Skip to main content

Reversible and Irreversible Damage of the Myocardium: Ischemia/Reperfusion Injury and Cardioprotection

  • Chapter
Handbook of Cardiac Anatomy, Physiology, and Devices

Abstract

Ischemia and reperfusion injuries can lead to major compromises in cardiac function. While the intent of many of the past cardioprotective therapies was to protect the myocardium from ischemic necrosis, it may be that reperfusion injury following ischemia may occur despite such preventative attempts. There are continued efforts to identify improvements in myocardial protective strategies (pre- and postconditioning), and their ultimate goals are to minimize the risk of cellular injuries to all types of patients undergoing cardiovascular therapies, treatments, or surgeries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edmunds LH (ed) (1997) Cardiac surgery in the adult. McGraw-Hill, New York, pp 295–318

    Google Scholar 

  2. Yellon DM, Rahimtoola SH, Opie LH et al (eds) (1997) New ischemic syndromes: beyond angina and infarction. Lippincott-Raven Publishers, New York, pp 10–20, 106–114

    Google Scholar 

  3. Opie LH (ed) (1998) The heart: physiology, from cell to circulation. Lippincott-Raven, Philadelphia, pp 515–589

    Google Scholar 

  4. Shen YT, Vatner SF (1995) Mechanism of impaired myocardial function during progressive coronary stenosis in conscious pigs. Hibernation versus stunning? Circ Res 76:479–488

    Article  CAS  PubMed  Google Scholar 

  5. Bolli R, Marban E (1999) Molecular and cellular mechanisms of myocardial stunning. Physiol Rev 79:609–634

    CAS  PubMed  Google Scholar 

  6. Karmazyn M, Moffat MP (1993) Role of Na+/H+ exchange in cardiac physiology and pathophysiology: mediation of myocardial reperfusion injury by the pH paradox. Cardiovasc Res 27:915–924

    Article  CAS  PubMed  Google Scholar 

  7. Miller WP, McDonald KS, Moss RL (1996) Onset of reduced Ca2+ sensitivity of tension during stunning in porcine myocardium. J Mol Cell Cardiol 28:689–697

    Article  CAS  PubMed  Google Scholar 

  8. Kusuoka H, Koretsune Y, Chacko VP et al (1990) Excitation-contraction coupling in postischemic myocardium. Does failure of activator Ca2+ transients underlie stunning? Circ Res 66:1268–1276

    Article  CAS  PubMed  Google Scholar 

  9. McDonough JL, Labugger R, Pickett W et al (2001) Cardiac troponin I is modified in the myocardium of bypass patients. Circulation 103:58–64

    Article  CAS  PubMed  Google Scholar 

  10. Opie LH, du Toit EF (1992) Postischemic stunning: the two-phase model for the role of calcium as pathogen. J Cardiovasc Pharmacol 20:S1–S4

    Article  CAS  PubMed  Google Scholar 

  11. Aguilera IM, Vaughan RS (2000) Calcium and the anaesthetist. Anaesthesia 55:779–790

    Article  CAS  PubMed  Google Scholar 

  12. Robertie PG, Butterworth JF, Royster RL et al (1991) Normal parathyroid hormone responses to hypocalcemia during cardiopulmonary bypass. Anesthesiology 75:43–48

    Article  CAS  PubMed  Google Scholar 

  13. Chair N, Otto CW, Link MS et al (2010) 2010 American Heart Association guidelines for cardiopulmonary resuscitation and emergency cardiovascular care science. Circulation 122:S729–S767

    Article  Google Scholar 

  14. Heusch G (2013) The regional myocardial flow-function relationship: a framework for an understanding of acute ischemia, hibernation, stunning and coronary microembolization. Circ Res 112:1535–1537

    Article  CAS  PubMed  Google Scholar 

  15. Bolli R, Patel BS, Jeroudi MO et al (1988) Demonstration of free radical generation in “stunned” myocardium of intact dogs with the use of the spin trap alpha-phenyl N-tert-butyl nitrone. J Clin Invest 82:476–485

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Heusch G, Schulz R (2002) Myocardial hibernation. Ital Heart J 3:282–284

    PubMed  Google Scholar 

  17. Boden WE, Brooks WW, Conrad CH et al (1995) Incomplete, delayed functional recovery late after reperfusion following acute myocardial infarction: “maimed myocardium.”. Am Heart J 130:922–932

    Article  CAS  PubMed  Google Scholar 

  18. Murry CE, Jennings RB, Reimer KA (1986) Preconditioning with ischemia: a delay of lethal cell injury in ischemic myocardium. Circulation 74:1124–1136

    Article  CAS  PubMed  Google Scholar 

  19. Nelson BT, Ding X, Boney-Montoya J et al (2013) Metabolic hormone FGF21 Is induced in ground squirrels during hibernation but its overexpression is not sufficient to cause torpor. PLoS One 8:e53574

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Lawson CS, Coltart DJ, Hearse DJ (1993) “Dose”-dependency and temporal characteristics of protection by ischaemic preconditioning against ischaemia-induced arrhythmias in rat hearts. J Mol Cell Cardiol 25:1391–1402

    Article  CAS  PubMed  Google Scholar 

  21. Schultz JE, Rose E, Yao Z et al (1995) Evidence for involvement of opioid receptors in ischemic preconditioning in rat hearts. Am J Physiol 268:H2157–H2161

    CAS  PubMed  Google Scholar 

  22. Coles JA Jr, Sigg DC, Iaizzo PA (2003) Role of kappa-opioid receptor activation in pharmacological preconditioning in swine. Am J Physiol Heart Circ Physiol 284:2091–2099

    Article  Google Scholar 

  23. Sigg DC, Coles JA Jr, Gallagher WJ et al (2001) Opioid cardioprotection: myocardial function and energy metabolism. Ann Thorac Surg 72:1576–1582

    Article  CAS  PubMed  Google Scholar 

  24. Yellon DM, Downey JM (2003) Preconditioning the myocardium: from cellular physiology to clinical cardiology. Physiol Rev 83:1113–1151

    Article  CAS  PubMed  Google Scholar 

  25. Gross GJ (2003) Role of opioids in acute and delayed preconditioning. J Mol Cell Cardiol 35:709–718

    Article  CAS  PubMed  Google Scholar 

  26. Cohn PF, Fox KM (2003) Silent myocardial ischemia. Circulation 108:1263–1277

    Article  PubMed  Google Scholar 

  27. Leaf A, Kang JX, Xiao YF (2008) Fish oil fatty acids as cardiovascular drugs. Curr Vasc Pharmacol 6:1–12

    Article  CAS  PubMed  Google Scholar 

  28. Xiao YF, Sigg DC, Ujhelyi MR, Wilhelm JJ, Richardson ES, Iaizzo PA (2008) Pericardial delivery of Omega-3 fatty acid: a novel approach to reduce myocardial infarct sizes and arrhythmias. Am J Physiol Heart Circ Physiol 294:H2212–H2218

    Article  CAS  PubMed  Google Scholar 

  29. Pacher P, Nivorozhkin A, Szabo C (2006) Therapeutic effects of xanthine oxidase inhibitors: renaissance half a century after the discovery of allopurinol. Pharmacol Rev 58:87–114

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  30. Fliss H, Gattinger D (1996) Apoptosis in ischemic and reperfused rat myocardium. Circ Res 79:949–956

    Article  CAS  PubMed  Google Scholar 

  31. Opie LH, Coetzee WA (1988) Role of calcium ions in reperfusion arrhythmias: relevance to pharmacologic intervention. Cardiovasc Drugs Ther 2:623–636

    Article  CAS  PubMed  Google Scholar 

  32. Manning AS, Hearse DJ (1984) Reperfusion-induced arrhythmias: mechanisms and prevention. J Mol Cell Cardiol 16:497–518

    Article  CAS  PubMed  Google Scholar 

  33. Wehrens XH, Doevendans PA, Ophuis TJ et al (2000) A comparison of electrocardiographic changes during reperfusion of acute myocardial infarction by thrombolysis or percutaneous transluminal coronary angioplasty. Am Heart J 139:430–436

    Article  CAS  PubMed  Google Scholar 

  34. Maes A, Van de Werf F, Nuyts J et al (1995) Impaired myocardial tissue perfusion early after successful thrombolysis. Impact on myocardial flow, metabolism, and function at late follow-up. Circulation 92:2072–2078

    Article  CAS  PubMed  Google Scholar 

  35. Reffelmann T, Kloner R (2006) The no-reflow phenomenon: a basic mechanism of myocardial ischemia and reperfusion. Basic Res Cardiol 101:359–372

    Article  PubMed  Google Scholar 

  36. Forde RC, Fitzgerald DJ (1997) Reactive oxygen species and platelet activation in reperfusion injury. Circulation 95:787–789

    Article  CAS  PubMed  Google Scholar 

  37. Menasche P, Peynet J, Haeffner-Cavaillon N et al (1995) Influence of temperature on neutrophil trafficking during clinical cardiopulmonary bypass. Circulation 92:II334–II340

    Article  CAS  PubMed  Google Scholar 

  38. Anderson RE, Li TQ, Hindmarsh T et al (1999) Increased extracellular brain water after coronary artery bypass grafting is avoided by off-pump surgery. J Cardiothorac Vasc Anesth 13:698–702

    Article  CAS  PubMed  Google Scholar 

  39. Karmazyn M (1998) The myocardial sodium-hydrogen exchanger (NHE) and its role in mediating ischemic and reperfusion injury. Keio J Med 47:65–72

    Article  CAS  PubMed  Google Scholar 

  40. Inserte J, Garcia-Dorado D, Ruiz-Meana M et al (1997) The role of the Na+-H+ exchange occurring during hypoxia in the genesis of reoxygenation-induced myocardial oedema. J Mol Cell Cardiol 29:1167–1175

    Article  CAS  PubMed  Google Scholar 

  41. Garcia-Dorado D, Gonzalez MA, Barrabes JA et al (1997) Prevention of ischemic rigor contracture during coronary occlusion by inhibition of Na(+)-H(+) exchange. Cardiovasc Res 35:80–89

    Article  CAS  PubMed  Google Scholar 

  42. Klein HH, Bohle RM, Pich S et al (1997) Time delay of cell death by Na+/H+ exchange inhibition in regionally ischemic, reperfused porcine hearts. J Cardiovasc Pharmacol 30:235–240

    Article  CAS  PubMed  Google Scholar 

  43. Shipolini AR, Yokoyama H, Galinanes M et al (1997) Na+/H+ exchanger activity does not contribute to protection by ischemic preconditioning in the isolated rat heart. Circulation 96:3617–3625

    Article  CAS  PubMed  Google Scholar 

  44. Yoshida H, Karmazyn M (2000) Na(+)/H(+) exchange inhibition attenuates hypertrophy and heart failure in 1-wk postinfarction rat myocardium. Am J Physiol Heart Circ Physiol 278:H300–H304

    CAS  PubMed  Google Scholar 

  45. Myers ML, Farhangkhoee P, Karmazyn M (1998) Hydrogen peroxide induced impairment of post-ischemic ventricular function is prevented by the sodium-hydrogen exchange inhibitor HOE 642 (cariporide). Cardiovasc Res 40:290–296

    Article  CAS  PubMed  Google Scholar 

  46. Mathur S, Karmazyn M (1997) Interaction between anesthetics and the sodium-hydrogen exchange inhibitor HOE 642 (cariporide) in ischemic and reperfused rat hearts. Anesthesiology 87:1460–1469

    Article  CAS  PubMed  Google Scholar 

  47. Hartmann M, Decking UK (1999) Blocking Na(+)-H(+) exchange by cariporide reduces Na(+)-overload in ischemia and is cardioprotective. J Mol Cell Cardiol 31:1985–1995

    Article  CAS  PubMed  Google Scholar 

  48. Theroux P, Chaitman BR, Danchin N et al (2000) Inhibition of the sodium-hydrogen exchanger with cariporide to prevent myocardial infarction in high-risk ischemic situations. Main results of the GUARDIAN trial. Guard during ischemia against necrosis (GUARDIAN) Investigators. Circulation 102:3032–3038

    Article  CAS  PubMed  Google Scholar 

  49. Myers ML, Karmazyn M (1996) Improved cardiac function after prolonged hypothermic ischemia with the Na+/H+ exchange inhibitor HOE 694. Ann Thorac Surg 61:1400–1406

    Article  CAS  PubMed  Google Scholar 

  50. Zeymer U, Suryapranata H, Monassier JP et al (2001) The Na+/H+ exchange inhibitor eniporide as an adjunct to early reperfusion therapy for acute myocardial infarction. J Am Coll Cardiol 38:1644–1650

    Article  CAS  PubMed  Google Scholar 

  51. Bugge E, Yterhus K (1995) Inhibition of sodium-hydrogen exchange reduces infarct size in the isolated rat heart-a protective additive to ischaemic preconditioning. Cardiovasc Res 29:269–274

    CAS  PubMed  Google Scholar 

  52. Dhalla NS, Elmoselhi AB, Hata T et al (2000) Status of myocardial antioxidants in ischemia-reperfusion injury. Cardiovasc Res 47:446–456

    Article  CAS  PubMed  Google Scholar 

  53. Khaper N, Rigatto C, Seneviratne C et al (1997) Chronic treatment with propranolol induces antioxidant changes and protects against ischemia-reperfusion injury. J Mol Cell Cardiol 29:3335–3344

    Article  CAS  PubMed  Google Scholar 

  54. Kalaycioglu S, Sinci V, Imren Y et al (1999) Metoprolol prevents ischemia-reperfusion injury by reducing lipid peroxidation. Jpn Circ J 63:718–721

    Article  CAS  PubMed  Google Scholar 

  55. Feuerstein GZ, Yue TL, Cheng HY et al (1993) Myocardial protection by the novel vasodilating beta-blocker, carvedilol: potential relevance of anti-oxidant activity. J Hypertens 11:S41–S48

    Article  CAS  Google Scholar 

  56. Iyengar SR, Charrette EJ, Iyengar CK et al (1976) Myocardial glycogen in prevention of perioperative ischemic injury of the heart: a preliminary report. Can J Surg 19:246–251

    CAS  PubMed  Google Scholar 

  57. Yellon DM, Baxter GF (1999) Reperfusion injury revisited: is there a role for growth factor signaling in limiting lethal reperfusion injury? Trends Cardiovasc Med 9:245–249

    Article  CAS  PubMed  Google Scholar 

  58. Saraste A, Pulkki K, Kallajoki M et al (1997) Apoptosis in human acute myocardial infarction. Circulation 95:320–323

    Article  CAS  PubMed  Google Scholar 

  59. Baxter GFM, Brar BK, Latchman DS, Yellon DM (1998) Infarct-limiting action of transforming growth factor beta-1 in isolated rat heart is abolished. Circulation 100:1–9

    Google Scholar 

  60. Baines CP, Wang L, Cohen MV et al (1999) Myocardial protection by insulin is dependent on phosphatidylinositol 3- kinase but not protein kinase C or KATP channels in the isolated rabbit heart. Basic Res Cardiol 94:188–198

    Article  CAS  PubMed  Google Scholar 

  61. Buerke M, Murohara T, Skurk C et al (1995) Cardioprotective effect of insulin-like growth factor I in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci U S A 92:8031–8035

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Cuevas P, Carceller F, Martinez-Coso V et al (1999) Cardioprotection from ischemia by fibroblast growth factor: Role of inducible nitric oxide synthase. Eur J Med Res 4:517–524

    CAS  PubMed  Google Scholar 

  63. Stephanou A, Brar B, Heads R et al (1998) Cardiotrophin-1 induces heat shock protein accumulation in cultured cardiac cells and protects them from stressful stimuli. J Mol Cell Cardiol 30:849–855

    Article  CAS  PubMed  Google Scholar 

  64. Morita K, Ihnken K, Buckberg GD et al (1995) Studies of hypoxemic/reoxygenation injury without aortic clamping. VIII. Counteraction of oxidant damage by exogenous glutamate and aspartate. J Thorac Cardiovasc Surg 110:1228–1234

    Article  CAS  PubMed  Google Scholar 

  65. Drinkwater DC Jr, Cushen CK, Laks H et al (1992) The use of combined antegrade-retrograde infusion of blood cardioplegic solution in pediatric patients undergoing heart operations. J Thorac Cardiovasc Surg 104:1349–1355

    PubMed  Google Scholar 

  66. Us MH, Ozkan S, Oğuş T et al (2001) Efficacy of topically applied glutamate-aspartate and pentoxifylline solutions in decreasing myocardial damage during open-heart surgery in rats. J Int Med Res 29:497–502

    Article  CAS  PubMed  Google Scholar 

  67. Nakanishi K, Zhao ZQ, Vinten-Johansen J et al (1995) Blood cardioplegia enhanced with nitric oxide donor SPM-5185 counteracts postischemic endothelial and ventricular dysfunction. J Thorac Cardiovasc Surg 109:1146–1154

    Article  CAS  PubMed  Google Scholar 

  68. Bolling SF, Benedict MB, Tramontini NL et al (1998) Hibernation triggers and myocardial protection. Circulation 98:II220–II223 (discussion II223–II224)

    Google Scholar 

  69. Bolling SF, Tramontini NL, Kilgore KS, Su TP, Oeltgen PR, Harlow HH (1997) Use of “natural” hibernation induction triggers for myocardial protection. Ann Thorac Surg 64:623–627

    Article  CAS  PubMed  Google Scholar 

  70. Hong J, Sigg DC, Coles JA Jr et al (2005) Hibernation induction trigger reduces hypoxic damage of swine skeletal muscle. Muscle Nerve 32:200–207

    Article  PubMed  Google Scholar 

  71. Grabek KR, Karimpour-Fard A, Epperson LE et al (2011) Multistate proteomics analysis reveals novel strategies used by a hibernator to precondition the heart and conserve ATP for winter heterothermy. Physiol Genomics 43:1263–1275

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  72. Iles TL, Howard B, Howard SA et al (2015) Testing the efficacy of pharmacological agents in a pericardial target delivery model in the swine. JoVE (in press)

    Google Scholar 

  73. Skrzypiec-Spring M, Grotthus B, Szelag A, Schulz R (2007) Appraisal of state-of-the-art: isolated heart perfusion according to Langendorff–still viable in the new millennium. J Pharmacol Toxicol Methods 55:113–126

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tinen L. Iles MS .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Howard, B.T., Iles, T.L., Coles, J.A., Sigg, D.C., Iaizzo, P.A. (2015). Reversible and Irreversible Damage of the Myocardium: Ischemia/Reperfusion Injury and Cardioprotection. In: Iaizzo, P. (eds) Handbook of Cardiac Anatomy, Physiology, and Devices. Springer, Cham. https://doi.org/10.1007/978-3-319-19464-6_16

Download citation

Publish with us

Policies and ethics