Skip to main content

Expert System for Handwritten Numeral Recognition Using Dynamic Zoning

  • Conference paper
  • First Online:
  • 2067 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9121))

Abstract

This paper introduces an expert system for handwritten digit recognition. The system considers that a numeric handwritten character can be decomposed into vertical and horizontal strokes. Then, the positions where horizontal strokes are connected to the vertical strokes are extracted as features using dynamic zoning. These features are laid into a representative string which is validated by a regular expression following a matching pattern. The knowledge base is constructed from a decision tree structure that stores all well-formatted representative strings with the digits definitions. Finally, the inference engine tries to match unknown digits with the trained knowledge base in order to achieve the recognition. The promising results obtained by testing the system on the well-known MNIST handwritten database are compared with other approaches for corroborating its effectiveness.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://yann.lecun.com/exdb/mnist/.

References

  1. Ahmed, M., Ward, K.R.: An expert system for general symbol recognition. Pattern Recognit. 33, 1975–1988 (2000)

    Article  MATH  Google Scholar 

  2. Alonso, A., Fernández, R.A., García, I.: Recognition of merged characters based on vertical strokes and adjacency regions. V Congress of Hispalinux (2005)

    Google Scholar 

  3. Bertolami, R., Bertolami, R., Uchida, S., Uchida, S., Zimmermann, M., Zimmermann, M., Bunke, H., Bunke, H.: Non-uniform slant correction for handwritten text line recognition. In: ICDAR 2007, pp. 18–22 (2007). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4378668

  4. Batista, B.L., Gomes, M.H., Herbster, F.R.: Application of growing hierarchical self-organizing map in handwritten digit recognition. In: Brazilian Symposium on Computer Graphics and Image Processing, pp. 1539–1545 (2003)

    Google Scholar 

  5. Chen, W., Liao, Y., Chen, S.: Speech recognition with hierarchical recurrent neural networks. Pattern Recognit. 28(6), 795–805 (1995). http://www.sciencedirect.com/science/article/pii/003132039400145C

    Article  Google Scholar 

  6. De Marsico, M., Nappi, M., Riccio, D., Wechsler, H.: Robust face recognition after plastic surgery using region-based approaches. Pattern Recognit. 48(4), 1261–1276 (2015). http://www.sciencedirect.com/science/article/pii/S0031320314003884

    Article  Google Scholar 

  7. Ha, T.M., Zimmermann, M., Bunke, H.: Off-line handwritten numeral string recognition by combining segmentation-based and segmentation-free methods. Pattern Recognit. 31(3), 257–272 (1998). http://www.sciencedirect.com/science/article/pii/S0031320397000502

    Article  Google Scholar 

  8. Haji, M., Bui, T.D., Suen, C.Y.: Removal of noise patterns in handwritten images using expectation maximization and fuzzy inference systems. Pattern Recognit. 45(12), 4237–4249 (2012). http://linkinghub.elsevier.com/retrieve/pii/S0031320312002439

    Article  Google Scholar 

  9. Hanmandlu, M., Mohan, M.K., Chakraborty, S., Goyal, S., Choudhury, D.: Unconstrained handwritten character recognition based on fuzzy logic. Pattern Recognit. 36(3), 603–623 (2003). http://www.sciencedirect.com/science/article/pii/S0031320302000699

    Article  Google Scholar 

  10. Impedovo, D., Pirlo, G.: Zoning methods for handwritten character recognition: a survey. Pattern Recognit. 47(3), 969–981 (2014). http://linkinghub.elsevier.com/retrieve/pii/S0031320313002458

    Article  Google Scholar 

  11. Jiang, D., Mekonnen, T.M., Merkebu, T.E., Gebrehiwot, A.: Car plate recognition system. In: 2012 Fifth International Conference on Intelligent Networks and Intelligent Systems, pp. 9–12 (2012). http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6376472

  12. Kessentini, Y., Paquet, T., Hamadou, A.: Off-line handwritten word recognition using multi-stream hidden markov models. Pattern Recognit. Lett. 31(1), 60–70 (2010). http://www.sciencedirect.com/science/article/pii/S0167865509002232

    Article  Google Scholar 

  13. Kundu, A., He, Y., Bahl, P.: Recognition of handwritten word: first and second order hidden markov model based approach. Pattern Recognit. 22(3), 283–297 (1989). http://www.sciencedirect.com/science/article/pii/0031320389900769

    Article  Google Scholar 

  14. Li, H., Greenspan, M.: Model-based segmentation and recognition of dynamic gestures in continuous video streams. Pattern Recognit. 44(8), 1614–1628 (2011). http://www.sciencedirect.com/science/article/pii/S0031320310005807

    Article  Google Scholar 

  15. Liu, C.L., Nakashima, K., Sako, H., Fujisawa, H.: Handwritten digit recognition: investigation of normalization and feature extraction techniques. Pattern Recognit. 37(2), 265–279 (2004). http://linkinghub.elsevier.com/retrieve/pii/S0031320303002243

    Article  MATH  Google Scholar 

  16. Lü, H.E., Wang, P.S.P.: A comment on a fast parallel algorithm for thinning digital patterns. Commun. ACM 29(3), 239–242 (1986)

    Article  Google Scholar 

  17. Álvarez, D., Fernández, R., Sánchez, L.: Stroke based handwritten character recognition. In: Corchado, E., Snášel, V., Abraham, A., Woźniak, M., Graña, M., Cho, S.-B. (eds.) HAIS 2012, Part I. LNCS, vol. 7208, pp. 343–351. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Morita, M., Letelier, E.: Recognition of handwritten dates on bank checks using an HMM approach. In: Proceedings of XIII Brazilian Symposium on Computer Graphics and Image Processing, pp. 113–120 (2000). http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=883903

  19. Oh, I.S., Suen, C.Y.: A class-modular feedforward neural network for handwriting recognition. Pattern Recognit. 35(1), 229–244 (2002). http://linkinghub.elsevier.com/retrieve/pii/S0031320300001813

    Article  MATH  Google Scholar 

  20. Otsu, N.: A threshold selection method from gray-level histograms. IEEE Trans. Syst. Man Cybern. B Cybern. SMC 9(1), 62–66 (1979). http://web-ext.u-aizu.ac.jp/course/bmclass/documents/otsu1979.pdf

    Article  MathSciNet  Google Scholar 

  21. Palacios, R., Gupta, A.: Training neural networks for reading handwritten amounts on checks. In: 2003 IEEE 13th Workshop on Neural Networks for Signal Processing, NNSP 2003, pp. 607–616 (2003)

    Google Scholar 

  22. Ping, Z., Lihui, C.: A novel feature extraction method and hybrid tree classification for handwritten numeral recognition. Pattern Recognit. Lett. 23(13), 45–56 (2002). http://www.sciencedirect.com/science/article/pii/S0167865501000885

    Article  MATH  Google Scholar 

  23. Shah-Hosseini, H.: Binary tree time adaptive self-organizing map. Neurocomputing 74(11), 1823–1839 (2011). http://www.sciencedirect.com/science/article/pii/S0925231211000786

    Article  Google Scholar 

  24. Sun, C., Si, D.: Skew and slant correction for document images using gradient direction. In: Proceedings of the Fourth International Conference on Document Analysis and Recognition, vol. 1, pp. 142–146 (1997)

    Google Scholar 

  25. Trier, D., Jain, A., Taxt, T.: Feature extraction methods for character recognition-a survey. Pattern Recognit. 29(4), 641–662 (1996). http://www.sciencedirect.com/science/article/pii/0031320395001182

    Article  Google Scholar 

  26. Vamvakas, G., Gatos, B., Perantonis, S.: Handwritten character recognition through two-stage foreground sub-sampling. Pattern Recognit. 43(8), 2807–2816 (2010). http://www.sciencedirect.com/science/article/pii/S0031320310000968

    Article  MATH  Google Scholar 

  27. Wakahara, T., Yamashita, Y.: k-nn classification of handwritten characters via accelerated GAT correlation. Pattern Recognit. 47(3), 994–1001 (2014)

    Article  Google Scholar 

  28. Zeeuw, F.: Slant correction using histograms. Bachelors thesis in Artificial Intelligence, pp. 1–10 (2006)

    Google Scholar 

  29. Zou, Y., Dong, F., Lei, B., Sun, S., Jiang, T., Chen, P.: Maximum similarity thresholding. Digit. Signal. Process. 1, 1–16 (2014). http://linkinghub.elsevier.com/retrieve/pii/S1051200414000451

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Álvarez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Álvarez, D., Fernández, R., Sánchez, L., Alija, J. (2015). Expert System for Handwritten Numeral Recognition Using Dynamic Zoning. In: Onieva, E., Santos, I., Osaba, E., Quintián, H., Corchado, E. (eds) Hybrid Artificial Intelligent Systems. HAIS 2015. Lecture Notes in Computer Science(), vol 9121. Springer, Cham. https://doi.org/10.1007/978-3-319-19644-2_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19644-2_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19643-5

  • Online ISBN: 978-3-319-19644-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics