speciation in a Mammalian Taxon

  • Chapter
  • First Online:
Book cover Evolutionary Biology: Biodiversification from Genotype to Phenotype

Abstract

The concept of evolvability —from its evolutionary origins to molecular mechanisms—defines a fundamental problem at the intersection of biochemistry, genetics, and developmental biology. An emerging paradigm, mutation-driven evolution, posits that chromosomal dynamics (including changes in ploidy, chromosome loss, aberrant recombination, and mechanics of DNA damage and repair) underlie the origin of genetic variation as a precondition for selection. A model is provided by microsatellite instability. Although widely exploited as an experimental marker of evolutionary change with application to human disease, the potential contribution of such instability to evolvability itself is less well understood. Here, we propose that microsatellite instability within a vertebrate sex-determining gene can drive rapid adaptation and speciation. Our analysis focuses on superfamily Muroidea (order Rodentia) wherein four anomalies are observed: (1) This superfamily is unusually speciose, indeed the most species rich in Mammalia; (2) speciation has occurred rapidly (i.e., within the past 25 million years) and apparently in overlapping ranges; (3) inherited XY sex reversal has evolved independently within multiple genera; and (4) uniquely among therian mammals, male sex-determining mechanisms not dependent on Y-encoded testis-determining factor Sry have emerged. A unifying hypothesis is presented whereby these anomalies have a single molecular basis, to wit the dynamics of a Muroidea-specific microsatellite-encoded transcriptional activation domain. An ancestral microsatellite in this taxon has functioned as a “genetic capacitor ” to enable cryptic variation to accumulate within Sry. On discharge, this capacitor provided a recurring source of reproductive isolation and thus enabled rapid evolution of biological novelty at the edge of sexual ambiguity.

Amino acids are designated by standard three-letter code.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    SOX9 also functions in the specification of cartilage and morphogenesis of bone, and so its mutation gives rise to the syndrome of campomelic dysplasia (Foster et al. 1994). Related phenotypes occur in association with deletion of upstream regulatory elements in the SOX9 gene (Sekido and Lovell-Badge 2008).

  2. 2.

    Proof of principle was provided in studies of chimeric mouse Sry genes containing the human SRY HMG box (Chen et al. 2013b). In this chimera the mouse GRD compensates for a human clinical mutation associated with partial loss of specific DNA-binding activity.

  3. 3.

    Since submission of this chapter, a study by Montes et al has suggested an earlier date for the formation of the Panamanian land bridge. Based on uranium-lead dating of sedimentary-river deposits in the Andes, the authors have concluded that the Isthmus of Panama existed in the middle Miocene, approximately 15 million years ago (Montes et al. 2015). This revised geological estimate promises in part to explain the broad radiation of Muroid rodents in South America.

  4. 4.

    Infertility may ordinarily arise in such cases due to antagonistic effects of other Y-chromosome linked genes. Indeed, the presence of Y-linked gene Zfy2 (near Sry on the short arm) was recently found to cause loss of fertility in outbred (Sry -) sex-reversed XY female mice as its deletion partially restored fertility (Vernet et al. 2014). Analogous incompatibility in genetic background may contribute to human 46, XY gonadal dysgenesis in association with SRY mutations as a mechanism of infertility in Swyer’s syndrome (Michala et al. 2008).

  5. 5.

    In genus Akodon , distinct Sry alleles coexist within the same species. In A. azarae, for example, the SRY sequences obtained from two XY females differ at consensus position 13 of the HMG box (i.e., corresponding to position 13 in mouse Sry and position 68 in human SRY): Met or Val (Sánchez et al. 2010). This side chain, designated the cantilever, inserts between DNA base pairs at a site of sharp DNA bending (King and Weiss 1993; Haqq et al. 1994; Murphy et al. 2001) and is conserved as Met, Phe, Ile, or Leu among therian Querymammals (substitution by Ala or Thr blocks specific DNA binding (Weiss et al. 1997). We speculate that the Val cantilever is non-functional and underlies, at least in part, the high percentage of XY sex reversal in this population.

  6. 6.

    The term edge of chaos originally pertained to transition phenomena in cellular automata capable of universal computation (Langton 1990). Stimulated by innovative evolutionary models (Kauffman and Johnsen 1991), this notion provides a general metaphor for critical boundaries between organization and dysgenesis in biological systems, including cellular differentiation (Shmulevich et al. 2005). Dynamic competition between male- and female-specific nonlinear GRNs in the nascent gonad encompasses alternative basins of attraction, respectively, leading to Sertoli- or granulosa cell fates.

Abbreviations

ARD:

Alanine-rich domain

DDA:

Distance distribution analysis

FRET:

Fluorescence resonance energy transfer

GRD:

Glutamine-rich domain

GRN:

Gene regulatory network

GRT:

Gln-rich tract

HMG:

High mobility group

PCR:

Polymerase chain reaction

q-PCR:

Quantitative reverse-transcription PCR

Sox:

Sry-related HMG box

Sry:

Sex-determining region of the Y chromosome

TAD:

Transcriptional activation domain

TDF:

Testis-determining factor

TES:

Testis-specific enhancer

TF:

Transcription factor

tr-FRET:

Time-resolved FRET

References

  • Albrecht KH, Young M, Washburn LL, Eicher EM (2003) Sry expression level and protein isoform differences play a role in abnormal testis development in C57BL/6 J mice carrying certain Sry alleles. Genetics 164:277–288

    PubMed Central  CAS  PubMed  Google Scholar 

  • Auyeung B, Baron-Cohen S, Ashwin E, Knickmeyer R, Taylor K, Hackett G, Hines M (2009) Fetal testosterone predicts sexually differentiated childhood behavior in girls and in boys. Psychol Sci 20:144–148

    Article  PubMed Central  PubMed  Google Scholar 

  • Baker ME (2006) The genetic response to snowball earth: role of HSP90 in the Cambrian explosion. Geobiol 4:11–14

    Article  CAS  Google Scholar 

  • Berlocher SH, Feder JL (2002) Sympatric speciation in phytophagous insects: moving beyond controversy? Ann Rev Entomol 47:773–815

    Article  CAS  Google Scholar 

  • Bianchi NO (2002) Akodon sex reversed females: the never ending story. Cytogen Gen Res 96:60–65

    Article  CAS  Google Scholar 

  • Bolnick DI, Fitzpatrick BM (2007) Sympatric speciation: models and empirical evidence. Ann Rev Ecol Evol System 38:459–487

    Google Scholar 

  • Bowles J, Cooper L, Berkman J, Koopman P (1999) SRY requires a CAG repeat domain for male determination in Mus musculus. Nat Gen 22:405–408

    Article  CAS  Google Scholar 

  • Brouwer JR, Willemsen R, Oostra BA (2009) Microsatellite repeat instability and neurological disease. BioEssays 31:71–83

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brookfield JF (2009) Evolution and evolvability: celebrating Darwin 200. Biol Lett 5:44–46

    Article  PubMed Central  PubMed  Google Scholar 

  • Brown JH, Kurzius MA (1987) Composition of desert rodent faunas: combinations of coexisting species. Ann Zool Fennici 24:227–237

    Google Scholar 

  • Bullejos M, Koopman P (2005) Delayed Sry and Sox9 expression in developing mouse gonads underlies B6-YDOM sex reversal. Dev Biol 278:473–481

    Article  CAS  PubMed  Google Scholar 

  • Canning CA, Lovell-Badge R (2002) Sry and sex determination: how lazy can it be. Trends Gen 18:111–113

    Article  CAS  Google Scholar 

  • Carrer HF, Cambiasso MJ (2009) Sexual differentiation of the brain: genetic, hormonal, and trophic factors. In: Janigro D (ed) Mammalian brain development. Humana Press, pp 1–15

    Google Scholar 

  • Carroll SB (2008) Evo-devo and an expanding evolutionary synthesis: a genetic theory of morphological evolution. Cell 134:25–36

    Article  CAS  PubMed  Google Scholar 

  • Chatterjee N, Santillan BA, Wilson JH (2013) Microsatellite repeats: canaries in the coalmine. In: Mittelman D (ed) Stress-Induced Mutagenesis. Springer, New York, pp 119–150

    Google Scholar 

  • Chen YS, Racca JD, Phillips NB, Weiss MA (2013a) Inherited human sex reversal due to impaired nucleocytoplasmic trafficking of SRY defines a male transcriptional threshold. Proc Natl Acad Sci USA 110:E3567–E3576

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chen YS, Racca JD, Sequiera PW, Phillips NB, Weiss MA (2013b) Microsatellite-encoded domain in rodent Sry functions as a genetic capacitor to enable the rapid evolution of biological novelty. Proc Natl Acad Sci USA 110:E3061–E3070

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Coates AG, Jackson JB, Collins LS, Cronin TM, Dowsett HJ, Bybell LM, Jung P, Obando JA (1992) Closure of the Isthmus of Panama: the near-shore marine record of costa rica and western Panama. Geol Soc Am Bull 104:814–828

    Article  Google Scholar 

  • Cossins A (1998) Cryptic clues revealed. Nature 396:309–310

    Article  CAS  PubMed  Google Scholar 

  • Darwin C (1872) The origin of species, 6th edn. John Murry, London

    Google Scholar 

  • Darwin C (1887) The autobiography of Charles Darwin. In: Regal B (ed) Barnes and Noble, 2005 edn, p 70

    Google Scholar 

  • De Vries H (1909) The mutation theory, vol 1. Open Court Publishing Company, Chicago

    Google Scholar 

  • Dennett DC (1995) Darwin’s dangerous idea. The Sciences 35:34–40

    Article  Google Scholar 

  • Eldredge N, Gould, SJ (1972) Punctuated equilibria: an alternative to phyletic gradualism. In: Schopf TJM (ed) Models in Paleobiology. Freeman Cooper, San Francisco, pp 82–115

    Google Scholar 

  • Erlinge S, Hoogenboom I, Agrell J, Nelson J, Sandell M (1990) Density-related home-range size and overlap in adult field voles (Microtus agrestis) in southern Sweden. J Mammal 71:597–603

    Google Scholar 

  • Ferrier DE, Holland PW (2001) Ancient origin of the Hox gene cluster. Nature Rev Gen 2:33–38

    Article  CAS  Google Scholar 

  • Fisher RA (1930) The genetical theory of natural selection. Clarendon Press, Oxford

    Book  Google Scholar 

  • Foster JW, Dominguez-Steglich MA, Guioli S, Kwok C, Weller PA, Stevanovic M, Weissenbach J, Mansour S, Young ID, Goodfellow PN (1994) Campomelic dysplasia and autosomal sex reversal caused by mutations in an SRY-related gene. Nature 372:525–529

    Article  CAS  PubMed  Google Scholar 

  • Freudenreich CH, Kantrow SM, Zakian VA (1998) Expansion and length-dependent fragility of CTG repeats in yeast. Science 279:853–856

    Article  CAS  PubMed  Google Scholar 

  • Gehring WJ, Ikeo K (1999) Pax 6: mastering eye morphogenesis and eye evolution. Trends Gen 15:371–377

    Article  CAS  Google Scholar 

  • Goodfellow PN, Lovell-Badge R (1993) SRY and sex determination in mammals. Ann Rev Gen 27:71–92

    Article  CAS  Google Scholar 

  • Gordon CT, Tan TY, Benko S, Fitzpatrick D, Lyonnet S, Farlie PG (2009) Long-range regulation at the SOX9 locus in development and disease. J Med Genet 46:649–656

    Article  CAS  PubMed  Google Scholar 

  • Gövert F, Schneider S (2013) Huntington’s disease and Huntington’s disease-like syndromes: an overview. Curr Opin Neurol 26:420–427

    Article  PubMed  CAS  Google Scholar 

  • Graves JA (2013) How to evolve new vertebrate sex determining genes. Dev Dyn 242:354–359

    Article  PubMed  CAS  Google Scholar 

  • Graves JAM, Ferguson-Smith M, McLaren A, Mittwoch U, Renfree M, Burgoyne P (1995) The evolution of mammalian sex chromosomes and the origin of sex determining genes. Philo Trans Royal Soc B (Biol Sci) 350:305–312

    Article  CAS  Google Scholar 

  • Greaves M, Maley CC (2012) Clonal evolution in cancer. Nature 481:306–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gubbay J, Vivian N, Economou A, Jackson D, Goodfellow P, Lovell-Badge R (1992) Inverted repeat structure of the Sry locus in mice. Proc Natl Acad Sci USA 89:7953–7957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Haqq CM, Donahoe PK (1998) Regulation of sexual dimorphism in mammals. Physiol Rev 78:1–33

    CAS  PubMed  Google Scholar 

  • Haqq CM, King CY, Ukiyama E, Falsafi S, Haqq TN, Donahoe PK, Weiss MA (1944) Molecular basis of mammalian sexual determination: activation of Mullerian inhibiting substance gene expression by SRY. Science 266:1494–1500

    Google Scholar 

  • Hershkovitz P (1969) The recent mammals of the Neotropical region: a zoogeographic and ecological review. Q Rev Biol 44:1–70

    Article  Google Scholar 

  • Hodgkin J (2005) Karyotype, ploidy, and gene dosage. WormBook, pp 1–9

    Google Scholar 

  • Hoekstra HE, Edwards SV (2000) Multiple origins of XY female mice (genus Akodon): phylogenetic and chromosomal evidence. Proc Roy Soc Lond B (Biol Sci) 267:1825–1831

    Article  CAS  Google Scholar 

  • Huxley J (1942) Evolution. The modern synthesis. Allen & Unwin, London

    Google Scholar 

  • Jager M, Quéinnec E, Houliston E, Manuel M (2006) Expansion of the SOX gene family predated the emergence of the Bilateria. Mol Phylogenet Evol 39:468–477

    Article  CAS  PubMed  Google Scholar 

  • Jäger RJ, Anvret M, Hall K, Scherer G (1990) A human XY female with a frame shift mutation in the candidate testis-determining gene SRY. Nature 348:452–454

    Article  PubMed  Google Scholar 

  • Jansa SA, Giarla TC, Lim BK (2009) The phylogenetic position of the rodent genus Typhlomys and the geographic origin of Muroidea. J Mammal 90:1083–1094

    Article  Google Scholar 

  • Jiménez R, Barrionuevo FJ, Burgos M (2012) Natural exceptions to normal gonad development in mammals. Sex Dev 7:147–162

    Article  PubMed  CAS  Google Scholar 

  • Kashi Y, King DG (2006) Simple sequence repeats as advantageous mutators in evolution. Trends Gen 22:253–259

    Article  CAS  Google Scholar 

  • Kauffman SA, Johnsen S (1991) Coevolution to the edge of chaos: coupled fitness landscapes, poised states, and coevolutionary avalanches. J Theor Biol 149:467–505

    Article  CAS  PubMed  Google Scholar 

  • Kent J, Wheatley SC, Andrews JE, Sinclair AH, Koopman P (1996) A male-specific role for SOX9 in vertebrate sex determination. Dev 122:2813–2822

    CAS  Google Scholar 

  • Kimpara T, Takeda A, Watanabe K, Itoyama Y, Ikawa S, Watanabe M, Arai H, Sasaki H, Higuchi S, Okita N (1997) Microsatellite polymorphism in the human heme oxygenase-1 gene promoter and its application in association studies with Alzheimer and Parkinson disease. Hum Gen 100:145–147

    Article  CAS  Google Scholar 

  • Kimura R, Murata C, Kuroki Y, Kuroiwa A (2014) Mutations in the testis-specific enhancer of SOX9 in the SRY independent sex-determining mechanism in the genus Tokudaia. PLoS ONE 9:e108779

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • King CY, Weiss MA (1993) The SRY high-mobility-group box recognizes DNA by partial intercalation in the minor groove: a topological mechanism of sequence specificity. Proc natl Acad Sci USA 90:11990–11994

    Google Scholar 

  • Knower KC, Kelly S, Ludbrook LM, Bagheri-Fam S, Sim H, Bernard P, Sekido R, Lovell-Badge R, Harley VR (2011) Failure of SOX9 regulation in 46XY disorders of sex development with SRY, SOX9 and SF1 mutations. PLoS ONE 6:e17751

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kocher TD (2004) Adaptive evolution and explosive speciation: the cichlid fish model. Nat Rev Genet 5:288–298

    Article  CAS  PubMed  Google Scholar 

  • Koopman P, Gubbay J, Vivian N, Goodfellow P, Lovell-Badge R (1991) Male development of chromosomally female mice transgenic for Sry. Nature 351:117–121

    Article  CAS  PubMed  Google Scholar 

  • Kozlowski P, de Mezer M, Krzyzosiak WJ (2010) Trinucleotide repeats in human genome and exome. Nucleic Acids Res 38:4027–4039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kraak SBM (2002) Sex-determining mechanisms in vertebrates. In: Hardy ICW (ed) Sex ratios. Campbridge University Press, Campbridge, pp 158–177

    Chapter  Google Scholar 

  • Lahn BT, Page DC (1999) Four evolutionary strata on the human X chromosome. Science 286:964−967

    Google Scholar 

  • Lamarck JB (1809) Zoological Philosophy, Trans. Hugh Elliot (New York: Hafner, 1963) pp 109–111

    Google Scholar 

  • Landles C, Bates GP (2004) Huntingtin and the molecular pathogenesis of Huntington’s disease. EMBO Rep 5:958–963

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Langton CG (1990) Computation at the edge of chaos. Physica D 42:12–37

    Article  Google Scholar 

  • Lefebvre V, Dumitriu B, Penzo-Méndez A, Han Y, Pallavi B (2007) Control of cell fate and differentiation by Sry-related high-mobility-group box (Sox) transcription factors. Int J Biochem Cell Biol 39:2195–2214

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Leite RN, Kolokotronis S-O, Almeida FC, Werneck FP, Rogers DS, Weksler M (2014) In the wake of invasion: tracing the historical biogeography of the South American cricetid radiation (Rodentia, Sigmodontinae). PLoS ONE 9:e100687

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Li Y-C, Korol AB, Fahima T, Nevo E (2004) Microsatellites within genes: structure, function, and evolution. Mol Biol Evol 21:991–1007

    Article  CAS  PubMed  Google Scholar 

  • Loeb LA (1994) Microsatellite instability: marker of a mutator phenotype in cancer. Cancer Res 54:5059–5063

    CAS  PubMed  Google Scholar 

  • Loeb LA (2011) Human cancers express mutator phenotypes: origin, consequences and targeting. Nat Rev Cancer 11:450–457

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lustig A (2004) Biologists on a crusade in Darwinian Heresie. In: Lustig A, Richards RJ, Ruse M (eds). Cambridge University Press, Cambridge, pp 1–13

    Google Scholar 

  • Mardis ER (2008) The impact of next-generation sequencing technology on genetics. Trends Gen 24:133–141

    Article  CAS  Google Scholar 

  • Marın I, Baker BS (1998) The evolutionary dynamics of sex determination. Science 281:1990–1994

    Article  PubMed  Google Scholar 

  • Martin AP, Palumbi SR (1993) Body size, metabolic rate, generation time, and the molecular clock. Proc Natl Acad Sci USA 90:4087–4091

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matsuzawa-Watanabe Y, Inoue J-I, Semba K (2003) Transcriptional activity of testis-determining factor SRY is modulated by the Wilms’ tumor 1 gene product, WT1. Oncogene 22:7900–7904

    Article  PubMed  CAS  Google Scholar 

  • Mayr E (1947) Ecological factors in speciation. Evolution 1:263–288

    Article  Google Scholar 

  • Michala L, Goswami D, Creighton SM, Conway GS (2008) Swyer syndrome: presentation and outcomes. BJOG 115:737–741

    Article  CAS  PubMed  Google Scholar 

  • Michaux J, Reyes A, Catzeflis F (2001) Evolutionary history of the most speciose mammals: molecular phylogeny of muroid rodents. Mol Biol Evol 18:2017–2031

    Article  CAS  PubMed  Google Scholar 

  • Montes C, Cardona A, Jaramillo C, Pardo A, Silva JC, Valencia V, Ayala C, Pérez-Angel LC, Rodriguez-Parra LA, Ramirez V, Niño H (2015) Middle Miocene closure of the Central American Seaway. Science 348:226–229

    Google Scholar 

  • Moritz C, Dowling T, Brown W (1987) Evolution of animal mitochondrial DNA: relevance for population biology and systematics. Ann Rev Ecol Syst 18:269–292

    Article  Google Scholar 

  • Murphy EC, Zhurkin VB, Louis JM, Cornilescu G, Clore GM (2001) Structural basis for SRY-dependent 46-X, Y sex reversal: modulation of DNA bending by a naturally occuring point mutation. J Mol Biol 312:481–499

    Article  CAS  PubMed  Google Scholar 

  • Nei M (2013) Mutation-driven evolution. Oxford University Press, Oxford

    Google Scholar 

  • Ortiz MI, Dalmasso G, Dezi R, Senn EP, Lisanti J (1998) A C-band polymorphism of the X Chromosome in Akodon azarae (Rodentia, Cricetidae). Cytologia 63:365–369

    Article  Google Scholar 

  • Patton J, Silva MD, Malcolm J (1996) Hierarchical genetic structure and gene flow in three sympatric species of Amazonian rodents. Mol Ecol 5:229–238

    Article  CAS  PubMed  Google Scholar 

  • Phillips NB, Nikolskaya T, Jancso-Radek A, Ittah V, Jiang F, Singh R, Haas E, Weiss MA (2004) Sry-directed sex reversal in transgenic mice is robust to enhanced DNA bending: comparison of human and murine in HMG boxes. Biochemistry 43:7066–7081

    Article  CAS  PubMed  Google Scholar 

  • Pieau C, Dorizzi M, Richard-Mercier N (1999) Temperature-dependent sex determination and gonadal differentiation in reptiles. Cell Mol Life Sci 55:887–900

    Article  CAS  PubMed  Google Scholar 

  • Polanco JC, Koopman P (2007) Sry and the hesitant beginnings of male development. Dev Biol 302:13–24

    Article  CAS  PubMed  Google Scholar 

  • Rando OJ, Verstrepen KJ (2007) Timescales of genetic and epigenetic inheritance. Cell 128:655–668

    Article  CAS  PubMed  Google Scholar 

  • Richard GF, Kerrest A, Dujon B (2008) Comparative genomics and molecular dynamics of DNA repeats in eukaryotes. Micro Mol Biol Rev 72:686–727

    Article  CAS  Google Scholar 

  • Robert JS (2004) Embryology, epigenesis and evolution: taking development seriously. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Rutherford SL, Lindquist S (1998) Hsp90 as a capacitor for morphological evolution. Nature 396:336–342

    Article  CAS  PubMed  Google Scholar 

  • Sánchez A, Marchal JA, Romero-Fernández I, Pinna-Senn E, Ortiz MI, Bella JL, Lisanti JA (2010) No differences in the Sry gene between males and XY females in Akodon (Rodentia, Cricetidae). Sex Dev 4:155–161

    Article  PubMed  CAS  Google Scholar 

  • Savage JM (1974) The isthmian link and the evolution of Neotropical mammals. Contrib Sci Nat Hist Mus Los Angeles County 260:1–51

    Google Scholar 

  • Schenk JJ, Rowe KC, Steppan SJ (2013) Ecological opportunity and incumbency in the diversification of repeated continental colonizations by muroid rodents. Syst Biol 62:837–864

    Article  PubMed  Google Scholar 

  • Schliewen UK, Tautz D, Pääbo S (1994) Sympatric speciation suggested by monophyly of crater lake cichlids. Nature 368:629–632

    Article  CAS  PubMed  Google Scholar 

  • Sekido R, Lovell-Badge R (2008) Sex determination involves synergistic action of SRY and SF1 on a specific Sox9 enhancer. Nature 453:930–934

    Article  CAS  PubMed  Google Scholar 

  • Shmulevich I, Kauffman SA, Aldana M (2005) Eukaryotic cells are dynamically ordered or critical but not chaotic. Proc Natl Acad Sci USA 102:13439–13444

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Siegal ML, Bergman A (2002) Waddington’s canalization revisited: developmental stability and evolution. Proc Natl Acad Sci USA 99:10528–10532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Soullier S, Hanni C, Catzeflis F, Berta P, Laudet V (1998) Male sex determination in the spiny rat Tokudaia osimensis (Rodentia: Muridae) is not Sry dependent. Mammal Genome 9:590–592

    Article  CAS  Google Scholar 

  • Sollars V, Lu X, Xiao L, Wang X, Garfinkel MD, Ruden DM (2003) Evidence for an epigenetic mechanism by which Hsp90 acts as a capacitor for morphological evolution. Nat Genet 33:70–74

    Article  CAS  PubMed  Google Scholar 

  • Steppan SJ, Adkins RM, Anderson J (2004) Phylogeny and divergence-date estimates of rapid radiations in muroid rodents based on multiple nuclear genes. Syst Biol 53:533–553

    Article  PubMed  Google Scholar 

  • Stevanovic M, Lovell-Badge R, Collignon J, Goodfellow PN (1993) SOX3 is an X-linked gene related to SRY. Hum Mol Genet 2:2013–2018

    Article  CAS  PubMed  Google Scholar 

  • Sutton E, Hughes J, White S, Sekido R, Tan J, Arboleda V, Rogers N, Knower K, Rowley L, Eyre H, Rizzoti K, McAninch D, Goncalves J, Slee J, Turbitt E, Bruno D, Bengtsson H, Harley V, Vilain E, Sinclair A, Lovell-Badge R, Thomas P (2011) Identification of SOX3 as an XX male sex reversal gene in mice and humans. J Clin Invest 121:328–341

    Google Scholar 

  • Trivers RL, Willard DE (1973) Natural selection of parental ability to vary the sex ratio of offspring. Science 179:90–92

    Article  CAS  PubMed  Google Scholar 

  • Valleley E, Cartwright EJ, Croft NJ, Markham AF, Coletta PL (2001) Characterisation and expression of Sox9 in the leopard gecko, Eublepharis macularius. J Exp Zoology 291:85–91

    Article  CAS  Google Scholar 

  • Vernet N, Szot M, Mahadevaiah SK, Ellis PJ, Decarpentrie F, Ojarikre OA, Rattigan A, taketo T, Burgoyne PS (2014) The expression of Y-linked Zfy2 in XY mouse oocytes leads to frequent meiosis 2 defects, a high incidence of subsequent early cleavage stage arrest and infertility. Development 141:855–866

    Google Scholar 

  • Veyrunes F, Chevret P, Catalan J, Castiglia R, Watson J, Dobigny G, Robinson TJ, Britton-Davidian J (2010) A novel sex determination system in a close relative of the house mouse. Proc Biol Sci 277:1049–1056

    Article  PubMed Central  PubMed  Google Scholar 

  • Waddington CH (1959) Canalization of development and genetic assimilation of acquired characters. Nature 183:1654–1655

    Article  CAS  PubMed  Google Scholar 

  • Wagner A (2012) The role of robustness in phenotypic adaptation and innovation. Proc Biol Sci 279:1249–1258

    Article  PubMed Central  PubMed  Google Scholar 

  • Wagner A (2013) Robustness and evolvability in living systems. Princeton University Press, Princeton, pp 217–228

    Google Scholar 

  • Wagner T, Wirth J, Meyer J, Zabel B, Held M, Zimmer J, Pasantes J, Bricarelli FD, Keutel J, Hustert E (1994) Autosomal sex reversal and campomelic dysplasia are caused by mutations in and around the SRY-related gene SOX9. Cell 79:1111–1120

    Article  CAS  PubMed  Google Scholar 

  • Wallis MC, Waters PD, Graves JA (2008) Sex determination in mammals-before and after the evolution of SRY. Cell Mol Life Sci 65:3182–3195

    Article  CAS  PubMed  Google Scholar 

  • Weiss MA, Ukiyama E, King CY (1997) The SRY cantilever motif discriminates between sequence-and structure- specific DNA recognition: alanine mutagenesis of an HMG box. J Biomol Struct Dyn 15:177–184

    Article  CAS  PubMed  Google Scholar 

  • Wilson DE, Reeder DM (2005) Mammal species of the world: a taxonomic and geographic teference, vol 1. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Wilson DS, Vugt MV, O’Gorman R (2007) Multilevel selection theory and major evolutionary transitions. Curr Dir Psychol Sci 17:4

    Google Scholar 

  • Wilson EO (1980) Sociobiology. Belknap Press of Harvard University Press, Cambridge

    Google Scholar 

  • Wilson M, Koopman P (2002) Matching SOX: partner proteins and co-factors of the SOX family of transcriptional regulators. Curr Opin Gen Dev 12:441–446

    Article  CAS  Google Scholar 

  • Wolinsky H (2010) The puzzle of sympatry. EMBO Rep 11:830–833

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yoshiki A, Moriwaki K (2006) Mouse phenome research: implications of genetic background. ILAR J 47:94–102

    Article  CAS  PubMed  Google Scholar 

  • Zhao L, Ng ET, Davidson T-L, Longmuss E, Urschitz J, Elston M, Moisyadi S, Bowles J, Koopman P (2014) Structure–function analysis of mouse Sry reveals dual essential roles of the C-terminal polyglutamine tract in sex determination. Proc Natl Acad Sci USA 111:11768–11773

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank JD Racca and NB Phillips (CWRU) for discussion and communication of results prior to publication; E Haas (Bar-Ilan University) for collaborative fluorescence studies; C-Y King, JD Radek, and A Jansco-Radek for participation in early stages of this work; J Graves (University of Melbourne) for her encouragement and scientific example; Robin Lovell-Badge for his astute critique and gracious advice; and PK Donahoe (Massachusetts General Hospital and Harvard Medical School) for cell line CH34 and advice throughout these studies. MAW is grateful to B. Baker (HHMI Janelia Farms) and the late FA Jenkins Jr (Harvard University) for inspiration. The present studies were supported in part by a grant from the US National Institutes of Health (GM080505).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael A. Weiss .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Sequeira, P., Chen, YS., Weiss, M.A. (2015). Mutation-Driven Evolution: Microsatellite Instability Drives Speciation in a Mammalian Taxon. In: Pontarotti, P. (eds) Evolutionary Biology: Biodiversification from Genotype to Phenotype. Springer, Cham. https://doi.org/10.1007/978-3-319-19932-0_8

Download citation

Publish with us

Policies and ethics