Skip to main content

Mechanisms Underlying Astrocyte Endfeet Swelling in Stroke

  • Chapter
Brain Edema XVI

Part of the book series: Acta Neurochirurgica Supplement ((NEUROCHIRURGICA,volume 121))

Abstract

Astrocyte endfeet envelop the cerebral capillaries that form the blood-brain barrier. Swelling of these endfeet occurs early in cerebral ischemia. It is generally hypothesized that such swelling occurs as the result of factors released from parenchymal brain cells during an ischemic stroke (e.g., K+ and L-glutamate). In this review of mechanisms that can elicit astrocyte swelling in ischemic stroke, we hypothesize that, instead or in addition, such swelling may be a response to blood-brain barrier dysfunction. Astrocyte endfeet swelling may help form a cuff around a damaged vessel that limits the egress of plasma constituents and blood (hemorrhage) into brain.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dodson RF, Chu LW, Welch KM, Achar VS (1977) Acute tissue response to cerebral ischemia in the gerbil. An ultrastructural study. J Neurol Sci 33:161–170

    Article  CAS  PubMed  Google Scholar 

  2. Garcia JH, Kalimo H, Kamijyo Y, Trump BF (1977) Cellular events during partial cerebral ischemia. I. Electron microscopy of feline cerebral cortex after middle-cerebral-artery occlusion. Virchows Arch B Cell Pathol 25:191–206

    CAS  PubMed  Google Scholar 

  3. Juurlink BH, Chen Y, Hertz L (1992) Use of cell cultures to differentiate among effects of various ischemia factors on astrocytic cell volume. Can J Physiol Pharmacol 70(Suppl):S344–S349

    Article  CAS  PubMed  Google Scholar 

  4. Kimelberg HK (2005) Astrocytic swelling in cerebral ischemia as a possible cause of injury and target for therapy. Glia 50:389–397

    Article  PubMed  Google Scholar 

  5. Shigeno T, Mima T, Takakura K (1990) Mechanisms of astroglial swelling in focal cerebral ischemia. Adv Neurol 52:545

    CAS  PubMed  Google Scholar 

  6. Walz W, Klimaszewski A, Paterson IA (1993) Glial swelling in ischemia: a hypothesis. Dev Neurosci 15:216–225

    Article  CAS  PubMed  Google Scholar 

  7. Walz W, Mukerji S (1990) Simulation of aspects of ischemia in cell culture: changes in lactate compartmentation. Glia 3:522–528

    Article  CAS  PubMed  Google Scholar 

  8. Silver IA, Deas J, Erecinska M (1997) Ion homeostasis in brain cells: differences in intracellular ion responses to energy limitation between cultured neurons and glial cells. Neuroscience 78:589–601

    Article  CAS  PubMed  Google Scholar 

  9. Benesova J, Hock M, Butenko O, Prajerova I, Anderova M, Chvatal A (2009) Quantification of astrocyte volume changes during ischemia n situ reveals two populations of astrocytes in the cortex of GFAP/EGFP mice. J Neurosci Res 87:96–111

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Sun D (2005) The role of Na-K-Cl co-transporter in cerebral ischemia. Neurol Res 27:280–286

    Article  CAS  PubMed  Google Scholar 

  11. Khanna A, Kahle KT, Walcott BP, Gerzanich V, Simard JM (2014) Disruption of ion homeostasis in the neurogliovascular unit underlies the pathogenesis of ischemic cerebral edema. Transl Stroke Res 5:3–16

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  12. Obrenovitch TP, Richards DA (1995) Extracellular neurotransmitter changes in cerebral ischaemia. Cerebrovasc Brain Metab Rev 7:1–54

    CAS  PubMed  Google Scholar 

  13. Obrenovitch TP, Urenjak J, Zilkha E, Jay TM (2000) Excitotoxicity in neurological disorders–the glutamate paradox. Int J Dev Neurosci 18:281–287

    Article  CAS  PubMed  Google Scholar 

  14. Bender AS, Schousboe A, Reichelt W, Norenberg MD (1998) Ionic mechanisms in glutamate-induced astrocyte swelling: role of K+ influx. J Neurosci Res 52:307–321

    Article  CAS  PubMed  Google Scholar 

  15. Kanai Y, Clemencon B, Simonin A, Leuenberger M, Lochner M, Weisstanner M, Hediger MA (2013) The SLC1 high-affinity glutamate and neutral amino acid transporter family. Mol Aspects Med 34:108–120

    Article  CAS  PubMed  Google Scholar 

  16. Knowland D, Arac A, Sekiguchi KJ, Hsu M, Lutz SE, Perrino J, Steinberg GK, Barres BA, Nimmerjahn A, Agalliu D (2014) Stepwise recruitment of transcellular and paracellular pathways underlies blood-brain barrier breakdown in stroke. Neuron 82:603–617

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  17. Sandoval KE, Witt KA (2008) Blood-brain barrier tight junction permeability and ischemic stroke. Neurobiol Dis 32:200–219

    Article  CAS  PubMed  Google Scholar 

  18. Aschner M (2011) Volume measurements in cultured primary astrocytes. Methods Mol Biol 758:391–402

    Article  CAS  PubMed  Google Scholar 

  19. Al-Sarraf H, Ghaaedi F, Redzic Z (2007) Time course of hyperosmolar opening of the blood-brain and blood-CSF barriers in spontaneously hypertensive rats. J Vasc Res 44:99–109

    Article  CAS  PubMed  Google Scholar 

  20. Betz AL, Keep RF, Beer ME, Ren XD (1994) Blood-brain barrier permeability and brain concentration of sodium, potassium, and chloride during focal ischemia. J Cereb Blood Flow Metab 14:29–37

    Article  CAS  PubMed  Google Scholar 

  21. Dietrich WD, Busto R, Watson BD, Scheinberg P, Ginsberg MD (1987) Photochemically induced cerebral infarction. II. Edema and blood-brain barrier disruption. Acta Neuropathol 72:326–334

    Article  CAS  PubMed  Google Scholar 

  22. Petito CK (1979) Early and late mechanisms of increased vascular permeability following experimental cerebral infarction. J Neuropathol Exp Neurol 38:222–234

    Article  CAS  PubMed  Google Scholar 

  23. Stover JF, Sakowitz OW, Kroppenstedt SN, Thomale UW, Kempski OS, Flugge G, Unterberg AW (2004) Differential effects of prolonged isoflurane anesthesia on plasma, extracellular, and CSF glutamate, neuronal activity, 125I-Mk801 NMDA receptor binding, and brain edema in traumatic brain-injured rats. Acta Neurochir 146:819–830

    CAS  PubMed  Google Scholar 

  24. Ye ZC, Sontheimer H (1998) Astrocytes protect neurons from neurotoxic injury by serum glutamate. Glia 22:237–248

    Article  CAS  PubMed  Google Scholar 

  25. Westergren I, Nystrom B, Hamberger A, Nordborg C, Johansson BB (1994) Concentrations of amino acids in extracellular fluid after opening of the blood-brain barrier by intracarotid infusion of protamine sulfate. J Neurochem 62:159–165

    Article  CAS  PubMed  Google Scholar 

  26. Lee JM, Zhai G, Liu Q, Gonzales ER, Yin K, Yan P, Hsu CY, Vo KD, Lin W (2007) Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke 38:3289–3291

    Article  PubMed  Google Scholar 

  27. Keep RF, Hua Y, Xi G (2012) Intracerebral haemorrhage: mechanisms of injury and therapeutic targets. Lancet Neurol 11:720–731

    Article  CAS  PubMed  Google Scholar 

  28. Xi G, Keep RF, Hoff JT (2006) Mechanisms of brain injury after intracerebral haemorrhage. Lancet Neurol 5:53–63

    Article  PubMed  Google Scholar 

  29. Haqqani AS, Nesic M, Preston E, Baumann E, Kelly J, Stanimirovic D (2005) Characterization of vascular protein expression patterns in cerebral ischemia/reperfusion using laser capture microdissection and ICAT-nanoLC-MS/MS. FASEB J 19:1809–1821

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health grants NS034709, NS079639, and HL55374. The content is solely the responsibility of the authors and does not necessarily represent the official views of the NIH.

Conflicts of Interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard F. Keep PhD .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Xiang, J., Tang, Y., Li, C., Su, E.J., Lawrence, D.A., Keep, R.F. (2016). Mechanisms Underlying Astrocyte Endfeet Swelling in Stroke. In: Applegate, R., Chen, G., Feng, H., Zhang, J. (eds) Brain Edema XVI. Acta Neurochirurgica Supplement, vol 121. Springer, Cham. https://doi.org/10.1007/978-3-319-18497-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18497-5_4

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18496-8

  • Online ISBN: 978-3-319-18497-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics