Skip to main content

Computer-Aided Development of Thermo-Mechanical Laser Surface Treatments for the Fatigue Life Extension of Bio-Mechanical Components

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9108))

Abstract

Bio-mechanical components (i.e. spinal, knee and hip prostheses) are key elements definitely improving the quality of life of human beings. These components development has been traditionally subject to mechanical and functional designs based primarily on intuitive medical approaches, not always optimized from an engineering point of view, what in turn has been responsible for undesirable cases of mechanical failure implying the need for additional surgical interventions and its associate life risk for aged patients. Laser Shock Processing (LSP) uses the high peak power of short pulse lasers to generate an intense shock wave into the material finally leading to the generation of a compressive residual stresses field definitely protecting the component against crack initiation and propagation, thus improving its mechanical response and in-service fatigue life. Developments in the field of the predictive assessment of LSP are presented along with practical examples of the design-motivated improvements in prostheses achievable by LSP.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sano, Y., Mukai, N., Okazaki, K., Obata, M.: Residual stress improvement in metal surface by underwater laser irradiation. Nuclear Instruments and Methods in Physics Research B 121, 432–436 (1997)

    Article  Google Scholar 

  2. Rubio-González, C., Ocaña, J.L., Gómez-Rosas, G., Molpeceres, C., Paredes, M., Banderas, A., Porro, J.A., Morales, M.: Effect of laser shock processing on fatigue crack growth and fracture toughness of 6061-T6 aluminum alloy. Mat. Sci. Eng. A 386, 291–295 (2004)

    Article  Google Scholar 

  3. Ocaña, J.L., Morales, M., Molpeceres, C., Porro, J.A.: Laser Shock Processing as a Method for Surface Properties Modification of Metallic Materials. In: Schulze, V., Niku-Lari, A. (eds.) Shot Peening and other Mechanical Surface Treatments, pp. 466–471. I.I.T.T, Paris (2005)

    Google Scholar 

  4. Sánchez-Santana, U., Rubio-González, C., Ocaña, J.L., Gómez-Rosas, G., Molpeceres, C., Porro, J.A., Morales, M.: Wear and friction of 6061-T6 aluminum alloy treated by laser shock processing. Wear 260, 847–854 (2006)

    Article  Google Scholar 

  5. Morales, M., Porro, J.A., Blasco, M., Molpeceres, C., Ocaña, J.L.: Numerical simulation of plasma dynamics in laser shock processing experiments. Appl. Surf. Sci. 255, 5181–5185 (2009)

    Article  Google Scholar 

  6. Griffin, R.D., Justus, B.L., Campillo, A.J., Goldberg, L.S.: Interferometric studies of the pressure of a confined laser-heated plasma. Journal of Applied Physics 59, 1968–1971 (1986)

    Article  Google Scholar 

  7. Fabbro, R., Fournier, J., Ballard, P., Devaux, D., Virmont, J.: Physical study of laser produced plasma in confined geometry. Journal of Applied Physics 68, 775–784 (1990)

    Article  Google Scholar 

  8. Ocaña, J.L., Morales, M., Molpeceres, C., Torres, J.: Numerical simulation of surface deformation and residual stresses fields in laser shock processing experiments. Appl. Surf. Sci. 238, 242–248 (2004)

    Article  Google Scholar 

  9. Morales, M., Ocaña, J.L., Molpeceres, C., Porro, J.A., García-Beltrán, A.: Model based optimization criteria for the generation of deep compressive residual stress fields in high elastic limit metallic alloys by ns-laser shock processing. Surface & Coatings Technology 202, 2257–2262 (2008)

    Article  Google Scholar 

  10. Morales, M., Porro, J.A., Molpeceres, C., Holgado, M., Ocaña, J.L.: Analysis of plasma thermal surface effects on the residual stress field induced by LSP in Al2024-T351. Journal of Optoelectronics and Advanced Materials 12, 718–722 (2010)

    Google Scholar 

  11. Morales, M., Correa, C., Porro, J.A., Molpeceres, C., Ocaña, J.L.: Thermomechanical modelling of stress fields in metallic targets subject to laser shock processing. International Journal of Structural Integrity 2, 51–61 (2011)

    Article  Google Scholar 

  12. MacFarlane, J.J., Golovkin, I.E., Woodruff, P.R.: HELIOS-CR A 1-D radiation-magnetohydrodynamics code with inline atomic kinetics modeling. Journal of Quantitative Spectroscopy & Radiative Transfer 99, 381–397 (2006)

    Article  Google Scholar 

  13. Lyon, S.P., Johnson, J.D.: SESAME: Los Alamos National Laboratory Equation of State Database. Technical report LA-UR-92-3407, Los Alamos National Laboratory, Los Alamos (1992)

    Google Scholar 

  14. ABAQUS, Inc.: ABAQUS Users Manual, Pawtucket (2009)

    Google Scholar 

  15. Johnson, G.R., Cook, W.H.: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures. In: Proceedings of the 7th International Symposium on Ballistics, pp. 541–547 (1983)

    Google Scholar 

  16. Kay, G.: Failure Modeling of Titanium 6Al-4V and Aluminum 2024-T3 with the Johnson-Cook material model. Technical Report U.S. Department of Transportation DOT-FAA-AR-97-88 (2003)

    Google Scholar 

  17. Korsunsky, A.M.: Residual elastic strain due to laser shock peening: Modelling by eigenstrain distribution. The Journal of Strain Analysis for Engineering Design 41, 195–204 (2006)

    Article  Google Scholar 

  18. Jun, T., Korsunsky, A.M.: Evaluation of residual stresses and strains using the Eigenstrain Reconstruction Method. International Journal of Solids and Structures 47, 1678–1686 (2010)

    Article  MATH  Google Scholar 

  19. Achintha, M., Nowell, D.: Eigenstrain modelling of residual stresses generated by laser shock peening. Journal of Materials Processing Technology 211, 1091–1101 (2011)

    Article  Google Scholar 

  20. Bordji, K., Jouzeau, J.Y., Mainard, D., Payan, E., Netter, P., Rie, K.T., Stucky, T., Hage-Ali, M.: Cytocompatibility of Ti-6Al-4V and Ti-5Al-2.5Fe alloys according to three surface treatments, using human fibroblasts and osteoblasts. Biomaterials 17, 929–940 (1996)

    Article  Google Scholar 

  21. Savilahti, S., Myllyneva, I., Pajamaki, K.J.J., Lindholm, T.S.: Survival of Lubinus straight (IP) and curved (SP) total hip prostheses in 543 patients after 413 years. Arch. Orthop. Trauma Surg. 116, 1013 (1997)

    Article  Google Scholar 

  22. Marston, R.A., Cobb, A.G., Bentley, G.: Stanmore compared with Charnley total hip replacement: a prospective study of 413 arthroplasties. J. Bone Joint Surg. 78-B, 178–184 (1996)

    Google Scholar 

  23. Neumann, L., Freund, K.G., Sorenson, K.H.: Long-term results of Charnley total hip replacement. Review of 92 patients at 15 to 20 years. J. Bone Joint Surg. 76-B, 245–251 (1994)

    Google Scholar 

  24. Delaunay, C.P., Kapandji, A.I.: Primary total hip arthroplasty with the Karl Zweymuller first-generation cementless prosthesis: a 5 to 9 year retrospective study. J. Arthroplasty 11, 643–652 (1996)

    Article  Google Scholar 

  25. Campioni, I., Notarangelo, G., Andreaus, U., Ventura, A., Giacomozzi, C.: Hip prosthesis computational modeling: FEM simulations integrated with fatigue mechanical tests, Biomechanics imaging and computational modeling in biomechanics. Lecture Notes in Computational Vision and Biomechanics 4, 81–109 (2013)

    Google Scholar 

  26. Sotereanos, N.G., Engh, C.A., Glassman, A.H., Macalino, G.E.: Cementless femoral components should be made from cobalt chrome. Clin. Orthop. 313, 146–153 (1995)

    Google Scholar 

  27. Wroblewski, B.M., Sidney, P.D.: Charnley low friction arthroplasty of the hip Long term result. Clin. Orthop. 292, 191–201 (1993)

    Google Scholar 

  28. Zafer Senalp, A., Kayabasi, O., Kurtaran, H.: Static, dynamic and fatigue behavior of newly designed stem shapes for hip prosthesis using finite element analysis. Materials & Design 28, 1577–1583 (2007)

    Article  Google Scholar 

  29. Champaigne, J.: Shot peening of orthopaedic implants for tissue adhesion. US Patent 7,131,303 (2006)

    Google Scholar 

  30. Shepard, M.J.: Laser shock processing induced residual compression: impact on predicted crack growth threshold performance. Journal of Materials Engineering and Performance 14, 495–502 (2005)

    Article  Google Scholar 

  31. Hammersley, G., Hackel, L.A., Harris, F.: Surface prestressing to improve fatigue strength of components by laser shock peening. Optics and Lasers in Engineering 34, 327–337 (2000)

    Article  Google Scholar 

  32. Charnley, J.: Femoral prosthesis, US Patent 4,021,865 (1977)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José-Luis Ocaña .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ocaña, JL., García-Beltrán, Á., Correa, C., Porro, JA., Ruiz-de-Lara, L., Díaz, M. (2015). Computer-Aided Development of Thermo-Mechanical Laser Surface Treatments for the Fatigue Life Extension of Bio-Mechanical Components. In: Ferrández Vicente, J., Álvarez-Sánchez, J., de la Paz López, F., Toledo-Moreo, F., Adeli, H. (eds) Bioinspired Computation in Artificial Systems. IWINAC 2015. Lecture Notes in Computer Science(), vol 9108. Springer, Cham. https://doi.org/10.1007/978-3-319-18833-1_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18833-1_45

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18832-4

  • Online ISBN: 978-3-319-18833-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics