Skip to main content

Evolutionary Hybrid Configuration Applied to a Polymerization Process Modelling

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9095))

Abstract

A modelling procedure based on hybrid configuration composed of artificial neural networks, differential evolution and clonal selection algorithms is developed and applied in this work. The neural network represents the model of the system, while the differential evolution and clonal selection algorithms perform a simultaneous topological and parametric optimization of the model. The results indicated that the combination of the two optimizers produces better results compared with each of them working separately. As case study, styrene polymerization, a complex process which is difficult to model when taking into consideration all the internal interactions, was chosen. Neural networks, designed in an optimal form, proved to be adequate tools for modelling this system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Subudhi, B., Jena, D.: A differential evolution based neural network approach to nonlinear system identification. Appl. Soft Comput. 11(1), 861–871 (2011)

    Article  Google Scholar 

  2. Kisi, O.: River suspended sediment concentration modeling using a neural differential evolution approach. Journal of Hydrology 389(1–2), 227–235 (2010)

    Article  Google Scholar 

  3. Noor, R.A.M., Ahmad, Z., Don, M.M., Uzir, M.H.: Modelling and control of different types of polymerization processes using neural networks technique: A review. Can. J. Chem. Eng. 88(6), 1065–1084 (2010)

    Article  Google Scholar 

  4. Lahiri, S.K., Ghanta, K.C.: Artificial neural network model with the parameter tuning assisted by a differential evolution technique: The study of the hold up of the slurry flow in a pipeline. Chemical Industry and Chemical Engineering Quarterly 15(2), 103–117 (2009)

    Article  Google Scholar 

  5. Yardimci, A.: Soft computing in medicine. Appl. Soft Comput. 9(3), 1029–1043 (2009)

    Article  Google Scholar 

  6. Xin, Y.: Evolving artificial neural networks. Proceedings of the IEEE 87(9), 1423–1447 (1999)

    Article  Google Scholar 

  7. Montana, D., VanWyk, E., Brinn, M., Montana, J., Milligan, S.: Evolution of internal dynamics for neural network nodes. Evolutionary Intelligence 1(4), 233–251 (2009)

    Article  Google Scholar 

  8. Islam, M., Yao, X.: Evolving artificial neural network ensembles. In: Fulcher, J., Jain, L. (eds.) Computational Intelligence: A Compendium, 115th edn, pp. 851–880. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  9. Das, S., Suganthan, P.N.: Differential Evolution A Survey of the State-of-the-Art. IEEE Trans. Evol. Comput. 15(1), 4–31 (2011)

    Article  Google Scholar 

  10. Bedri Ozer, A.: CIDE: Chaotically Initialized Differential Evolution. Expert Syst. Appl. 37(6), 4632–4641 (2010)

    Article  Google Scholar 

  11. Islam, S.M., Das, S., Ghosh, S., Roy, S., Suganthan, P.N.: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 42(2), 482–500 (2012)

    Article  Google Scholar 

  12. Xue, F., Sanderson, A.C., Bonissone, P.P., Graves, R.J.: Fuzzy logic controlled multi-objective differential evolution. In: IEEE, pp. 720–725 (2005)

    Google Scholar 

  13. Nobakhti, A., Wang, H.: A simple self-adaptive Differential Evolution algorithm with application on the ALSTOM gasifier. Appl. Soft Comput. 8(1), 350–370 (2008)

    Article  Google Scholar 

  14. Guo, J., Zhou, J., Zou, Q., Liu, Y., Song, L.: A novel multi-objective shuffled complex differential evolution algorithm with application to hydrological model parameter optimization. Water Resour. Manage. 27(8), 2923–2946 (2013)

    Article  Google Scholar 

  15. Wang, Y., Cai, Z., Zhang, Q.: Enhancing the search ability of differential evolution through orthogonal crossover. Inf. Sci. 185(1), 153–177 (2012)

    Article  MathSciNet  Google Scholar 

  16. Li, H., Zhang, Q.: Multiobjective optimization problems with complicated Pareto sets, MOEA/D and NSGA-II. IEEE transations on Evolutionary Computation 13(2), 284–302 (2009)

    Article  Google Scholar 

  17. Zamuda, A., Brest, J.: Population reduction differential evolution with multiple mutation strategies in real world industry challenges. In: Rutkowski, L., Korytkowski, M., Scherer, R., Tadeusiewicz, R., Zadeh, L.A., Zurada, J.M. (eds.) EC 2012 and SIDE 2012. LNCS, vol. 7269, pp. 154–161. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  18. Dong, M.G., Wang, N.: A novel hybrid differential evolution approach to scheduling of large-scale zero-wait batch processes with setup times. Computers & Chemical Engineering 45, 72–83 (2012)

    Article  MathSciNet  Google Scholar 

  19. Lai, J.C.Y., Leung, F.H.F., Ling, S.H., Nguyen, H.T.: Hypoglycaemia detection using fuzzy inference system with multi-objective double wavelet mutation Differential Evolution. Appl. Soft Comput. 13(5), 2803–2811 (2013)

    Article  Google Scholar 

  20. Maleki, R., Keikha, V., Rezaei, H.: Using Differential Evolution Algorithm and Rough Set Theory to Reduce the Features of Cataract Disease in a Medical Diagnosis System. Trans. Electrical Electronic Circuits Syst. 3(1) (2013)

    Google Scholar 

  21. Lei, B., Tan, E.L., Chen, S., Ni, D., Wang, T., Lei, H.: Reversible watermarking scheme for medical image based on differential evolution. Expert Syst. Appl. 41(7), 3178–3188 (2014)

    Article  Google Scholar 

  22. Gujarathi, A.M., Babu, B.V.: Improved Multiobjective Differential Evolution (MODE) Approach for Purified Terephthalic Acid (PTA) Oxidation Process. Mater. Manuf. Processes 24(3), 303–319 (2009)

    Article  Google Scholar 

  23. Hu, C., Yan, X.: An Immune Self-adaptive Differential Evolution Algorithm with Application to Estimate Kinetic Parameters for Homogeneous Mercury Oxidation. Chin. J. Chem. Eng. 17(2), 232–240 (2009)

    Article  MathSciNet  Google Scholar 

  24. Wu, Y., Lu, J., Sun, Y.: An Improved Differential Evolution for Optimization of Chemical Process. Chin. J. Chem. Eng. 16(2), 228–234 (2008)

    Article  Google Scholar 

  25. Huang, S.R., Wu, C.C., Lin, C.Y., Chen, H.T.: Parameter optimization of the biohydrogen real time power generating system using differential evolution algorithm. Int. J. Hydrogen Energy 35(13), 6629–6633 (2010)

    Article  Google Scholar 

  26. Khademi, M.H., Rahimpour, M.R., Jahanmiri, A.: Differential evolution (DE) strategy for optimization of hydrogen production, cyclohexane dehydrogenation and methanol synthesis in a hydrogen-permselective membrane thermally coupled reactor. Int. J. Hydrogen Energy 35(5), 1936–1950 (2010)

    Article  Google Scholar 

  27. Iranshahi, D., Pourazadi, E., Paymooni, K., Rahimpour, M.R.: Utilizing DE optimization approach to boost hydrogen and octane number in a novel radial-flow assisted membrane naphtha reactor. Chem. Eng. Sci. 68(1), 236–249 (2012)

    Article  Google Scholar 

  28. Vakili, R., Setoodeh, P., Pourazadi, E., Iranshahi, D., Rahimpour, M.R.: Utilizing differential evolution (DE) technique to optimize operating conditions of an integrated thermally coupled direct DME synthesis reactor. Chem. Eng. J. 168(1), 321–332 (2011)

    Article  Google Scholar 

  29. Vakili, R., Eslamloueyan, R.: Optimal design of an industrial scale dual-type reactor for direct dimethyl ether (DME) production from syngas. Chemical Engineering and Processing: Process Intensification 62, 78–88 (2012)

    Article  Google Scholar 

  30. Yuzgec, U.: Performance comparison of differential evolution techniques on optimization of feeding profile for an industrial scale baker’s yeast fermentation process. ISA Transactions 49(1), 167–176 (2010)

    Article  Google Scholar 

  31. Da Ros, S., Colusso, G., Weschenfelder, T.A., de Marsillac Terra, L., de Castilhos, F., Corazza, M.L., Schwaab, M.: A comparison among stochastic optimization algorithms for parameter estimation of biochemical kinetic models. Appl. Soft Comput. 13(5), 2205–2214 (2013)

    Article  Google Scholar 

  32. Mendes, R., Rocha, I., Pinto, J., Ferreira, E., Rocha, M.: Differential evolution for the offline and online optimization of fed-batch fermentation processes. In: Chakraborty, U. (ed.) Advances in Differential Evolution, 143rd edn, pp. 299–317. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  33. Abdul Hamid, M.B., Abdul Rahman, T.K.: Short Term Load Forecasting Using an Artificial Neural Network Trained by Artificial Immune System Learning Algorithm, pp. 408–413 (2010)

    Google Scholar 

  34. Haktanirlar Ulutas, B., Kulturel-Konak, S.: A review of clonal selection algorithm and its applications. Artif. Intell. Rev. 36(2), 117–138 (2011)

    Article  Google Scholar 

  35. Curteanu, S.: Modeling and simulation of free radical polymerization of styrene under semibatch reactor conditions. Central European Journal of Chemistry 1(1), 69–90 (2003)

    Article  Google Scholar 

  36. Priddy, K., Keller, P.: Artificial Neural Networks: An introduction. SPIE Press, Washington (2005)

    Book  Google Scholar 

  37. Snyman, J.: Practical Mathematical Optimization. An introduction to basic optimization theory and classical and new gradien-based algorithms. Springer, New York (2005)

    Google Scholar 

  38. Ali, M., Pant, M., Abraham, A.: Unconventional initialization methods for differential evolution. Appl. Math. Comput. 219(9), 4474–4494 (2013)

    Article  MathSciNet  Google Scholar 

  39. Rahnamayan, S., Tizhoosh, H.: Differential evolution via exploiting opposite populations. In: Tizhoosh, H., Ventresca, M. (eds.) Oppositional Concepts in Computational Intelligence, 155th edn, pp. 143–160. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  40. de Melo, V.V., Botazzo Delbem, A.C.: Investigating Smart Sampling as a population initialization method for Differential Evolution in continuous problems. Inf. Sci., 193, 36–53

    Google Scholar 

  41. Yap, D., Koh, S.P., Tiong, S.K., Prajindra, S.K.: A hybrid artificial immune systems for multimodal function optimization and its application in engineering problem. Artif Intell Rev 38(4), 291–301 (2012)

    Article  Google Scholar 

  42. Swain, R.K., Barisal, A.K., Hota, P.K., Chakrabarti, R.: Short-term hydrothermal scheduling using clonal selection algorithm. Int. J. Electric Power Energ. Syst. 33(3), 647–656 (2011)

    Article  Google Scholar 

  43. Cutello, V., Nicosia, G., Pavone, M.: Exploring the capability of immune algorithms: A characterization of hypermutation operators, pp. 263–276. Springer-Verlag, Berlin (2004)

    Google Scholar 

  44. Liu, R., Zhang, X., Yang, N., Lei, Q., Jiao, L.: Immunodomaince based Clonal Selection Clustering Algorithm. Appl. Soft Comput. 12(1), 302–312 (2012)

    Article  Google Scholar 

  45. Dragoi, E.N., Curteanu, S., Fissore, D.: Freeze-drying modeling and monitoring using a new neuro-evolutive technique. Chem. Eng. Sci. 72, 195–204 (2012)

    Article  Google Scholar 

  46. Dragoi, E.N., Suditu, G.D., Curteanu, S.: Modeling methodology based on artificial immune system algorithm and neural networks applied to removal of heavy metals from residual waters. Environmental Engineering and Management Journal 11(11), 1907–1914 (2012)

    Google Scholar 

  47. Storn, R., Price, K.: Differential Evolution – A Simple and Efficient Heuristic for Global Optimization over Continuous Spaces. J. Global Optim. 11(4), 341–359 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  48. de Castro, L.N., Von Zuben, F.J.: Learning and optimization using the clonal selection principle. IEEE Transactions on Evolutionary Computation 6(3), 239–251 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elena-Niculina Dragoi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Curteanu, S., Dragoi, EN., Dafinescu, V. (2015). Evolutionary Hybrid Configuration Applied to a Polymerization Process Modelling. In: Rojas, I., Joya, G., Catala, A. (eds) Advances in Computational Intelligence. IWANN 2015. Lecture Notes in Computer Science(), vol 9095. Springer, Cham. https://doi.org/10.1007/978-3-319-19222-2_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19222-2_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19221-5

  • Online ISBN: 978-3-319-19222-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics