Skip to main content

Learning Graph Model for Different Dimensions Image Matching

  • Conference paper
Graph-Based Representations in Pattern Recognition (GbRPR 2015)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 9069))

Abstract

Hyperspectral imagery has been widely used in real applications such as remote sensing, agriculture, surveillance, and geological analysis. Matching hyperspectral images is a challenge task due to the high dimensional nature of the data. The matching task becomes more difficult when images with different dimensions, such as a hyperspectral image and an RGB image, have to be matched. In this paper, we address this problem by investigating structured support vector machine to learn graph model for each type of image. The graph model incorporates both low-level features and stable correspondences within images. The inherent characteristics are depicted by using graph matching algorithm on weighted graph models. We validate the effectiveness of our method through experiments on matching hyperspectral images to RGB images, and hyperspectral images with different dimensions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Balas, C., Papadakis, V., Papadakis, N., Papadakis, A., Vazgiouraki, E., Themelis, G.: A novel hyper-spectral imaging apparatus for the non-destructive analysis of objects of artistic and historic value. Journal of Cultural Heritage 4, 330–337 (2003)

    Article  Google Scholar 

  2. Bay, H., Ess, A., Tuytelaars, T., Van Gool, L.: Speeded-up robust features (SURF). Computer Vision and Image Understanding 110(3), 346–359 (2008)

    Article  Google Scholar 

  3. Caetano, T.S., McAuley, J.J., Cheng, L., Le, Q.V., Smola, A.J.: Learning graph matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 31(6), 1048–1058 (2009)

    Article  Google Scholar 

  4. Cho, M., Alahari, K., Ponce, J.: Learning graphs to match. In: IEEE International Conference on Computer Vision, pp. 25–32. IEEE (2013)

    Google Scholar 

  5. Cho, M., Lee, J., Lee, K.M.: Reweighted random walks for graph matching. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010, Part V. LNCS, vol. 6315, pp. 492–505. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  6. Cour, T., Srinivasan, P., Shi, J.: Balanced graph matching. Advances in Neural Information Processing Systems 19, 313 (2007)

    Google Scholar 

  7. Diem, M., Lettner, M., Sablatnig, R.: Multi-spectral image acquisition and registration of ancient manuscripts 224, 129–136 (2007)

    Google Scholar 

  8. Dorado-Muñoz, L.P., Velez-Reyes, M., Mukherjee, A., Roysam, B.: A vector SIFT operator for interest point detection in hyperspectral imagery. In: 2nd Workshop on Hyperspectral Image and Signal Processing: Evolution in Remote Sensing, pp. 1–4. IEEE (2010)

    Google Scholar 

  9. Easton Jr., R.L., Knox, K.T., Christens-Barry, W.A.: Multispectral imaging of the Archimedes palimpsest. In: IEEE Applied Imagery Pattern Recognition Workshop, pp. 111–111. IEEE Computer Society (2003)

    Google Scholar 

  10. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Communications of the ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  11. Fontana, R., Gambino, M.C., Greco, M., Marras, L., Pampaloni, E.M., Pelagotti, A., Pezzati, L., Poggi, P.: 2D imaging and 3D sensing data acquisition and mutual registration for painting conservation. In: Electronic Imaging 2005, pp. 51–58. International Society for Optics and Photonics (2005)

    Google Scholar 

  12. Hare, S., Saffari, A., Torr, P.H.: Efficient online structured output learning for keypoint-based object tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1894–1901. IEEE (2012)

    Google Scholar 

  13. Leordeanu, M., Hebert, M.: A spectral technique for correspondence problems using pairwise constraints. In: IEEE International Conference on Computer Vision, vol. 2, pp. 1482–1489. IEEE (2005)

    Google Scholar 

  14. Leordeanu, M., Hebert, M., Sukthankar, R.: An integer projected fixed point method for graph matching and map inference. In: Advances in Neural Information Processing Systems, vol. 22, pp. 1114–1122 (2009)

    Google Scholar 

  15. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. International Journal of Computer Vision 60(2), 91–110 (2004)

    Article  Google Scholar 

  16. Mikolajczyk, K., Schmid, C.: Scale & affine invariant interest point detectors. International Journal of Computer Vision 60(1), 63–86 (2004)

    Article  Google Scholar 

  17. Mukherjee, A., Velez-Reyes, M., Roysam, B.: Interest points for hyperspectral image data. IEEE Transactions on Geoscience and Remote Sensing 47(3), 748–760 (2009)

    Article  Google Scholar 

  18. Pelillo, M.: A unifying framework for relational structure matching. In: Fourteenth International Conference on Pattern Recognition, vol. 2, pp. 1316–1319. IEEE (1998)

    Google Scholar 

  19. Saleem, S., Bais, A., Sablatnig, R.: A performance evaluation of SIFT and SURF for multispectral image matching. In: Campilho, A., Kamel, M. (eds.) ICIAR 2012, Part I. LNCS, vol. 7324, pp. 166–173. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  20. Saleem, S., Sablatnig, R.: A modified SIFT descriptor for image matching under spectral variations. In: Petrosino, A. (ed.) ICIAP 2013, Part I. LNCS, vol. 8156, pp. 652–661. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  21. Tsochantaridis, I., Joachims, T., Hofmann, T., Altun, Y.: Large margin methods for structured and interdependent output variables. Journal of Machine Learning Research, 1453–1484 (2005)

    Google Scholar 

  22. Yasuma, F., Mitsunaga, T., Iso, D., Nayar, S.K.: Generalized assorted pixel camera: postcapture control of resolution, dynamic range, and spectrum. IEEE Transactions on Image Processing 19(9), 2241–2253 (2010)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haoyi Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Zhou, H., Bai, X., Zhou, J., Yang, H., Liu, Y. (2015). Learning Graph Model for Different Dimensions Image Matching. In: Liu, CL., Luo, B., Kropatsch, W., Cheng, J. (eds) Graph-Based Representations in Pattern Recognition. GbRPR 2015. Lecture Notes in Computer Science(), vol 9069. Springer, Cham. https://doi.org/10.1007/978-3-319-18224-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-18224-7_16

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-18223-0

  • Online ISBN: 978-3-319-18224-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics