Skip to main content

Abstract

Inborn errors of metabolism (IEM) constitute inherited enzyme or transport protein defects, potentially leading to accumulation of toxic substrates or deficiency of essential products of any given process. There are often further consequences of the primary perturbation, leading to compensatory physiology or further interference in cellular processes. These biochemical effects can, in some instances, lead to fetal developmental abnormalities and in others to dramatic postnatal compromise with significant mortality and morbidity. This chapter discusses the following presentations: neonatal acute metabolic encephalopathy, neonatal epileptic epilepsy, liver disease, cardiomyopathy, nonimmune hydrops fetalis, and dysmorphic IEM (including some lysosomal and peroxisomal disorders and congenital disorders of glycosylation). Systematic investigation of these clinical presentations can often lead to a definitive diagnosis. Most of these disorders are rare, but recent medical advances have made many treatable. It is therefore imperative that these disorders are considered early in differential diagnoses, investigated rigorously and expeditiously, and managed appropriately. Newborn bloodspot screening protocols can also identify many of these conditions in the presymptomatic stage, and hence, knowledge of local screening strategies is imperative for those investigating neonates. Screening tests require definitive testing algorithms in order to correctly identify an affected infant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Garrod A. The croonian lectures on inborn errors of metabolism. Lancet. 1908;172:1–7.

    Google Scholar 

  2. Garrod AE. Inborn factors in disease. Oxford: Oxford University Press; 1931.

    Google Scholar 

  3. Fölling A. Über ausscheidung von phenylbrenztraubensäure in den harn als stoffwechselanomalie in verbindung mit imbezillität. Hoppe-Seyler’s Zeitschrift für physiologische Chemie. 1934;227: 169–81.

    Google Scholar 

  4. Cori GT, Cori F. Glucose-6-phosphatase of the liver in glycogen storage disease. J Biol Chem. 1952;199:661–7.

    CAS  PubMed  Google Scholar 

  5. Krebs HA. The intermediate metabolism of carbohydrates. Lancet. 1937;230:736–8.

    Google Scholar 

  6. De Duve C, Pressman BC, Gianetto R, Wattiaux R, Appelmans F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955;60:604–17.

    PubMed Central  Google Scholar 

  7. Hers HG. α-Glucosidase deficiency in generalized glycogen-storage disease (Pompe’s disease). Biochem J. 1963;86:11–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Jaeken J, van Eijk HG, van der Heul C, Corbeel L, Eeckels R, Eggermont E. Sialic acid-deficient serum and cerebrospinal fluid transferrin in a newly recognized genetic syndrome. Clin Chim Acta. 1984;144:245–7.

    CAS  PubMed  Google Scholar 

  9. Christodoulou J. A clinical approach to inborn errors of metabolism. In: Rudolph AM, Kamei R, Overby KJ, editors. Rudolph’s fundamentals of paediatrics. 3rd ed. New York: McGraw-Hill; 2002. p. 221–51.

    Google Scholar 

  10. Maranda B, Cousineau J, Allard P, Lambert M. False positives in plasma ammonia measurement and their clinical impact in a pediatric population. Clin Biochem. 2007;40:531–5.

    CAS  PubMed  Google Scholar 

  11. Kumps A, Duez P, Mardens Y. Metabolic, nutritional, iatrogenic, and artifactual sources of urinary organic acids: a comprehensive table. Clin Chem. 2002;48:708–17.

    CAS  PubMed  Google Scholar 

  12. de Jong JG, Wevers RA, Liebrand-van Sambeek R. Measuring urinary glycosaminoglycans in the presence of protein: an improved screening procedure for mucopolysaccharidoses based on dimethylmethylene blue. Clin Chem. 1992;38:803–7.

    PubMed  Google Scholar 

  13. Roe CR, Millington DS, Kahler SG, Kodo N, Norwood DL. Carnitine homeostasis in the organic acidurias. Prog Clin Biol Res. 1990;321:383–402.

    CAS  PubMed  Google Scholar 

  14. Guthrie R, Susi A. A simple phenylalanine method for detecting phenylketonuria in large populations of newborn infants. Pediatrics. 1963;32:338–43.

    CAS  PubMed  Google Scholar 

  15. Dussault JH, Coulombe P, Laberge C, Letarte J, Guyda H, Khoury K. Preliminary report on a mass screening program for neonatal hypothyroidism. J Pediatr. 1975;86:670–4.

    CAS  PubMed  Google Scholar 

  16. Klein A, Agustin A, Foley T. Successful laboratory screening for congenital hypothyroidism. Lancet. 1974;2:77–9.

    CAS  PubMed  Google Scholar 

  17. Hammond KB, Abman SH, Sokol RJ, Accurso FJ. Efficacy of statewide neonatal screening for cystic fibrosis by assay of trypsinogen concentrations. N Engl J Med. 1991;325:769–74.

    CAS  PubMed  Google Scholar 

  18. Wilcken B, Wiley V, Hammond J, Carpenter K. Screening newborns for inborn errors of metabolism by tandem mass spectrometry. N Engl J Med. 2003;348:2304–12.

    CAS  PubMed  Google Scholar 

  19. Yang CF, Liu HC, Hsu TR, Tsai FC, Chiang SF, Chiang CC, et al. A large-scale nationwide newborn screening program for pompe disease in Taiwan: towards effective diagnosis and treatment. Am J Med Genet A. 2014;164A:54–61.

    PubMed  Google Scholar 

  20. Kwan A, Church JA, Cowan MJ, Agarwal R, Kapoor N, Kohn DB, et al. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia in California: results of the first 2 years. J Allergy Clin Immunol. 2013;132:140–50.

    PubMed  PubMed Central  Google Scholar 

  21. Estrella J, Wilcken B, Carpenter K, Bhattacharya K, Tchan M, Wiley V. Expanded newborn screening in New South Wales: missed cases. J Inherit Metab Dis. 2014;37:881–7.

    PubMed  Google Scholar 

  22. Dercksen M, Ijlst L, Duran M, Mienie LJ, van Cruchten A, van der Westhuizen FH, et al. Inhibition of n-acetylglutamate synthase by various monocarboxylic and dicarboxylic short-chain coenzyme a esters and the production of alternative glutamate esters. Biochim Biophys Acta. 2014;1842:2510–6.

    CAS  Google Scholar 

  23. Saudubray JM, Nassogne MC, de Lonlay P, Touati G. Clinical approach to inherited metabolic disorders in neonates: an overview. Semin Neonatol. 2002;7:3–15.

    CAS  PubMed  Google Scholar 

  24. Morton DH, Strauss KA, Robinson DL, Puffenberger EG, Kelley RI. Diagnosis and treatment of maple syrup disease: a study of 36 patients. Pediatrics. 2002;109:999–1008.

    PubMed  Google Scholar 

  25. Lee JY, Chiong MA, Estrada SC, Cutiongco-De la Paz EM, Silao CL, Padilla CD. Maple syrup urine disease (MSUD) – clinical profile of 47 Filipino patients. J Inherit Metab Dis. 2008;31:S281–5.

    PubMed  Google Scholar 

  26. Strauss KA, Puffenberger EG, Morton DH. Maple syrup urine disease. Seattle: University of Washington; 2006. [updated 09/MAY/14; cited 2014 30/Oct/2014]; 1993–2014:[Available from: http://www.ncbi.nlm.nih.gov/books/NBK1319/.

    Google Scholar 

  27. Robinson BH, Taylor J, Sherwood WG. Deficiency of dihydrolipoyl dehydrogenase (a component of the pyruvate and alpha-ketoglutarate dehydrogenase complexes): a cause of congenital chronic lactic acidosis in infancy. Pediatr Res. 1977;11:1198–202.

    CAS  PubMed  Google Scholar 

  28. Oberholzer VG, Levin B, Burgess EA, Young WF. Methylmalonic aciduria. An inborn error of metabolism leading to chronic metabolic acidosis. Arch Dis Child. 1967;42:492–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Pena L, Franks J, Chapman KA, Gropman A, Ah Mew N, Chakrapani A, et al. Natural history of propionic acidemia. Mol Genet Metab. 2012;105:5–9.

    CAS  PubMed  Google Scholar 

  30. Nizon M, Ottolenghi C, Valayannopoulos V, Arnoux JB, Barbier V, Habarou F, et al. Long-term neurological outcome of a cohort of 80 patients with classical organic acidurias. Orphanet J Rare Dis. 2013;8:148.

    PubMed  PubMed Central  Google Scholar 

  31. Fowler B, Leonard JV, Baumgartner MR. Causes of and diagnostic approach to methylmalonic acidurias. J Inherit Metab Dis. 2008;31:350–60.

    CAS  PubMed  Google Scholar 

  32. Fischer S, Huemer M, Baumgartner M, Deodato F, Ballhausen D, Boneh A, et al. Clinical presentation and outcome in a series of 88 patients with the cblC defect. J Inherit Metab Dis. 2014;37:831–40.

    CAS  PubMed  Google Scholar 

  33. Wilson CJ, Myer M, Darlow BA, Stanley T, Thomson G, Baumgartner ER, et al. Severe holocarboxylase synthetase deficiency with incomplete biotin responsiveness resulting in antenatal insult in samoan neonates. J Pediatr. 2005;147:115–8.

    PubMed  Google Scholar 

  34. Van Hove JL, Grunewald S, Jaeken J, Demaerel P, Declercq PE, Bourdoux P, et al. D,L-3-hydroxybutyrate treatment of multiple acyl-CoA dehydrogenase deficiency (MADD). Lancet. 2003;361:1433–5.

    PubMed  Google Scholar 

  35. Tuchman M, Lee B, Lichter-Konecki U, Summar ML, Yudkoff M, Cederbaum SD, et al. Cross-sectional multicenter study of patients with urea cycle disorders in the United States. Mol Genet Metab. 2008;94:397–402.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Coman D, Bhattacharya K. Extended newborn screening: an update for the general paediatrician. J Paediatr Child Health. 2012;48:E68–72.

    PubMed  Google Scholar 

  37. Wilcken B. Fatty acid oxidation disorders: outcome and long-term prognosis. J Inherit Metab Dis. 2010;33:501–6.

    CAS  PubMed  Google Scholar 

  38. Wilcken B, Hammond J, Silink M. Morbidity and mortality in medium chain acyl coenzyme A dehydrogenase deficiency. Arch Dis Child. 1994;70:410–2.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Ho G, Yonezawa A, Masuda S, Inui K, Sim KG, Carpenter K, et al. Maternal riboflavin deficiency, resulting in transient neonatal-onset glutaric aciduria Type 2, is caused by a microdeletion in the riboflavin transporter gene GPR172B. Hum Mutat. 2011;32:E1976–84.

    CAS  PubMed  Google Scholar 

  40. Bhattacharya K, Lee PJ. Glycogen storage disease. Oxford Textbook of Medicine. Oxford: Oxford University Press; 2014.

    Google Scholar 

  41. Barnerias C, Saudubray JM, Touati G, De Lonlay P, Dulac O, Ponsot G, et al. Pyruvate dehydrogenase complex deficiency: four neurological phenotypes with differing pathogenesis. Dev Med Child Neurol. 2010;52:e1–9.

    PubMed  Google Scholar 

  42. Menezes MJ, Riley LG, Christodoulou J. Mitochondrial respiratory chain disorders in childhood: insights into diagnosis and management in the new era of genomic medicine. Biochim Biophys Acta. 2014;1840:1368–79.

    CAS  PubMed  Google Scholar 

  43. Wilcken B, Haas M, Joy P, Wiley V, Chaplin M, Black C, et al. Outcome of neonatal screening for medium-chain acyl-CoA dehydrogenase deficiency in australia: a cohort study. Lancet. 2007;369:37–42.

    CAS  PubMed  Google Scholar 

  44. Mills PB, Surtees RA, Champion MP, Beesley CE, Dalton N, Scambler PJ, et al. Neonatal epileptic encephalopathy caused by mutations in the PNPO gene encoding pyridox(am)ine 5′-phosphate oxidase. Hum Mol Genet. 2005;14:1077–86.

    CAS  PubMed  Google Scholar 

  45. Mills PB, Struys E, Jakobs C, Plecko B, Baxter P, Baumgartner M, et al. Mutations in antiquitin in individuals with pyridoxine-dependent seizures. Nat Med. 2006;12:307–9.

    CAS  PubMed  Google Scholar 

  46. Veldman A, Santamaria-Araujo JA, Sollazzo S, Pitt J, Gianello R, Yaplito-Lee J, et al. Successful treatment of molybdenum cofactor deficiency type a with cpmp. Pediatrics. 2010;125:e1249–54.

    PubMed  Google Scholar 

  47. Waterham HR, Ebberink MS. Genetics and molecular basis of human peroxisome biogenesis disorders. Biochim Biophys Acta. 2012;1822:1430–41.

    CAS  PubMed  Google Scholar 

  48. Kurian MA, Gissen P, Smith M, Heales Jr S, Clayton PT. The monoamine neurotransmitter disorders: an expanding range of neurological syndromes. The Lancet Neurol. 2011;10:721–33.

    CAS  PubMed  Google Scholar 

  49. Bahi-Buisson N, Roze E, Dionisi C, Escande F, Valayannopoulos V, Feillet F, et al. Neurological aspects of hyperinsulinism-hyperammonaemia syndrome. Dev Med Child Neurol. 2008;50:945–9.

    PubMed  Google Scholar 

  50. Deschauer M, Gizatullina Z, Schulze A, Pritsch M, Knoppel C, Knape M, et al. Molecular and biochemical investigations in fumarase deficiency. Mol Genet Metab. 2006;88:146–52.

    CAS  PubMed  Google Scholar 

  51. Friedman M, Hatcher G, Watson L. Primary hypomagnesaemia with secondary hypocalcaemia in an infant. Lancet. 1967;1:703–5.

    CAS  PubMed  Google Scholar 

  52. Mignot C, Moutard ML, Trouillard O, Gourfinkel-An I, Jacquette A, Arveiler B, et al. STXBP1-related encephalopathy presenting as infantile spasms and generalized tremor in three patients. Epilepsia. 2011;52:1820–7.

    CAS  PubMed  Google Scholar 

  53. Muhlhausen C, Salomons GS, Lukacs Z, Struys EA, van der Knaap MS, Ullrich K, et al. Combined D2-/L2-hydroxyglutaric aciduria (SLC25A1 deficiency): clinical course and effects of citrate treatment. J Inherit Metab Dis. 2014;37:775–81.

    PubMed  Google Scholar 

  54. Pong AW, Geary BR, Engelstad KM, Natarajan A, Yang H, De Vivo DC. Glucose transporter type I deficiency syndrome: epilepsy phenotypes and outcomes. Epilepsia. 2012;53:1503–10.

    CAS  PubMed  Google Scholar 

  55. Staretz-Chacham O, Lang TC, LaMarca ME, Krasnewich D, Sidransky E. Lysosomal storage disorders in the newborn. Pediatrics. 2009;123:1191–207.

    PubMed  PubMed Central  Google Scholar 

  56. van der Crabben SN, Verhoeven-Duif NM, Brilstra EH, Van Maldergem L, Coskun T, Rubio-Gozalbo E, et al. An update on serine deficiency disorders. J Inherit Metab Dis. 2013;36:613–9.

    CAS  PubMed  Google Scholar 

  57. Wolf NI, Bast T, Surtees R. Epilepsy in inborn errors of metabolism. Epileptic Disord. 2005;7:67–81.

    PubMed  Google Scholar 

  58. Hoover-Fong JE, Shah S, Van Hove JL, Applegarth D, Toone J, Hamosh A. Natural history of nonketotic hyperglycinemia in 65 patients. Neurology. 2004;63:1847–53.

    CAS  PubMed  Google Scholar 

  59. McKusick VA, Kniffen CL. Epileptic encephalopathy early infantile. Baltimore: McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University; 2011. [updated 24/OCT/14; cited 2014 30/oct/2014].; Available from: http://omim.org/phenotypicSeries/308350.

    Google Scholar 

  60. Evans JC, Archer HL, Colley JP, Ravn K, Nielsen JB, Kerr A, et al. Early onset seizures and rett-like features associated with mutations in CDKL5. Eur J Hum Genet. 2005;13:1113–20.

    CAS  PubMed  Google Scholar 

  61. Fehr S, Wilson M, Downs J, Williams S, Murgia A, Sartori S, et al. The CDKL5 disorder is an independent clinical entity associated with early-onset encephalopathy. Eur J Hum Genet: EJHG. 2013;21:266–73.

    CAS  PubMed  Google Scholar 

  62. Clayton PT. Inborn errors presenting with liver dysfunction. Semin Neonatol: 2002;7:49–63.

    PubMed  Google Scholar 

  63. Berry GT. Galactosemia: when is it a newborn screening emergency? Mol Genet Metab. 2012;106:7–11.

    CAS  PubMed  Google Scholar 

  64. Larochelle J, Alvarez F, Bussieres JF, Chevalier I, Dallaire L, Dubois J, et al. Effect of nitisinone (NTBC) treatment on the clinical course of hepatorenal tyrosinemia in Québec. Mol Genet Metab. 2012;107:49–54.

    CAS  PubMed  Google Scholar 

  65. Fregonese L, Stolk J. Hereditary alpha-1-antitrypsin deficiency and its clinical consequences. Orphanet J Rare Dis. 2008;3:16.

    PubMed  PubMed Central  Google Scholar 

  66. Kadakol A, Ghosh SS, Sappal BS, Sharma G, Chowdhury JR, Chowdhury NR. Genetic lesions of bilirubin uridine-diphosphoglucuronate glucuronosyltransferase (UGT1A1) causing Crigler-Najjar and Gilbert syndromes: correlation of genotype to phenotype. Hum Mutat. 2000;16:297–306.

    CAS  PubMed  Google Scholar 

  67. Saheki T, Kobayashi K. Mitochondrial aspartate glutamate carrier (citrin) deficiency as the cause of adult-onset type II citrullinemia (CTLN2) and idiopathic neonatal hepatitis (NICCD). J Hum Genet. 2002;47:333–41.

    CAS  PubMed  Google Scholar 

  68. Wraith JE. Lysosomal disorders. Semin Neonatol. 2002;7:75–83.

    CAS  PubMed  Google Scholar 

  69. Freeze HH. Congenital disorders of glycosylation: CDG-I, CDG-II, and beyond. Curr Mol Med. 2007;7:389–96.

    CAS  PubMed  Google Scholar 

  70. Morotti RA, Suchy FJ, Magid MS. Progressive familial intrahepatic cholestasis (PFIC) type 1, 2, and 3: a review of the liver pathology findings. Semin Liver Dis. 2011;31:3–10.

    CAS  PubMed  Google Scholar 

  71. Buhrdel P, Bohme HJ, Didt L. Biochemical and clinical observations in four patients with fructose-1,6-diphosphatase deficiency. Eur J Pediatr. 1990;149:574–6.

    CAS  PubMed  Google Scholar 

  72. Zanella A, Fermo E, Bianchi P, Chiarelli LR, Valentini G. Pyruvate kinase deficiency: the genotype-phenotype association. Blood Rev. 2007;21:217–31.

    CAS  PubMed  Google Scholar 

  73. Cappellini MD, Fiorelli G. Glucose-6-phosphate dehydrogenase deficiency. Lancet. 2008;371:64–74.

    CAS  PubMed  Google Scholar 

  74. Ristoff E, Larsson A. Inborn errors in the metabolism of glutathione. Orphanet J Rare Dis. 2007;2:16.

    PubMed  PubMed Central  Google Scholar 

  75. Balwani M, Desnick RJ. The porphyrias: advances in diagnosis and treatment. Blood. 2012;120:4496–504.

    CAS  PubMed  PubMed Central  Google Scholar 

  76. Wraith JE, Sedel F, Pineda M, Wijburg FA, Hendriksz CJ, Fahey M, et al. Niemann-Pick type C Suspicion Index tool: analyses by age and association of manifestations. J Inherit Metab Dis. 2014;37:93–101.

    CAS  PubMed  Google Scholar 

  77. Copeland WC. Inherited mitochondrial diseases of DNA replication. Annu Rev Med. 2008;59:131–46.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Magoulas PL, El-Hattab AW. Glycogen storage disease type IV. In: Pagon RA, Bird TD, Dolan CR, Stephens K, Adam MP, editors. Genereviews. Seattle: University of Washington; 1993.

    Google Scholar 

  79. Nowaczyk MJ, Irons MB. Smith-Lemli-Opitz syndrome: phenotype, natural history, and epidemiology. Am J Med Genet C: Semin Med Genet. 2012;160C:250–62.

    Google Scholar 

  80. Konstantinidou A, Karadimas C, Waterham HR, Superti-Furga A, Kaminopetros P, Grigoriadou M, et al. Pathologic, radiographic and molecular findings in three fetuses diagnosed with HEM/Greenberg skeletal dysplasia. Prenat Diagn. 2008;28:309–12.

    CAS  PubMed  Google Scholar 

  81. Kishnani PS, Corzo D, Nicolino M, Byrne B, Mandel H, Hwu WL, et al. Recombinant human acid [alpha]-glucosidase: major clinical benefits in infantile-onset Pompe’s disease. Neurology. 2007;68:99–109.

    Google Scholar 

  82. Jefferies JL. Barth syndrome. Am J Med Genet C: Semin Med Genet. 2013;163C:198–205.

    Google Scholar 

  83. Kaler SG, Holmes CS, Goldstein DS, Tang J, Godwin SC, Donsante A, et al. Neonatal diagnosis and treatment of Menkes disease. N Engl J Med. 2008;358:605–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Babcock DS, Bove KE, Hug G, Dignan PS, Soukup S, Warren NS. Fetal mucolipidosis II (I-cell disease): radiologic and pathologic correlation. Pediatr Radiol. 1986;16:32–9.

    CAS  PubMed  Google Scholar 

  85. Komrower GM, Sardharwalla IB, Coutts JM, Ingham D. Management of maternal phenylketonuria: an emerging clinical problem. Br Med J. 1979;1:1383–7.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Christodoulou MB, BS, PhD, FRACP, FFSc, FRCPA .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing

About this chapter

Cite this chapter

Bhattacharya, K., Moore, F., Christodoulou, J. (2015). Genetic Metabolic Disease. In: Khong, T.Y., Malcomson, R.D.G. (eds) Keeling’s Fetal and Neonatal Pathology. Springer, Cham. https://doi.org/10.1007/978-3-319-19207-9_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-19207-9_11

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-19206-2

  • Online ISBN: 978-3-319-19207-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics