Skip to main content

Entomopathogenic Nematodes in the Soil Environment: Distributions, Interactions and the Influence of Biotic and Abiotic Factors

  • Chapter

Part of the book series: Sustainability in Plant and Crop Protection ((SUPP))

Abstract

Entomopathogenic nematodes (EPNs) in the families Steinernematidae and Heterorhabditidae are important agents for the biological control of soil insect pests in natural and managed ecosystems (Denno, Gruner, & Kaplan, 2008; Grewal, Ehlers, & Shapiro-Ilan, 2005; Lacey & Georgis, 2012). However, like most soil organisms, our knowledge of their activities is relatively limited compared to above ground organisms. Indeed, research on soil biota has long been a challenging aspect of modern ecology because of the inherent difficulties of sampling, manipulating, and otherwise investigating below ground processes (Brown & Gange, 1990; Fierer, Strickland, Liptzin, Bradford, & Cleveland, 2009). Progress is being made with EPNs but we are still a long way from the comprehensive understanding of their soil biology that is required if they are to fulfill their rich potential as manageable biological control agents in cultivated ecosystems. Twenty–five years ago Hominick and Reid (1990) stated: “We are almost completely ignorant of the population biology of entomopathogenic nematodes, yet such information is fundamental to understanding their persistence, distribution, effect on insect populations, and to the development of predictive models for control programs.” Subsequently, researchers have been chipping away at this problem, more intensive field studies have been conducted, models have been developed for various processes, and molecular techniques have begun providing new ways of exploring fundamental issues (Bai, Adams, Ciche, Clifton, Gaugler, et al., 2013; Campos-Herrera, Barbercheck, Hoy, & Stock, 2012; Campos-Herrera, Pathak, El-Borai, Stuart, Gutiérrez, et al., 2013; Stuart, Barbercheck, Grewal, Taylor, & Hoy, 2006) but much remains to be done. This paper reviews some aspects of the distribution of EPNs in the soil environment, what we know about their interactions, and the various biotic and abiotic factors that influence them.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adams, B. J., Fodor, A., Koppenhöfer, H. S., Stackenbrandt, E., Stock, S. P., & Klein, M. G. (2006). Biodiversity and systematics of nematode–bacterium entomopathogens. Biological Control, 38, 4–21.

    Google Scholar 

  • Adl, S. M. (2003). The ecology of soil decomposition. Wallingford, UK: CABI.

    Google Scholar 

  • Akhurst, R. J., & Brooks, W. M. (1984). The distribution of entomophilic nematodes (Heterorhabditidae and Steinernematidae) in North Carolina. Journal of Invertebrate Pathology, 44, 140–145.

    Google Scholar 

  • Alatorre-Rosas, R., & Kaya, H. K. (1990). Interspecific competition between entomopathogenic nematodes in the genera Heterorhabditis and Steinernema for an insect host in sand. Journal of Invertebrate Pathology, 55, 179–188.

    Google Scholar 

  • Alatorre-Rosas, R., & Kaya, H. K. (1991). Interactions between two entomopathogenic nematode species in the same host. Journal of Invertebrate Pathology, 57, 1–6.

    Google Scholar 

  • Ali, J. G., Alborn, H. T., & Stelinski, L. L. (2010). Subterranean herbivore–induced volatiles released by citrus roots upon feeding by Diaprepes abbreviatus recruit entomopathogenic nematodes. Journal of Chemical Ecology, 36, 361–368.

    CAS  PubMed  Google Scholar 

  • Ali, J. G., Campos-Herrera, R., Alborn, H. T., Duncan, L. W., & Stelinski, L. L. (2013). Sending mixed messages: A trophic cascade produced by a belowground herbivore–induced cue. Journal of Chemical Ecology, 39(8), 1140–1147.

    CAS  PubMed  Google Scholar 

  • Alsaiyah, M. A. M., Ebssa, L., Zenner, A., O’Callaghan, K. M., & Griffin, C. T. (2009). Sex ratios and sex–biased infection behaviour in the entomopathogenic nematode genus Steinernema. International Journal for Parasitology, 39, 725–734.

    PubMed  Google Scholar 

  • Amarasinghe, L. D., Hominick, W. M., Briscoe, B. R., & Reid, A. P. (1994). Occurrence and distribution of entomopathogenic nematodes in Sri Lanka. Journal of Helminthology, 68(4), 277–286.

    Google Scholar 

  • Andrén, O., & Lagerlöf, J. (1983). Soil fauna (microarthropods, enchytraeids, nematodes) in Swedish agricultural cropping systems. Acta Agriculturae Scandinavica, 33, 33–52.

    Google Scholar 

  • Ansari, M. A., Shah, F. A., & Butt, T. M. (2008). Combined use of entomopathogenic nematodes and Metarhizium anisopliae as a new approach for black vine weevil, Otiorhynchus sulcatus, control. Entomologia Experimentalis et Applicata, 129(3), 340–347.

    Google Scholar 

  • Bai, X., Adams, B. J., Ciche, T. A., Clifton, S., Gaugler, R., Kim, K., et al. (2013). A lover and a fighter: The genome sequence of an entomopathogenic nematode. PloS One, 8(7), e69618.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bal, H. K., Michael, A., & Grewal, P. S. (2014). Genetic selection of the ambush foraging entomopathogenic nematode Steinernema carpocapsae for enhanced dispersal and its associated trade–offs. Evolutionary Ecology, 28, 923–939.

    Google Scholar 

  • Bal, H. K., Taylor, R. A. J., & Grewal, P. S. (2014). Ambush foraging entomopathogenic nematodes employ sprinting emigrants for long distance dispersal in the absence of hosts. Parasitology, 100, 422–432.

    Google Scholar 

  • Barbercheck, M. E. (1992). Effect of soil physical factors on biological control agents of soil insect pests. Florida Entomologist, 75, 539–548.

    Google Scholar 

  • Barbercheck, M. E. (1993). Tritrophic level effects on entomopathogenic nematodes. Environmental Entomology, 22, 1166–1171.

    Google Scholar 

  • Barbercheck, M. E., & Kaya, H. K. (1990). Interactions between Beauveria bassiana and the entomogenous nematodes, Steinernema feltiae and Heterorhabditis heliothidis. Journal of Invertebrate Pathology, 55, 225–234.

    Google Scholar 

  • Barbercheck, M. E., & Kaya, H. K. (1991a). Effect of host condition and soil texture on host finding by the entomogenous nematodes Heterorhabditis bacteriophora (Rhabditida: Heterorhabditidae) and Steinernema carpocapsae (Rhabditida: Steinernematidae). Environmental Entomology, 20, 582–589.

    Google Scholar 

  • Barbercheck, M. E., & Kaya, H. K. (1991b). Competitive interactions between entomopathogenic nematodes and Beauveria bassiana (Deuteromycotina: Hyphomycetes) in soil borne larvae of Spodoptera exigua (Lepidoptera: Noctuidae). Environmental Entomology, 20, 707–712.

    Google Scholar 

  • Barbercheck, M. E., Wang, J., & Hirsh, I. S. (1995). Host plant effects on entomopathogenic nematodes. Journal of Invertebrate Pathology, 66, 169–177.

    Google Scholar 

  • Barbosa, P., & Benrey, B. (1998). The influence of plants on insect parasitoids: Implications for conservation biological control. In P. Barbosa (Ed.), Conservation biological control (pp. 235–254). San Diego, CA: Academic.

    Google Scholar 

  • Bashey, F., Hawlena, H., & Lively, C. M. (2013). Alternative paths to success in a parasite community: Within–host competition can favor higher virulence or direct interference. Evolution, 67(3), 900–907.

    PubMed  Google Scholar 

  • Bashey, F., Young, K., Hawlena, H., & Lively, C. M. (2012). Spiteful interactions between sympatric natural isolates of Xenorhabdus bovienii benefit kin and reduce virulence. Journal of Evolutionary Biology, 25(3), 431–437.

    CAS  PubMed  Google Scholar 

  • Baur, M. E., Kaya, H. K., & Strong, D. R. (1998). Foraging ants as scavengers on entomopathogenic nematode–killed insects. Biological Control, 12, 231–236.

    Google Scholar 

  • Beavers, J. B., McCoy, C. W., & Kaplan, D. T. (1983). Natural enemies of subterranean Diaprepes abbreviatus (Coleoptera: Curculionidae) larvae in Florida. Environmental Entomology, 12, 840–843.

    Google Scholar 

  • Bednarek, A., & Gaugler, R. (1997). Compatibility of soil amendments with entomopathogenic nematodes. Journal of Nematology, 29, 220–227.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Bellows, T. S. (1999). Controlling soil–borne plant pathogens. In T. S. Bellows & T. W. Fisher (Eds.), Handbook of biological control (pp. 699–711). San Diego, CA: Academic.

    Google Scholar 

  • Bilgrami, A. L., Gaugler, R., Shapiro-Ilan, D. I., & Adams, B. J. (2006). Source of trait deterioration in entomopathogenic nematodes Heterorhabditis bacteriophora and Steinernema carpocapsae during in vivo culture. Nematology, 8(3), 397–410.

    Google Scholar 

  • Bilgrami, A. L., & Jairajpuri, M. S. (1989a). Predatory abilities of Mononchoides longicaudatus and M. fortidens (Nematoda: Diplogasterida) and factors influencing predation. Nematologica, 35, 475–488.

    Google Scholar 

  • Bilgrami, A. L., & Jairajpuri, M. S. (1989b). Resistance of prey to predation and strike rate of the predators Mononchoides longicaudatus and M. fortidans (Nematoda: Diplogasterida). Revue de Nematologie, 12, 45–49.

    Google Scholar 

  • Blouin, M. S., Liu, J., & Berry, R. E. (1999). Life cycle variation and the genetic structure of nematode populations. Heredity, 8, 253–259.

    Google Scholar 

  • Boemare, N. (2002). Biology, taxonomy, and systematics of Photorhabdus and Xenorhabdus. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 35–56). New York: CABI.

    Google Scholar 

  • Bohan, D. A., & Hominick, W. M. (1995). Intra–population infectious structure and temporal variation in Steinernema feltiae. In C. T. Griffin, R. L. Gwynn, & J. P. Masson (Eds.), Ecology and transmission strategies of entomopathogenic nematodes (pp. 83–94). Luxembourg: European Commission.

    Google Scholar 

  • Bohan, D. A., & Hominick, W. M. (1996). Investigations on the presence of an infectious proportion amongst populations of Steinernema feltiae (site 76 strain) infective stages. Parasitology, 112, 113–118.

    Google Scholar 

  • Bohan, D. A., & Hominick, W. M. (1997a). Sex and the dynamics of infection in the entomopathogenic nematode Steinernema feltiae. Journal of Helminthology, 71, 197–201.

    Google Scholar 

  • Bohan, D. A., & Hominick, W. M. (1997b). Long–term dynamics of infectiousness within the infective–state pool of the entomopathogenic nematode Steinernema feltiae (site 76 strain) Filipjev. Parasitology, 114, 301–308.

    Google Scholar 

  • Brown, I. M., & Gaugler, R. (1997). Temperature and humidity influence emergence and survival of entomopathogenic nematodes. Nematologica, 43, 363–375.

    Google Scholar 

  • Brown, I., Lovett, B., Grewal, P. S., & Gaugler, R. (2002). Latent infection: A low temperature survival strategy in steinernematid nematodes. Journal of Thermal Biology, 27, 531–539.

    Google Scholar 

  • Brown, V. K., & Gange, A. C. (1990). Insect herbivory below ground. Advances in Ecological Research, 20, 1–58.

    Google Scholar 

  • Brust, G. E. (1991). Augmentation of an endemic entomogenous nematode by agroecosystem manipulation for the control of a soil pest. Agriculture, Ecosystems & Environment, 36, 175–184.

    Google Scholar 

  • Burman, M., & Pye, A. E. (1980). Neoaplectana carpocapsae: Movements of nematode populations on a thermal gradient. Experimental Parasitology, 49(2), 258–265.

    CAS  PubMed  Google Scholar 

  • Byers, J. A., & Poinar, G. O., Jr. (1982). Location of insect hosts by the nematode, Neoaplectana carpocapsae, in response to temperature. Behaviour, 79(1), 1–10.

    Google Scholar 

  • Cabanillas, H. E., & Raulston, J. R. (1994). Evaluation of the spatial pattern of Steinernema riobravis in corn plots. Journal of Nematology, 26(1), 25–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cakmak, I., Hazir, S., Ulug, D., & Karagoz, M. (2013). Olfactory response of Sancassania polyphyllae (Acari: Acaridae) to its phoretic host larva killed by the entomopathogenic nematode, Steinernema glaseri (Rhabditida: Steinernematidae). Biological Control, 65, 212–217.

    Google Scholar 

  • Campbell, J. F., Koppenhöfer, A. M., Kaya, H. K., & Chinnasri, B. (1999). Are there temporarily non–infectious dauer stages in entomopathogenic nematode populations: A test of the phased infectivity hypothesis. Parasitology, 118, 499–508.

    PubMed  Google Scholar 

  • Campbell, J. F., Lewis, E., Yoder, F., & Gaugler, R. (1995). Entomopathogenic nematode (Heterorhabditidae and Steinernematidae) seasonal population dynamics and impact on insect populations in turfgrass. Biological Control, 5, 598–606.

    Google Scholar 

  • Campbell, J. F., Lewis, E., Yoder, F., & Gaugler, R. (1996). Entomopathogenic nematode (Heterorhabditidae and Steinernematidae) spatial distribution in turfgrass. Parasitology, 113, 473–482.

    PubMed  Google Scholar 

  • Campbell, J. F., Orza, G., Yoder, F., Lewis, E., & Gaugler, R. (1998). Spatial and temporal distribution of endemic and released entomopathogenic nematode populations in turfgrass. Entomologia Experimentalis et Applicata, 86, 1–11.

    Google Scholar 

  • Campos-Herrera, R., Barbercheck, M., Hoy, C. W., & Stock, S. P. (2012). Entomopathogenic nematodes as a model system for advancing the frontiers of ecology. Journal of Nematology, 44(2), 162–176.

    PubMed Central  PubMed  Google Scholar 

  • Campos-Herrera, R., El-Borai, F. E., & Duncan, L. W. (2012). Wide interguild relationships among entomopathogenic and free–living nematodes in soil as measured by real time qPCR. Journal of Invertebrate Pathology, 111, 126–135.

    PubMed  Google Scholar 

  • Campos-Herrera, R., Escuer, M., Labrador, S., Robertson, L., Barrios, L., & Gutiérrez, C. (2007). Distribution of the entomopathogenic nematodes from La Rioja (Northern Spain). Journal of Invertebrate Pathology, 95, 125–139.

    PubMed  Google Scholar 

  • Campos-Herrera, R., Gómez-Ros, J. M., Escuer, M., Cuadra, L., Barrios, L., & Gutiérrez, C. (2008). Diversity, occurrence, and life characteristics of natural entomopathogenic nematode populations from La Rioja (Northern Spain) under different agricultural management and their relationships with soil factors. Soil Biology and Biochemistry, 40(6), 1474–1484.

    CAS  Google Scholar 

  • Campos-Herrera, R., Jaffuel, G., Chiriboga, X., Blanco-Perez, R., Fesselet, M., Puza, V., et al. (2015). Traditional and molecular detection methods reveal intense interguild competition and other multitrophic interactions associated with native entomopathogenic nematodes in Swiss tillage soils. Plant and Soil, 389, 237–255.

    CAS  Google Scholar 

  • Campos-Herrera, R., Johnson, E. G., El-Borai, F. E., Stuart, R. J., Graham, J. H., & Duncan, L. W. (2011). Long–term stability of entomopathogenic nematode spatial patterns in soil as measured by sentinel insects and real–time PCR assays. Annals of Applied Biology, 158, 55–68.

    CAS  Google Scholar 

  • Campos-Herrera, R., Pathak, E., El-Borai, F. E., Schumann, A., Abd-Elgawad, M. M. M., & Duncan, L. W. (2013). New citriculture system suppresses native and augmented entomopathogenic nematodes. Biological Control, 66, 183–194.

    Google Scholar 

  • Campos-Herrera, R., Pathak, E., El-Borai, F. E., Stuart, R. J., Gutiérrez, C., Rodríguez-Martín, J. A., et al. (2013). Geospatial patterns of soil properties and the biological control potential of entomopathogenic nematodes in Florida citrus groves. Soil Biology and Biochemistry, 66, 163–174.

    CAS  Google Scholar 

  • Chase, J. M., Abrams, P. A., Grover, J. P., Diehl, S., Chesson, P., Holt, R. D., et al. (2002). The interaction between predation and competition: a review and synthesis. Ecology Letters, 5(2), 302–315.

    Google Scholar 

  • Choo, H. Y., & Kaya, H. K. (1991). Influence of soil texture and presence of roots on host finding by Heterorhabditis bacteriophora. Journal of Invertebrate Pathology, 58, 279–280.

    Google Scholar 

  • Coleman, D. C., & Crossley, D. A., Jr. (1996). Fundamentals of soil ecology. San Diego, CA: Academic.

    Google Scholar 

  • Connell, J. (1980). Diversity and the coevolution of competitors, or the ghost of competition past. Oikos, 35, 131–138.

    Google Scholar 

  • Constant, P., Marchay, L., Fischer-Le Saux, M., Briand-Panoma, S., & Mauleon, H. (1998). Natural occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Guadalupe islands. Fundamental and Applied Nematology, 21, 667–672.

    Google Scholar 

  • Cook, R. J., & Baker, K. F. (1983). The nature and practice of biological control of plant pathogens. St. Paul, MN: American Phytopathological Society.

    Google Scholar 

  • Demarta, D., Hibbard, B. E., Bohn, M. O., & Hiltpold, I. (2014). The role of root architecture in foraging behavior of entomopathogenic nematodes. Journal of Invertebrate Pathology, 122, 32–39.

    PubMed  Google Scholar 

  • Denno, R. F., Gruner, D. S., & Kaplan, I. (2008). Potential for entomopathogenic nematodes in biological control: A meta–analytical synthesis and insights from trophic cascade theory. Journal of Nematology, 40(2), 61–72.

    PubMed Central  PubMed  Google Scholar 

  • Dillman, A. R., Chaston, J. M., Adams, B. J., Ciche, T. A., Goodrich-Blair, H., Stock, S. P., et al. (2012). An entomopathogenic nematode by any other name. PLoS Pathogens, 8, e1002527.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dillman, A. R., Guillermin, M. L., Lee, J. H., Kim, B., Sternberg, P. W., & Hallem, E. A. (2012). Olfaction shapes host–parasite interactions in parasitic nematodes. Proceedings of the National Academy of Sciences, 109(35), E2324–E2333.

    CAS  Google Scholar 

  • Dolinski, C., Choo, H. Y., & Duncan, L. W. (2012). Grower acceptance of entomopathogenic nematodes: Case studies on three continents. Journal of Nematology, 44, 226–235.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Dugaw, C. J., Hastings, A., Preisser, E. L., & Strong, D. R. (2004). Seasonally limited host supply generates microparasite population cycles. Bulletin of Mathematical Biology, 66, 583–594.

    PubMed  Google Scholar 

  • Duncan, L. W., Dunn, D. C., Bague, G., & Nguyen, K. (2003). Competition between entomopathogenic and free–living bactivorous nematodes in larvae of the weevil Diaprepes abbreviatus. Journal of Nematology, 35, 187–193.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan, L. W., Dunn, D. C., & McCoy, C. W. (1996). Spatial patterns of entomopathogenic nematodes in microcosms: Implications for laboratory experiments. Journal of Nematology, 28, 252–258.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan, L. W., Genta, J. G., Zellers, J., Fares, A., & Stansly, P. A. (2001). Efficacy of Steinernema riobrave against larvae of Diaprepes abbreviatus in Florida soils of different texture. Nematropica, 31, 130.

    Google Scholar 

  • Duncan, L. W., Graham, J. H., Dunn, D. C., Zellers, J., McCoy, C. W., & Nguyen, K. (2003). Incidence of endemic entomopathogenic nematodes following application of Steinernema riobrave for control of Diaprepes abbreviatus. Journal of Nematology, 35, 178–186.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan, L. W., Graham, J. H., Zellers, J., Bright, D., Dunn, D. C., El-Borai, F. E., et al. (2007). Food web responses to augmenting the entomopathogenic nematodes in bare and animal manure–mulched soil. Journal of Nematology, 39(2), 176–189.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan, L. W., & McCoy, C. W. (2001). Hydraulic lift increases herbivory by Diaprepes abbreviatus larvae and persistence of Steinernema riobrave in dry soil. Journal of Nematology, 33, 142–146.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Duncan, L. W., Stuart, R. J., El-Borai, F. E., Campos-Herrera, R., Pathak, E., Giurcanu, M., et al. (2013). Modifying orchard planting sites conserves entomopathogenic nematodes, reduces weevil herbivory and increases citrus tree growth, survival and fruit yield. Biological Control, 64, 26–36.

    Google Scholar 

  • Dutilleul, P., & Legendre, P. (1993). Spatial heterogeneity against heteroscedasticity: An ecological paradigm versus a statistical concept. Oikos, 66, 152–171.

    Google Scholar 

  • Efron, D., Nestel, D., & Glazer, I. (2001). Spatial analysis of entomopathogenic nematodes and insect hosts in a citrus grove in a semi–arid region in Israel. Environmental Entomology, 30, 254–261.

    Google Scholar 

  • Ehlers, R.–. U., Deseö, K. V., & Stackebrandt, E. (1991). Identification of Steinernema spp. (Nematoda) and their symbiotic bacteria Xenorhabdus spp. from Italian and German soils. Nematologia, 37, 360–366.

    Google Scholar 

  • Ekmen, Z. I., Hazir, S., Cakmak, I., Ozer, N., Karagoz, M., & Kaya, H. K. (2010). Potential negative effects on biological control by Sancassania polyphyllae (Acari: Acaridae) on an entomopathogenic nematode species. Biological Control, 54, 166–171.

    Google Scholar 

  • El-Borai, F. E., Campos-Herrera, R., Stuart, R. J., & Duncan, L. W. (2011). Substrate modulation, group effects and the behavioral responses of entomopathogenic nematodes to nematophagous fungi. Journal of Invertebrate Pathology, 106(3), 347–356.

    PubMed  Google Scholar 

  • El-Borai, F. E., Stuart, R. J., Campos-Herrera, R., Pathak, E., & Duncan, L. W. (2012). Entomopathogenic nematodes, root weevil larvae, and dynamic interactions among soil texture, plant growth, herbivory, and predation. Journal of Invertebrate Pathology, 109(1), 134–142.

    PubMed  Google Scholar 

  • Eng, M. S., Preisser, E. L., & Strong, D. R. (2005). Phoresy of the entomopathogenic nematode Heterorhabditis marelatus by a non–host organism, the isopod Porcellio scaber. Journal of Invertebrate Pathology, 88, 173–176.

    PubMed  Google Scholar 

  • Epsky, N. D., & Capinera, J. L. (1994). Influence of herbivore diet on the pathogenesis of Steinernema carpocapsae (Nematoda: Steinernematidae). Environmental Entomology, 23, 487–491.

    Google Scholar 

  • Epsky, N. D., Walter, D. E., & Capinera, J. L. (1988). Potential role of nematophagous microarthropods as biotic mortality factors of entomopathogenic nematodes (Rhabditid, Steinernematidae and Heterorhabditidae). Journal of Economic Entomology, 81, 821–825.

    Google Scholar 

  • Ettema, C. H. (1998). Soil nematode diversity: Species coexistence and ecosystem function. Journal of Nematology, 30, 159–169.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ettema, C. H., & Wardle, D. A. (2002). Spatial soil ecology. Trends in Ecology & Evolution, 17(4), 177–183.

    Google Scholar 

  • Fairbairn, J. P., Fenton, A., Norman, R., & Hudson, P. J. (2000). Re–assessing the infection strategies of the entomopathogenic nematode Steinernema feltiae (Rhabditidae; Steinernematidae). Parasitology, 121, 211–216.

    PubMed  Google Scholar 

  • Fenton, A., Magoolagan, L., Kennedy, Z., & Spencer, K. A. (2011). Parasite–induced warning coloration: A novel form of host manipulation. Animal Behaviour, 81(2), 417–422.

    Google Scholar 

  • Fenton, A., Norman, R., Fairbairn, J. P., & Hudson, P. J. (2000). Modeling the efficacy of entomopathogenic nematodes in the regulation of invertebrate pests in glasshouse crops. Journal of Applied Ecology, 37, 309–320.

    Google Scholar 

  • Fierer, N., Strickland, M. S., Liptzin, D., Bradford, M. A., & Cleveland, C. C. (2009). Global patterns in belowground communities. Ecology Letters, 12, 1–12.

    Google Scholar 

  • Forst, S., & Clarke, D. (2002). Bacteria–nematode symbiosis. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 57–77). New York: CABI.

    Google Scholar 

  • Garcia Del Pino, F., & Palomo, A. (1996). Natural occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in Spanish soils. Journal of Invertebrate Pathology, 68, 84–90.

    PubMed  Google Scholar 

  • Gassmann, A. J., Stock, S. P., Tabashnik, B. E., & Singer, M. S. (2010). Tritrophic effects of host plants on an herbivore–pathogen interaction. Annals of the Entomological Society of America, 103, 371–378.

    Google Scholar 

  • Gaugler, R., & Kaya, H. K. (1990). Entomopathogenic nematodes in biological control. Boca Raton, FL: CRC.

    Google Scholar 

  • Gaugler, R., Lewis, E. E., & Stuart, R. J. (1997). Ecology in the service of biological control: The case of entomopathogenic nematodes. Oecologia, 109, 483–489.

    Google Scholar 

  • Gaugler, R., Wang, Y., & Campbell, J. F. (1994). Aggressive and evasive behaviors in Popillia japonica (Coleoptera: Scarabaeidae) larvae: Defences against entomopathogenic nematode attack. Journal of Invertebrate Pathology, 64, 193–199.

    Google Scholar 

  • Ghally, S. E. (1995). Some factors affecting the activity and pathogenicity of Heterorhabditis heliothidis and Steinernema carpocapsae nematodes. Journal of the Egyptian Society of Parasitology, 25, 125–135.

    CAS  PubMed  Google Scholar 

  • Gilmore, S. K., & Potter, D. A. (1993). Potential role of collembola as biotic mortality agents for entomopathogenic nematodes. Pedobiologia, 37, 30–38.

    Google Scholar 

  • Gilmore, S. K., & Raffensperger, E. M. (1970). Foods ingested by Tomocerus spp. (Collembola, Entomobryidae), in relation to habitat. Pedobiologia, 10, 135–140.

    Google Scholar 

  • Glazer, I. (1997). Effects of infected insects on secondary invasion of steinernematid entomopathogenic nematodes. Parasitology, 114, 597–604.

    PubMed  Google Scholar 

  • Glazer, I. (2002). Survival biology. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 169–187). Wallingford, UK: CABI.

    Google Scholar 

  • Glazer, I., Gaugler, R., & Segal, D. (1991). Genetics of the nematode Heterorhabditis bacteriophora HP88 strain: The diversity of beneficial traits. Journal of Nematology, 23, 324–333.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Glazer, I., Kozodoi, E., Salame, L., & Nestel, D. (1996). Spatial and temporal occurrence of natural populations of Heterorhabditis spp. (Nematoda: Rhabditida) in a semiarid region. Biological Control, 6, 130–136.

    Google Scholar 

  • Grant, J. A., & Villani, M. G. (2003). Soil moisture effects on entomopathogenic nematodes. Environmental Entomology, 32, 80–87.

    Google Scholar 

  • Greenwood, C. M., Barbercheck, M. E., & Brownie, C. (2011). Short term response of soil microinvertebrates to application of entomopathogenic nematode–infected insects in two tillage systems. Pedobiologia, 54, 177–186.

    Google Scholar 

  • Grewal, P. S. (2012). Entomopathogenic nematodes as tools in integrated pest management. In D. P. Abrol & U. Shankar (Eds.), Integrated pest management: Principles and practice (pp. 162–236). Wallingford, UK: CABI.

    Google Scholar 

  • Grewal, P. S., Ehlers, R.–. U., & Shapiro-Ilan, D. I. (Eds.). (2005). Nematodes as biocontrol agents. Wallingford, UK: CABI.

    Google Scholar 

  • Grewal, P. S., Gaugler, R., & Shupe, C. (1996). Rapid changes in thermal sensitivity of entomopathogenic nematodes in response to selection at temperature extremes. Journal of Invertebrate Pathology, 68, 65–73.

    PubMed  Google Scholar 

  • Grewal, P. S., Gaugler, R., & Wang, Y. (1996). Enhanced cold tolerance of the entomopathogenic nematode Steinernema feltiae through genetic selection. Annals of Applied Biology, 129, 335–341.

    Google Scholar 

  • Grewal, P. S., Grewal, S. K., Malik, V. S., & Klein, M. G. (2002). Differences in susceptibility of introduced and native white grub species to entomopathogenic nematodes from various geographic localities. Biological Control, 24, 230–237.

    Google Scholar 

  • Grewal, P. S., Lewis, E. E., Gaugler, R., & Campbell, J. F. (1994). Host finding behavior as a predictor of foraging strategy of entomopathogenic nematodes. Parasitology, 108, 207–215.

    Google Scholar 

  • Grewal, P. S., Lewis, E. E., & Gaugler, R. (1997). Response of infective stage parasites (Nematoda: Steinernematidae) to volatile cues from infected hosts. Journal of Chemical Ecology, 23, 503–515.

    CAS  Google Scholar 

  • Grewal, P. S., Lewis, E. E., & Venkatachari, S. (1999). Allelopathy: A possible mechanism of suppression of plant–parasitic nematodes by entomopathogenic nematodes. Nematology, 1, 735–743.

    Google Scholar 

  • Grewal, P. S., Martin, W. R., Miller, R. W., & Lewis, E. E. (1997). Suppression of plant–parasitic nematode populations in turfgrass by application of entomopathogenic nematodes. Biocontrol Science and Technology, 7, 393–399.

    Google Scholar 

  • Grewal, P. S., Selvan, S., Lewis, E. E., & Gaugler, R. (1993). Male insect–parasitic nematodes: A colonizing sex. Experientia, 49, 605–608.

    Google Scholar 

  • Grewal, P. S., Selvan, S., & Gaugler, R. (1994). Thermal adaptation of entomopathogenic nematodes: Niche breadth for infection, establishment, and reproduction. Journal of Thermal Biology, 19, 245–253.

    Google Scholar 

  • Grewal, P. S., Wang, X., & Taylor, R. A. J. (2002). Dauer juvenile longevity and stress tolerance in natural populations of an entomopathogenic nematode: Is there a relationship? International Journal of Parasitology, 32, 717–725.

    CAS  PubMed  Google Scholar 

  • Grewal, S. K., Grewal, P. S., & Gaugler, R. (1995). Endophytes of fescue grasses enhance susceptibility of Popillia japonica larvae to an entomopathogenic nematode. Entomologia Experimentalis et Applicata, 74, 219–224.

    Google Scholar 

  • Griffin, C. T. (1993). Temperature responses of entomopathogenic nematodes: Implications for the success of biological control programmes. In R. Bedding, R. Akhurst, & H. K. Kaya (Eds.), Nematodes and the biological control of insects (pp. 115–126). East Melbourne, Australia: CSIRO.

    Google Scholar 

  • Griffin, C. T. (2012). Perspectives on the behavior of entomopathogenic nematodes from dispersal to reproduction: Traits contributing to nematode fitness and biocontrol efficacy. Journal of Nematology, 44(2), 177–184.

    PubMed Central  PubMed  Google Scholar 

  • Gulcu, B., Hazir, S., & Kaya, H. K. (2012). Scavenger deterrent factor (SDF) from symbiotic bacteria of entomopathogenic nematodes. Journal of Invertebrate Pathology, 110, 326–333.

    CAS  PubMed  Google Scholar 

  • Hanski, I. (1998). Metapopulation dynamics. Nature, 396, 41–49.

    CAS  Google Scholar 

  • Hanski, I. (1999a). Habitat connectivity, habitat continuity, and metapopulations in dynamic landscapes. Oikos, 87, 209–219.

    Google Scholar 

  • Hanski, I. (1999b). Metapopulation ecology. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Hanski, I. (2001). Spatially realistic theory of metapopulation ecology. Naturwissenschaften, 88, 372–381.

    CAS  PubMed  Google Scholar 

  • Hanski, I., & Simberloff, D. (1997). The metapopulation approach, its history, conceptual domain and application to conservation. In I. Hanski & M. E. Gilpin (Eds.), Metapopulation biology: Ecology, genetics, and evolution (pp. 5–26). London: Academic.

    Google Scholar 

  • Harrison, S., & Hastings, A. (1996). Genetic and evolutionary consequences of metapopulation structure. Trends in Ecology and Evolution, 11, 180–183.

    CAS  PubMed  Google Scholar 

  • Harrison, S., & Taylor, A. D. (1997). Empirical evidence for metapopulation dynamics. In I. Hanski & M. E. Gilpin (Eds.), Metapopulation biology: Ecology, genetics, and evolution (pp. 27–42). London: Academic.

    Google Scholar 

  • Hawksworth, D. L. (1991). The biodiversity of microorganisms and invertebrates: Its role in sustainable agriculture. Wallingford, UK: CABI.

    Google Scholar 

  • Hay, D. B., & Fenlon, J. S. (1997). A modified binomial model that describes the infection dynamics of the entomopathogenic nematode Steinernema feltiae (Steinernematidae; Nematoda). Parasitology, 111, 627–633.

    Google Scholar 

  • Hillel, P. M. (1982). Fundamentals of soil physics. New York: Academic.

    Google Scholar 

  • Hoitink, H. A. J., & Fahy, P. C. (1986). Basis for the control of soilborne plant pathogens with composts. Annual Review of Phytopathology, 24, 93–114.

    Google Scholar 

  • Hominick, W. M. (2002). Biogeography. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 115–143). Wallingford, UK: CABI.

    Google Scholar 

  • Hominick, W. M., & Briscoe, B. R. (1990a). Survey of 15 sites over 28 months for entomopathogenic nematodes (Rhabditida: Steinernematidae). Parasitology, 100, 289–294.

    Google Scholar 

  • Hominick, W. M., & Briscoe, B. R. (1990b). Occurrence of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) in British soils. Parasitology, 100, 295–302.

    Google Scholar 

  • Hominick, W. M., Hunt, D. J., Reid, A. P., Briscoe, B. R., & Bohan, D. A. (1999). Biosystematics, phylogeny and population genetics of entomopathogenic nematodes. In N. Boemare, P. Richardson, & F. Coudert (Eds.), COST 819. Taxonomy, phylogeny and gnotobiological studies of entomopathogenic nematodes bacterium complexes (pp. 45–53). Brussels, Belgium: European Commission.

    Google Scholar 

  • Hominick, W. M., & Reid, A. P. (1990). Perspectives on entomopathogenic nematology. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 327–345). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Hominick, W. M., Reid, A. P., Bohan, D. A., & Briscoe, B. R. (1996). Entomopathogenic nematodes: biodiversity, geographical distribution and the convention on biological diversity. Biocontrol Science and Technology, 6, 317–331.

    Google Scholar 

  • Hoy, C. W., Grewal, P. S., Lawrence, J. L., Jagdale, G., & Acosta, N. (2008). Canonical correspondence analysis demonstrates unique soil conditions for entomopathogenic nematode species compared with other free–living nematode species. Biological Control, 46, 371–379.

    CAS  Google Scholar 

  • Hsiao, W. F., & All, J. N. (1997). Effect of animal manure on the survival and pathogenicity of the entomopathogenic nematode, Steinernema carpocapsae. Zhonghua Kunchong, 17, 53–65.

    Google Scholar 

  • Hsiao, W. F., & All, J. N. (1998). Survey of the entomopathogenic nematode Steinernema carpocapsae (Rhabditida: Steinernematidae) natural populations and its dispersal in the field. Chinese Journal of Entomology, 18, 39–49.

    Google Scholar 

  • Hudson, W. G., & Nguyen, K. B. (1989). Effects of soil moisture, exposure time, nematode age, and nematode density on laboratory infection of Scapteriscus vicinus and Scapteriscus acletus (Orthoptera: Gryllotalpidae) by Neoaplectana sp. (Rhabditida: Steinernematidae). Environmental Entomology, 18, 719–722.

    Google Scholar 

  • Hummel, R., Walgenbach, J. F., Barbercheck, M. E., Kennedy, G. G., Hoyt, G. D., & Arellano, C. (2002). Effects of production practices on soil–borne entomopathogens in western North Carolina vegetable systems. Environmental Entomology, 31, 84–91.

    Google Scholar 

  • Ishibashi, N., & Kondo, E. (1986). Steinernema feltiae (DD–136) and S. glaseri: persistence in soil and bark compost and their influence on native nematodes. Journal of Nematology, 18, 310–316.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishibashi, N., & Kondo, E. (1987). Dynamics of the entomogenous nematode Steinernema feltiae applied to soil with and without nematicide treatment. Journal of Nematology, 19, 404–412.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ishibashi, N., & Kondo, E. (1990). Behaviour of infective juveniles. In R. Gaugler & K. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 139–150). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Jabbour, R., Crowder, D. W., Aultman, E. A., & Snyder, W. E. (2011). Entomopathogen biodiversity increases host mortality. Biological Control, 59, 277–283.

    Google Scholar 

  • Jagdale, G. B., & Gordon, R. (1998). Effect of propagation temperatures on temperature tolerances of entomopathogenic nematodes. Fundamental and Applied Nematology, 21, 177–183.

    Google Scholar 

  • Jagdale, G. B., Kamoun, S., & Grewal, P. S. (2009). Entomopathogenic nematodes induce components of systemic resistance in plants: Biochemical and molecular evidence. Biological Control, 51, 102–109.

    CAS  Google Scholar 

  • Jagdale, G. B., Saeb, A. T. M., Somasekhar, N., & Grewal, P. S. (2006). Genetic variation and relationships between isolates and species of the entompathogenic nematode genus Heterorhabditis deciphered through isozyme profiles. Journal of Parasitology, 92, 509–516.

    CAS  PubMed  Google Scholar 

  • Jagdale, G. B., Somasekhar, N., Grewal, P. S., & Klein, M. G. (2002). Suppression of plant–parasitic nematodes by application of live and dead infective juveniles of an entomopathogenic nematode, Steinernema carpocapsae, on boxwood (Buxus spp.). Biological Control, 24, 42–49.

    Google Scholar 

  • Jaworska, M. (1993). Investigations on the possibility of using entomophilic nematodes in reduction of Cephalcia abietis (L.) (Hym. Pamphiliidae) population. Polskie Pismo Entomologiczne, 62, 201–213.

    Google Scholar 

  • Karagoz, M., Gulcu, B., Cakmak, I., Kaya, H. K., & Hazir, S. (2007). Predation of entomopathogenic nematodes by Sancassania sp. (Acari: Acaridae). Experimental and Applied Acarology, 43, 85–95.

    PubMed  Google Scholar 

  • Kaya, H. K. (1990). Soil ecology. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 93–115). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Kaya, H. K. (2002). Natural enemies and other antagonists. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 189–203). Wallingford, UK: CABI.

    Google Scholar 

  • Kaya, H. K., Bedding, R. A., & Akhurst, R. J. (1993). An overview of insect–parasitic and entomopathogenic nematodes. In R. Bedding, R. Akhurst, & H. K. Kaya (Eds.), Nematodes and the biological control of insect pests (pp. 1–10). East Melbourne, Australia: CSIRO Publications.

    Google Scholar 

  • Kaya, H. K., & Brayton, M. A. (1978). Interaction between Neoaplectana carpocapsae and a granulosis virus of the armyworm Pseudaletia unipuncta. Journal of Nematology, 10, 350–354.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kaya, H. K., & Burlando, T. M. (1989). Development of Steinernema feltiae (Rhabditida: Steinernematidae) in diseased insect hosts. Journal of Invertebrate Pathology, 53, 164–168.

    Google Scholar 

  • Kaya, H. K., & Gaugler, R. (1993). Entomopathogenic nematodes. Annual Review of Entomology, 38, 181–206.

    Google Scholar 

  • Kaya, H. K., & Koppenhöfer, A. M. (1996). Effects of microbial and other antagonistic organisms and competition on entomopathogenic nematodes. Biocontrol Science and Technology, 6, 357–371.

    Google Scholar 

  • Khatri-Chhetri, H. B., Waeyenberge, L., Manandhar, H. K., & Moens, M. (2010). Natural occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Nepal. Journal of Invertebrate Pathology, 103(1), 74–78.

    PubMed  Google Scholar 

  • Kondo, E. (1989). Studies on the infectivity and propagation of entomogenous nematodes, Steinernema spp. (Rhabdititida: Steinernematidae) in the common cutworm, Spodoptera litura (Lepidoptera: Noctuidae). Bulletin of the Faculty of Agriculture. Saga University, 67, 1–87.

    Google Scholar 

  • Koppenhöfer, A. M., Baur, M. E., Stock, S. P., Choo, H. Y., Chinnasri, B., & Kaya, H. K. (1997). Survival of entomopathogenic nematodes within host cadavers in dry soil. Applied Soil Ecology, 6, 231–240.

    Google Scholar 

  • Koppenhöfer, A. M., Choo, H. Y., Kaya, H. K., Lee, D. W., & Gelernter, W. D. (1999). Increased field and greenhouse efficacy against scarab grubs with a combination of an entomopathogenic nematode and Bacillus thuringiensis. Biological Control, 14, 37–44.

    Google Scholar 

  • Koppenhöfer, A. M., & Kaya, H. K. (1996a). Coexistence of two steinernematid nematode species (Rhabditida: Steinernematidae) in the presence of two host species. Applied Soil Ecology, 4, 221–230.

    Google Scholar 

  • Koppenhöfer, A. M., & Kaya, H. K. (1996b). Coexistence of entomopathogenic nematode species (Steinernematidae and Heterorhabditidae) with different foraging behavior. Fundamental and Applied Nematology, 19, 175–183.

    Google Scholar 

  • Koppenhöfer, A. M., & Kaya, H. K. (1997). Additive and synergistic interaction between entomopathogenic nematodes and Bacillus thuringiensis for scarab grub control. Biological Control, 8, 131–137.

    Google Scholar 

  • Koppenhöfer, A. M., Kaya, H. K., Shanmugam, S., & Wood, G. L. (1995). Interspecific competition between steinernematid nematodes within an insect host. Journal of Invertebrate Pathology, 66, 99–103.

    Google Scholar 

  • Koppenhöfer, A. M., Kaya, H. K., & Taormino, S. (1995). Infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae) at different soil depths and moistures. Journal of Invertebrate Pathology, 65, 193–199.

    Google Scholar 

  • Kung, S. P., Gaugler, R., & Kaya, H. K. (1990a). Soil type and entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 55, 401–406.

    Google Scholar 

  • Kung, S. P., Gaugler, R., & Kaya, H. K. (1990b). Influence of soil pH and oxygen on persistence of Steinernema spp. Journal of Nematology, 22, 440–445.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kung, S. P., Gaugler, R., & Kaya, H. K. (1991). Effects of soil temperature, moisture, and relative humidity on entomopathogenic nematode persistence. Journal of Invertebrate Pathology, 57, 242–249.

    Google Scholar 

  • Kunkel, B., & Grewal, P. S. (2003). Endophytic infection in perennial ryegrass reduces the susceptibility of Agrotis ipsilon (Lepidoptera) to an entomopathogenic nematode. Entomologia Experimentalis et Applicata, 107, 95–104.

    Google Scholar 

  • Kunkel, B., Grewal, P. S., & Quigley, M. F. (2004). A mechanism of acquired resistance by the black cutworm Agrotis ipsilon (Lepidoptera) to an entomopathogenic nematode. Biological Control, 29, 100–108.

    Google Scholar 

  • Lacey, L. A., & Georgis, R. (2012). Entomopathogenic nematodes for control of insect pests above and below ground with comments on commercial production. Journal of Nematology, 44(2), 218–225.

    PubMed Central  PubMed  Google Scholar 

  • Lacey, L. A., Kaya, H. K., & Bettencourt, R. (1995). Dispersal of Steinernema glaseri (Nematoda: Steinernematidae) in adult Japanese beetles, Popillia japonica (Coleoptera: Scarabaeidae). Biocontrol Science and Technology, 5, 121–130.

    Google Scholar 

  • Lawrence, J. L., Hoy, C. W., & Grewal, P. S. (2006). Spatial and temporal distribution of endemic entomopathogenic nematodes in a heterogeneous vegetable production landscape. Biological Control, 37, 247–255.

    Google Scholar 

  • Letourneau, D. K. (1998). Conservation biological control: Lessons for conserving natural enemies. In P. Barbosa (Ed.), Conservation biological control (pp. 9–38). New York: Academic.

    Google Scholar 

  • Lewis, E. E. (2002). Behavioural ecology. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 205–223). New York: CABI.

    Google Scholar 

  • Lewis, E. E., Campbell, J. F., Griffin, C., Kaya, H., & Peters, A. (2006). Behavioral ecology of entomopathogenic nematodes. Biological Control, 38(1), 66–79.

    Google Scholar 

  • Lewis, E. E., Campbell, J. F., & Gaugler, R. (1998). A conservation approach to using entomopathogenic nematodes in turf and landscapes. In P. Barbosa (Ed.), Conservation biological control (pp. 235–254). New York: Academic.

    Google Scholar 

  • Lewis, E. E., & Gaugler, R. (1994). Entomopathogenic nematode (Rhabdita: Steinernematidae) sex ratio relates to foraging strategy. Journal of Invertebrate Pathology, 64, 238–242.

    Google Scholar 

  • Lewis, E. E., Gaugler, R., & Harrison, R. (1993). Response of cruiser and ambusher entomopathogenic nematodes (Steinernematidae) to host volatile cues. Canadian Journal of Zoology, 71(4), 765–769.

    Google Scholar 

  • Lewis, E. E., Grewal, P. S., & Sardanelli, S. (2001). Interactions between Steinernema feltiaeXenorhabdus bovienii insect pathogen complex and root–knot nematode Meloidogyne incognita. Biological Control, 21, 55–62.

    Google Scholar 

  • Mason, J. M., & Hominick, W. M. (1995). The effect of temperature on infection, development and reproduction of heterorhabditids. Journal of Helminthology, 69, 337–345.

    CAS  PubMed  Google Scholar 

  • Maynard Smith, J. (1989). Evolutionary genetics. New York: Oxford University Press.

    Google Scholar 

  • McCauley, D. E. (1991). Genetic consequences of local population extinction and recolonization. Trends in Ecology and Evolution, 6, 5–8.

    CAS  PubMed  Google Scholar 

  • McCauley, D. E. (1995). Effects of population dynamics on genetics in mosaic landscapes. In L. Hansson, L. Fahrig, & G. Merriam (Eds.), Mosaic landscapes and ecological processes (pp. 178–198). London: Chapman and Hall.

    Google Scholar 

  • Millar, L. C., & Barbercheck, M. E. (2001). Interaction between endemic and introduced entomopathogenic nematodes in conventional–till and no–till corn. Biological Control, 22, 235–245.

    Google Scholar 

  • Millar, L. C., & Barbercheck, M. E. (2002). Effects of tillage practices on entomopathogenic nematodes in a corn agroecosystem. Biological Control, 25, 1–11.

    Google Scholar 

  • Mráček, Z., Becvár, S., Kindlmann, P., & Jersakova, J. (2005). Habitat preference for entomopathogenic nematodes, their insect hosts and new faunistic records for the Czech Republic. Biological Control, 34, 27–37.

    Google Scholar 

  • Mráček, Z., Becvár, S., & Kindlmann, P. (1999). Survey of entomopathogenic nematodes from the families Steinernematidae and Heterorhabditidae (Nematoda: Rhabditida) in the Czech Republic. Folia Parasitologica, 46, 145–148.

    Google Scholar 

  • Mráček, Z., & Webster, J. M. (1993). Survey of Heterorhabditidae and Steinernematidae (Rhabditida: Nematoda) in western Canada. Journal of Nematology, 25, 710–717.

    PubMed Central  PubMed  Google Scholar 

  • Neher, D., & Barbercheck, M. E. (1999). Diversity and function of soil mesofauna. In W. Collins & C. O. Qualset (Eds.), The biodiversity of agroecosystems (pp. 27–47). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Nguyen, K. B., & Smart, G. C., Jr. (1995). Morphometrics of infective juveniles of Steinernema spp. and Heterorhabditis bacteriophora (Nematoda: Rhabditida). Journal of Nematology, 27, 206–212.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nickle, W. R. (1984). Plant and insect nematodes. New York: Marcel Decker.

    Google Scholar 

  • O’Callaghan, K. M., Zenner, A. N., Hartley, C. J., & Griffin, C. T. (2014). Interference competition in entomopathogenic nematodes: Male Steinernema kill members of their own and other species. International Journal for Parasitology, 44(13), 1009–1017.

    PubMed  Google Scholar 

  • Pathak, E., El-Borai, F. E., Campos-Herrera, R., Johnson, E. G., Stuart, R. J., Graham, J. H., et al. (2012). Use of real–time PCR to discriminate predatory and saprophagous behavior by nematophagous fungi. Fungal Biology, 116, 563–573.

    CAS  PubMed  Google Scholar 

  • Peters, A. (1996). The natural host range of Steinernema and Heterorhabditis spp. and their impact on insect populations. Biological Control Science and Technology, 6, 389–402.

    Google Scholar 

  • Peters, A., & Ehlers, R.–. U. (1994). Susceptibility of leather jackets (Tipula paludosa and Tipula oleracea; Tipulidae; Nematocera) to the entomopathogenic nematode Steinernema feltiae. Journal of Invertebrate Pathology, 63, 163–171.

    Google Scholar 

  • Pianka, E. P. (1999). Evolutionary ecology (6th ed.). New York: Harper and Row.

    Google Scholar 

  • Poinar, G. O. (1990). Biology and taxonomy of Steinernematidae and Heterorhabditidae. In R. Gaugler & H. K. Kaya (Eds.), Entomopathogenic nematodes in biological control (pp. 23–61). Boca Raton, FL: CRC Press.

    Google Scholar 

  • Polis, G. A., Anderson, W. B., & Holt, R. D. (1997). Toward an integration of landscape and food web ecology: The dynamics of spatially subsidized food webs. Annual Review of Ecology and Systematics, 28, 289–316.

    Google Scholar 

  • Portillo-Aguilar, C., Villani, M. G., Tauber, M. J., Tauber, C. A., & Nyrop, J. P. (1999). Entomopathogenic nematode (Rhabditida: Heterorhabditidae and Steinernematidae) response to soil texture and bulk density. Environmental Entomology, 28, 1021–1035.

    Google Scholar 

  • Preisser, E. L. (2003). Field evidence for a rapidly cascading underground food web. Ecology, 84, 869–874.

    Google Scholar 

  • Preisser, E. L., Dugaw, C. J., Dennis, B., & Strong, D. R. (2006). Plant facilitation of a belowground predator. Ecology, 87, 1116–1123.

    PubMed  Google Scholar 

  • Preisser, E. L., & Strong, D. R. (2004). Climate affects predator control of an herbivore outbreak. American Naturalist, 163, 754–762.

    PubMed  Google Scholar 

  • Půža, V., & Mráček, Z. (2009). Mixed infection of Galleria mellonella with two entomopathogenic nematodes (Nematoda: Rhabditida) species: Steinernema affine benefits from the presence of Steinernema kraussei. Journal of Invertebrate Pathology, 102, 40–43.

    PubMed  Google Scholar 

  • Půža, V., & Mráček, Z. (2010a). Does scavenging extend the host range of entomopathogenic nematodes (Nematoda: Steinernematidae)? Journal of Invertebrate Pathology, 104(1), 1–3.

    PubMed  Google Scholar 

  • Půža, V., & Mráček, Z. (2010b). Mechanisms of coexistence of two sympatric entomopathogenic nematodes, Steinernema affine and S. kraussei (Nematoda: Steinernematidae), in a central European oak woodland soil. Applied Soil Ecology, 45, 65–70.

    Google Scholar 

  • Pye, A. E., & Burman, M. (1981). Neoaplectana carpocapsae: Nematode accumulations on chemical and bacterial gradients. Experimental Parasitology, 51(1), 13–20.

    CAS  PubMed  Google Scholar 

  • Qiu, L., & Bedding, R. (1999). The relationship between energy metabolism and survival of the infective juveniles of Steinernema carpocapsae under unstressed–aerobic and anaerobic conditions. In I. Glazer, P. Richardson, M. E. Boemare, & F. Coudert (Eds.), Survival strategies of entomopathogenic nematodes (pp. 149–156). Brussels, Belgium: European Commission.

    Google Scholar 

  • Ram, K., Gruner, D. S., McLaughlin, J. P., Preisser, E. L., & Strong, D. R. (2008). Dynamics of a subterranean trophic cascade in space and time. Journal of Nematology, 40(2), 85–92.

    PubMed Central  PubMed  Google Scholar 

  • Ram, K., Preisser, E. L., Gruner, D. S., & Strong, D. R. (2008). Metapopulation dynamics override local limits on long–term parasite persistence. Ecology, 89(12), 3290–3297.

    PubMed  Google Scholar 

  • Rasmann, S., Kollner, T. G., Degenhardt, J., Hiltpold, I., Toepfer, S., Kuhlmann, U., et al. (2005). Recruitment of entomopathogenic nematodes by insect–damaged maize roots. Nature, 434, 732–737.

    CAS  PubMed  Google Scholar 

  • Reid, A. P., & Hominick, W. M. (1992). Restriction fragment length polymorphisms within the ribosomal DNA repeat unit of British entomopathogenic nematodes (Rhabditida: Steinernematidae). Parasitology, 105, 317–323.

    CAS  Google Scholar 

  • Richmond, D., Kunkel, B. A., Somasekhar, N., & Grewal, P. S. (2004). Top–down and bottom–up regulation of herbivores: Spodoptera frugiperda turns tables on endophyte–mediated plant defense and virulence of an entomopathogenic nematode. Ecological Entomology, 29, 353–360.

    Google Scholar 

  • Rolston, A. N., Griffin, C. T., & Downes, M. J. (2006). Emergence and dispersal patterns of two isolates of the entomopathogenic nematode Steinernema feltiae. Journal of Nematology, 38, 221–228.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rosa, J. S., & Simões, N. (2004). Evaluation of twenty–eight strains of Heterorhabditis bacteriophora isolated in Azores for biocontrol of the armyworm, Pseudaletia unipuncta (Lepidoptera: Noctuidae). Biological Control, 29(3), 409–417.

    Google Scholar 

  • Saeb, A. T. M., & Grewal, P. S. (2008). Genetic variation and sub–species structure of entomopathogenic nematode Heterorhabditis bacteriophora based on the major sperm protein gene. International Journal of Nematology, 17, 187–198.

    Google Scholar 

  • San-Blas, E., & Gowen, S. R. (2008). Facultative scavenging as a survival strategy of entomopathogenic nematodes. International Journal for Parasitology, 38(1), 85–91.

    PubMed  Google Scholar 

  • San-Blas, E., Gowen, S. R., & Pembroke, B. (2008). Scavenging or infection? Possible host choosing by entomopathogenic nematodes. Nematology, 10(2), 251–259.

    Google Scholar 

  • Sayre, R. M., & Walter, D. E. (1991). Factors affecting the efficacy of natural enemies of nematodes. Annual Review of Phytopathology, 29, 149–166.

    Google Scholar 

  • Selvan, S., Campbell, J. F., & Gaugler, R. (1993). Density–dependent effects on entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) within an insect host. Journal of Invertebrate Pathology, 62, 278–284.

    Google Scholar 

  • Selvan, S., Gaugler, R., & Grewal, P. S. (1993). Water content and fatty acid composition of infective juvenile entomopathogenic nematodes during storage. Journal of Parasitology, 79, 510–516.

    CAS  Google Scholar 

  • Selvan, S., Gaugler, R., & Lewis, E. E. (1993). Biochemical energy reserves of entomopathogenic nematodes. Journal of Parasitology, 79, 167–172.

    CAS  Google Scholar 

  • Shamseldean, M. M., & Abd-Elgawad, M. M. (1994). Natural occurrence of insect pathogenic nematodes (Rhabditida: Heterorhabditidae) in Egyptian soils. Afro–Asian Journal of Nematology, 4, 151–154.

    Google Scholar 

  • Shapiro, D. I., Berry, E. C., & Lewis, L. C. (1993). Interactions between nematodes and earthworms: Enhanced dispersal of Steinernema carpocapsae. Journal of Nematology, 25, 189–192.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro, D. I., Glazer, I., & Segal, D. (1997). Genetic improvement of heat tolerance in Heterorhabditis bacteriophora through hybridization. Biological Control, 8(2), 153–159.

    Google Scholar 

  • Shapiro, D. I., Lewis, L. C., Obrycki, J. J., & Abbas, M. (1999). Effects of fertilizers on suppression of black cutworm (Agrotis ipsilon) damage with Steinernema carpocapsae. Journal of Nematology, 31, 690–693.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro, D. I., McCoy, C. W., Fares, A., Obreza, T., & Dou, H. (2000). Effects of soil type on virulence and persistence of entomopathogenic nematodes in relation to control of Diaprepes abbreviatus. Environmental Entomology, 29, 1083–1087.

    Google Scholar 

  • Shapiro, D. I., Obrycki, J. J., Lewis, L. C., & Jackson, J. J. (1999). Effects of crop residue on the persistence of Steinernema carpocapsae. Journal of Nematology, 31, 517–519.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Campbell, J. F., Lewis, E. E., Elkon, J. M., & Kim-Shapiro, D. B. (2009). Directional movement of steinernematid nematodes in response to electrical current. Journal of Invertebrate Pathology, 100, 134–137.

    PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Gouge, D. H., & Koppenhöfer, A. M. (2002). Factors affecting commercial success: Case studies in cotton, turf and citrus. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 333–355). Wallingford, UK: CABI.

    Google Scholar 

  • Shapiro-Ilan, D. I., Lewis, E. E., Campbell, J. F., & Kim-Shapiro, D. B. (2012). Directional movement of entomopathogenic nematodes in response to electrical fields: Effects of species, magnitude of voltage, and infective juvenile age. Journal of Invertebrate Pathology, 109, 34–40.

    PubMed  Google Scholar 

  • Shapiro-Ilan, D. I., Lewis, E. E., & Schliekelman, P. (2014). Aggregative group behavior in insect parasitic nematode dispersal. International Journal for Parasitology, 44(1), 49–54.

    PubMed  Google Scholar 

  • Sharpe, W. E., & Drohan, J. R. (1999). The effects of acid deposition on Pennsylvania's forests. University Park, PA: Environmental Resources Research Institute.

    Google Scholar 

  • Sicard, M., Hinsinger, J., Le Brun, N., Pages, S., Boemare, N., & Moulia, C. (2006). Interspecific competition between entomopathogenic nematodes (Steinernema) is modified by their bacterial symbionts (Xenorhabdus). BMC Evolutionary Biology, 6(1), 68.

    PubMed Central  PubMed  Google Scholar 

  • Small, R. W. (1987). A review of the prey of predatory soil nematodes. Pedobiologia, 30, 179–206.

    Google Scholar 

  • Somasekhar, N., Grewal, P. S., DeNardo, E. A. B., & Stinner, B. R. (2002). Non–target effects of entomopathogenic nematodes on the soil nematode community. Journal of Applied Ecology, 39, 735–744.

    Google Scholar 

  • Somasekhar, N., Grewal, P. S., & Klein, M. G. (2002). Genetic variability in stress tolerance and fitness among natural populations of Steinernema carpocapsae. Biological Control, 23, 303–310.

    Google Scholar 

  • Spiridonov, S. E., Moens, M., & Wilson, M. J. (2007). Fine scale spatial distributions of two entomopathogenic nematodes in a grassland soil. Applied Soil Ecology, 37, 192–201.

    Google Scholar 

  • Spiridonov, S. E., & Voronov, D. A. (1995). Small scale distribution of Steinernema feltiae juveniles in cultivated soil. In C. T. Griffin, R. L. Gwynn, & J. P. Masson (Eds.), Ecology and transmission strategies of entomopathogenic nematodes (pp. 36–41). Luxembourg, Luxembourg: European Commission.

    Google Scholar 

  • Stinner, B. R., & House, G. J. (1990). Arthropods and other invertebrates in conservation–tillage agriculture. Annual Review of Entomology, 35, 299–318.

    Google Scholar 

  • Stinner, B. R., McCartney, D. A., & Van Doren, D. M., Jr. (1988). Soil and foliage arthropod communities in conventional, reduced and no–tillage corn (maize, Zea mays L.) systems: A comparison after 20 years of continuous cropping. Soil and Tillage Research, 11, 147–158.

    Google Scholar 

  • Stirling, G. R. (1991). Biological control of plant parasitic nematodes. Wallingford, UK: CABI.

    Google Scholar 

  • Stock, S. P., Strong, D., & Gardner, S. L. (1996). Identification of Heterorhabditis (Nematoda: Heterorhabditidae) from California with a new species isolated from the larvae of the ghost moth Hepialis californicus (Lepidoptera: Hepialidae) from the Bodega Bay Natural Reserve. Fundamental and Applied Nematology, 19, 585–595.

    Google Scholar 

  • Strong, D. R. (2002). Populations of entomopathogenic nematodes in foodwebs. In R. Gaugler (Ed.), Entomopathogenic nematology (pp. 225–240). Wallingford, UK: CABI.

    Google Scholar 

  • Strong, D. R., Kaya, H. K., Whipple, A. V., Child, A. L., Kraig, S., Bondonno, M., et al. (1996). Entomopathogenic nematodes: Natural enemies of root–feeding caterpillars on bush lupine. Oecologia, 108, 167–173.

    Google Scholar 

  • Strong, D. R., Maron, J. L., Connors, P. G., Whipple, A., Harrison, S., & Jeffries, R. L. (1995). High mortality, fluctuation in numbers, and heavy subterranean insect herbivory in bush lupine, Lupinus arboreus. Oecologia, 104, 85–92.

    Google Scholar 

  • Strong, D. R., Whipple, A. V., Child, A. L., & Dennis, B. (1999). Model selection for a subterranean trophic cascade: Root–feeding caterpillars and entomopathogenic nematodes. Ecology, 80, 2750–2761.

    Google Scholar 

  • Stuart, R. J., Abu Hatab, M., & Gaugler, R. (1998). Sex ratio and the infection process in entomopathogenic nematodes: Are males the colonizing sex? Journal of Invertebrate Pathology, 72, 288–295.

    PubMed  Google Scholar 

  • Stuart, R. J., Barbercheck, M. E., Grewal, P. S., Taylor, R. A. J., & Hoy, C. W. (2006). Population biology of entomopathogenic nematodes: Concepts, issues, and models. Biological Control, 38, 80–102.

    Google Scholar 

  • Stuart, R. J., El-Borai, F. E., & Duncan, L. W. (2008). From augmentation to conservation of entomopathogenic nematodes: Trophic cascades, habitat manipulation and enhanced biological control of Diaprepes abbreviatus root weevils in Florida citrus groves. Journal of Nematology, 40, 73–84.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stuart, R. J., & Gaugler, R. (1994). Patchiness in populations of entomopathogenic nematodes. Journal of Invertebrate Pathology, 64, 39–45.

    Google Scholar 

  • Stuart, R. J., & Gaugler, R. (1996). Genetic adaptation and founder effect in laboratory populations of the entomopathogenic nematode, Steinernema glaseri. Canadian Journal of Zoology, 74, 164–170.

    Google Scholar 

  • Stuart, R. J., Lewis, E. E., & Gaugler, R. (1996). Selection alters the pattern of emergence from the host cadaver in the entomopathogenic nematode, Steinernema glaseri. Parasitology, 113, 183–189.

    Google Scholar 

  • Stuart, R. J., Shapiro-Ilan, D. I., James, R. R., Nguyen, K. B., & McCoy, C. W. (2004). Virulence of new and mixed strains of the entomopathogenic nematode Steinernema riobrave to larvae of the citrus root weevil, Diaprepes abbreviatus. Biological Control, 24, 199–206.

    Google Scholar 

  • Sturhan, D. (1999). Prevalence and habitat specificity of entomopathogenic nematodes in Germany. In R. L. Gwynn, P. H. Smits, C. Griffin, R.–. U. Ehlers, N. E. Boemare, & J.–. P. Masson (Eds.), Entomopathogenic nematodes: Application and persistence of entomopathogenic nematodes (pp. 123–132). Brussels, Belgium: European Commission.

    Google Scholar 

  • Sturhan, D., & Lisková, M. (1999). Occurrence and distribution of entomopathogenic nematodes in the Slovak Republic. Nematology, 1, 273–277.

    Google Scholar 

  • Sugar, D. R., Murfin, K. E., Chaston, J. M., Andersen, A. W., Richards, G. R., de Léon, L., et al. (2012). Phenotypic variation and host interactions of Xenorhabdus bovienii SS‐2004, the entomopathogenic symbiont of Steinernema jollieti nematodes. Environmental Microbiology, 14(4), 924–939.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Taylor, R. A. J. (1999). Sampling entomopathogenic nematodes and measuring their spatial distribution. In R. L. Gwynn, P. H. Smits, C. Griffin, R.–. U. Ehlers, N. E. Boemare, & J.–. P. Masson (Eds.), Application and persistence of entomopathogenic nematodes (pp. 43–60). Brussels, Belgium: European Commission.

    Google Scholar 

  • Therese, M. O., & Bashey, F. (2012). Natal–host environmental effects on juvenile size, transmission success, and operational sex ratio in the entomopathogenic nematode Steinernema carpocapsae. The Journal of Parasitology, 98(6), 1095–1100.

    CAS  PubMed  Google Scholar 

  • Thurston, G. S., Ni, Y., & Kaya, H. K. (1994). Influence of salinity on survival and infectivity of entomopathogenic nematodes. Journal of Nematology, 26, 345–351.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timper, P., & Kaya, H. K. (1992). Impact of a nematode–parasitic fungus on the effectiveness of entomogenous nematodes. Journal of Nematology, 24, 1–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Timper, P., Kaya, H. K., & Gaugler, R. (1988). Dispersal of the entomogenous nematode Steinernema feltiae (Rhabditida: Steinernematidae) by infected adult insects. Environmental Entomology, 17, 546–550.

    Google Scholar 

  • Timper, P., Kaya, H. K., & Jaffee, B. A. (1991). Survival of entomogenous nematodes in soil infested with the nematode–parasitic fungus Hirsutella rhossiliensis (Deuteromycotina: Hyphomycetes). Biological Control, 1, 42–50.

    Google Scholar 

  • Torr, P., Heritage, S., & Wilson, M. J. (2004). Vibrations as a novel signal for host location by parasitic nematodes. International Journal for Parasitology, 34(9), 997–999.

    CAS  PubMed  Google Scholar 

  • Torr, P., Spiridonov, S. E., Heritage, S., & Wilson, M. J. (2007). Habitat associations of two entomopathogenic nematodes: A quantitative study using real‐time quantitative polymerase chain reactions. Journal of Animal Ecology, 76(2), 238–245.

    PubMed  Google Scholar 

  • Townsend, M. L., Johnson, D. T., & Steinkraus, D. C. (1998). Laboratory studies of the interactions of environmental conditions on the susceptibility of green June beetle (Coleoptera: Scarabaeidae) grubs to entomopathogenic nematodes. Journal of Entomological Science, 33, 40–48.

    Google Scholar 

  • Turlings, T., Hiltpold, I., & Rasmann, S. (2012). The importance of root produced volatiles as foraging cues for entomopathogenic nematodes. Plant and Soil, 358, 51–60.

    CAS  Google Scholar 

  • Ulug, D., Hazir, S., Kaya, H. K., & Lewis, E. (2014). Natural enemies of natural enemies: The potential top‐down impact of predators on entomopathogenic nematode populations. Ecological Entomology, 39(4), 462–469.

    Google Scholar 

  • Vandermeer, J., & Perfecto, I. (1995). Breakfast of biodiversity: The truth about rain forest destruction. Oakland, CA: Food First Books.

    Google Scholar 

  • Wall, D., & Moore, J. C. (1999). Interactions underground: Soil biodiversity, mutualism, and ecosystem processes. BioScience, 49, 109–117.

    Google Scholar 

  • Wallace, H. R. (1971). Abiotic influences in the soil environment. In B. M. Zuckerman, W. F. Mai, & R. A. Rohde (Eds.), Plant parasitic nematodes (Vol. 1, pp. 257–280). New York: Academic.

    Google Scholar 

  • Walter, D. E. (1987a). Trophic behavior of ‘mycophagous’ microarthropods. Ecology, 68, 226–229.

    Google Scholar 

  • Walter, D. E. (1987b). Life history, trophic behaviour and description of Gamasellodes vermivorax n. sp. (Mesostigmatoa: Ascidae), a predator of nematodes and arthropods in semiarid grassland soils. Canadian Journal of Zoology, 65, 1689–1695.

    Google Scholar 

  • Walter, D. E. (1988a). Predation and mycophagy by endostigmatid mites (Acariformes: Prostigmata). Experimental and Applied Acarology, 4, 159–166.

    Google Scholar 

  • Walter, D. E. (1988b). Nematophagy by soil arthropods from the shortgrass steppe, Chihauahuan Desert and Rocky Mountains of the central United States. Agriculture, Ecosystems & Environment, 24, 307–316.

    Google Scholar 

  • Walter, D. E., Hudgens, R. A., & Freckman, D. W. (1986). Consumption of nematodes by fungivorous mites, Tyrophagus spp. (Acarina: Astigmata: Acaridae). Oecologia, 70, 357–361.

    Google Scholar 

  • Walter, D. E., Hunt, H. W., & Elliot, E. T. (1987). The influence of prey type on the development and reproduction of some predatory soil mites. Pedobiologia, 30, 419–424.

    Google Scholar 

  • Walter, D. E., Moore, J. C., & Loring, S. J. (1989). Symphylella sp. (Symphyla: Scolopendrellidae) predators of arthropods and nematodes in grassland soils. Pedobiologia, 33, 113–116.

    Google Scholar 

  • Wang, H., Jung, Y. H., Son, D., & Choo, H. Y. (2013). High level of genetic diversity among Steinernema monticolum in Korea revealed by single–enzyme amplified fragment length polymorphism. Journal of Invertebrate Pathology, 113(2), 146–151.

    CAS  PubMed  Google Scholar 

  • Wang, X., & Grewal, P. S. (2002). Rapid genetic deterioration of environmental tolerance and reproductive potential of an entomopathogenic nematode during laboratory maintenance. Biological Control, 23, 71–78.

    CAS  Google Scholar 

  • Wang, Y., Gaugler, R., & Cui, L. (1994). Variation in immune response of Popillia japonica and Acheta domesticus to Heterorhabditis bacteriophora and Steinernema species. Journal of Nematology, 26, 11–18.

    CAS  PubMed Central  PubMed  Google Scholar 

  • Westerman, P. R. (1998). Penetration of the entomopathogenic nematode Heterorhabditis spp. into host insects at 9 and 20 degrees C. Journal of Invertebrate Pathology, 72, 197–205.

    PubMed  Google Scholar 

  • Wharton, D. A., & Surrey, M. R. (1994). Cold tolerance mechanisms of the infective larvae of the insect parasitic nematode, Heterorhabditis zealandica Poinar. Cryo Letters, 15, 353–360.

    Google Scholar 

  • Wiens, J. A., Schooley, R. L., & Weeks, R. D., Jr. (1997). Patchy landscapes and animal movements: Do beetles percolate? Oikos, 78, 257–264.

    Google Scholar 

  • Williams, C. D., Dillon, A. B., Girling, R. D., & Griffin, C. T. (2013). Organic soils promote the efficacy of entomopathogenic nematodes, with different foraging strategies, in the control of a major forest pest: A meta–analysis of field trial data. Biological Control, 65(3), 357–364.

    Google Scholar 

  • Wilson, M. J., Ehlers, R.-U., Wilson, M. J., & Glazer, I. (2012). Entomopathogenic nematode foraging strategies – is Steinernema carpocapsae really an ambush forager? Nematology, 14, 389–394.

    Google Scholar 

  • Wilson, M. J., Lewis, E. E., Yoder, F., & Gaugler, R. (2003). Application pattern and persistence of the entomopathogenic nematode Heterorhabditis bacteriophora. Biological Control, 26, 180–188.

    Google Scholar 

  • Windels, C. E. (1997). Altering community balance: Organic amendments, selection pressures, and biological control. In D. A. Andow, D. W. Ragsdale, & R. F. Nyvall (Eds.), Ecological interactions in biological control (pp. 282–300). Boulder, CO: Westview Press.

    Google Scholar 

  • With, K. A., Pavuk, D. M., Worchuck, J. L., Oates, R. K., & Fisher, J. L. (2002). Threshold effects of landscape structure on biological control in agroecosystems. Ecological Applications, 12, 52–65.

    Google Scholar 

  • Wootton, J. T. (1994). The nature and consequences of indirect effects in ecological communities. Annual Review of Ecology and Systematics, 25, 443–466.

    Google Scholar 

  • Yodder, C. A., Grewal, P. S., & Taylor, R. A. J. (2004). Rapid age–related changes in infection behavior of entomopathogenic nematodes. Journal of Parasitology, 90, 1229–1234.

    Google Scholar 

  • Zenner, A. N. R. L., O’Callaghan, K. M., & Griffin, C. T. (2014). Lethal fighting in nematodes is dependent on developmental pathway: Male–male fighting in the entomopathogenic nematode Steinernema longicaudum. PloS One, 9(2), e89385.

    PubMed Central  PubMed  Google Scholar 

  • Zervos, S., Johnson, S. C., & Webster, J. M. (1991). Effect of temperature and inoculum size on reproduction and development of Heterorhabditis heliothidis and Steinernema glaseri (Nematoda: Rhabditoidea) in Galleria mellonella. Canadian Journal of Zoology, 69, 1261–1264.

    Google Scholar 

  • Zhou, X., Kaya, H. K., Heungens, K., & Goodrich-Blair, H. (2002). Response of ants to a deterrent factor(s) produced by the symbiotic bacteria of entomopathogenic nematodes. Applied and Environmental Microbiology, 68, 6202–6209.

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robin J. Stuart .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Stuart, R.J., Barbercheck, M.E., Grewal, P.S. (2015). Entomopathogenic Nematodes in the Soil Environment: Distributions, Interactions and the Influence of Biotic and Abiotic Factors. In: Campos-Herrera, R. (eds) Nematode Pathogenesis of Insects and Other Pests. Sustainability in Plant and Crop Protection. Springer, Cham. https://doi.org/10.1007/978-3-319-18266-7_4

Download citation

Publish with us

Policies and ethics