Skip to main content

H2S and Blood Vessels: An Overview

  • Chapter

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 230))

Abstract

The physiological and biomedical importance of hydrogen sulfide (H2S) has been fully recognized in the cardiovascular system as well as in the rest of the body. In blood vessels, cystathionine γ-lyase (CSE) is a major H2S-producing enzyme expressed in both smooth muscle and endothelium as well as periadventitial adipose tissues. Regulation of H2S production from CSE is controlled by a complex integration of transcriptional, posttranscriptional, and posttranslational mechanisms in blood vessels. In smooth muscle cells, H2S regulates cell apoptosis, phenotypic switch, relaxation and contraction, and calcification. In endothelial cells, H2S controls cell proliferation, cellular senescence, oxidative stress, inflammation, etc. H2S interacts with nitric oxide and acts as an endothelium-derived relaxing factor and an endothelium-derived hyperpolarizing factor. H2S generated from periadventitial adipose tissues acts as an adipocyte-derived relaxing factor and modulates the vascular tone. Extensive evidence has demonstrated the beneficial roles of the CSE/H2S system in various blood vessel diseases, such as hypertension, atherosclerosis, and aortic aneurysm. The important roles signaling in the cardiovascular system merit further intensive and extensive investigation. H2S-releasing agents and CSE activators will find their great applications in the prevention and treatment of blood vessel-related disorders.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ali MY, Ping CY, Mok YY, Ling L, Whiteman M, Bhatia M, Moore PK (2006) Regulation of vascular nitric oxide in vitro and in vivo; a new role for endogenous hydrogen sulphide? Br J Pharmacol 149:625–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Altaany Z, Yang G, Wang R (2013) Crosstalk between hydrogen sulfide and nitric oxide in endothelial cells. J Cell Mol Med 17:879–888

    CAS  PubMed Central  PubMed  Google Scholar 

  • Al Taany Z, Ju Y, Yang G, Wang R (2014) The coordination of S-sulfhydration, S-nitrosylation, and phosphorylation of endothelial nitric oxide synthase by hydrogen sulfide. Sci Signal 7:ra87

    Google Scholar 

  • Baragatti B, Ciofini E, Sodini D, Luin S, Scebba F, Coceani F (2013) Hydrogen sulfide in the mouse ductus arteriosus: a naturally occurring relaxant with potential EDHF function. Am J Physiol Heart Circ Physiol 304:H927–H934

    CAS  PubMed  Google Scholar 

  • Baskar R, Sparatore A, Del Soldato P, Moore PK (2008) Effect of S-diclofenac, a novel hydrogen sulfide releasing derivative inhibit rat vascular smooth muscle cell proliferation. Eur J Pharmacol 594:1–8

    CAS  PubMed  Google Scholar 

  • Bełtowski J (2013) Endogenous hydrogen sulfide in perivascular adipose tissue: role in the regulation of vascular tone in physiology and pathology. Can J Physiol Pharmacol 91:889–898

    PubMed  Google Scholar 

  • Bucci M, Mirone V, Di Lorenzo A, Vellecco V, Roviezzo F, Brancaleone V, Ciro I, Cirino G (2009) Hydrogen sulfide is involved in testosterone vascular effect. Eur Urol 5:378–384

    Google Scholar 

  • Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Pyriochou A, Roussos C, Roviezzo F, Brancaleone V, Cirino G (2010) Hydrogen sulfide is an endogenous inhibitor of phosphodiesterase activity. Arterioscler Thromb Vasc Biol 30:1998–2004

    CAS  PubMed  Google Scholar 

  • Bucci M, Papapetropoulos A, Vellecco V, Zhou Z, Zaid A, Giannogonas P, Cantalupo A, Dhayade S, Karalis KP, Wang R, Feil R, Cirino G (2012) cGMP-dependent protein kinase contributes to hydrogen sulfide-stimulated vasorelaxation. PLoS ONE 7:e53319

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chai Q, Lu T, Wang XL, Lee HC (2014) Hydrogen sulfide impairs shear stress-induced vasodilation in mouse coronary arteries. Pflugers Arch 467(2):329–340 [Epub ahead of print]

    PubMed  Google Scholar 

  • Chen YH, Wu R, Geng B, Qi YF, Wang PP, Yao WZ, Tang CS (2009) Endogenous hydrogen sulfide reduces airway inflammation and remodeling in a rat model of asthma. Cytokine 45:117–123

    CAS  PubMed  Google Scholar 

  • Cheng Y, Ndisang JF, Tang G, Cao K, Wang R (2004) Hydrogen sulfide-induced relaxation of resistance mesenteric artery beds of rats. Am J Physiol Heart Circ Physiol 287:H2316–H2323

    CAS  PubMed  Google Scholar 

  • Choi KS, Song H, Kim EH, Choi JH, Hong H, Han YM, Hahm KB (2012) Inhibition of hydrogen sulfide-induced angiogenesis and inflammation in vascular endothelial cells: potential mechanisms of gastric cancer prevention by korean red ginseng. J Ginseng Res 36:135–145

    PubMed Central  PubMed  Google Scholar 

  • Coletta C, Papapetropoulos A, Erdelyi K, Olah G, Módis K, Panopoulos P, Asimakopoulou A, Gerö D, Sharina I, Martin E, Szabo C (2012) Hydrogen sulfide and nitric oxide are mutually dependent in the regulation of angiogenesis and endothelium-dependent vasorelaxation. Proc Natl Acad Sci USA 109:9161–9166

    CAS  PubMed Central  PubMed  Google Scholar 

  • Du J, Yan H, Tang C (2003) Endogenous H2S is involved in the development of spontaneous hypertension. Beijing Da Xue Xue Bao 35:102

    PubMed  Google Scholar 

  • Du J, Hui Y, Cheung Y, Bin G, Jiang H, Chen X, Tang C (2004) The possible role of hydrogen sulfide as a smooth muscle cell proliferation inhibitor in rat cultured cells. Heart Vessels 19:75–80

    PubMed  Google Scholar 

  • Fang L, Zhao J, Chen Y, Ma T, Xu G, Tang C, Liu X, Geng B (2009) Hydrogen sulfide derived from periadventitial adipose tissue is a vasodilator. J Hypertens 27:2174–2185

    CAS  PubMed  Google Scholar 

  • Fitzgerald R, DeSantiago B, Lee DY, Yang G, Kim JY, Foster DB, Chan-Li Y, Horton MR, Panettieri RA, Wang R, An SS (2014) H2S relaxes isolated human airway smooth muscle cells via the sarcolemmal K(ATP) channel. Biochem Biophys Res Commun 446:393–398

    CAS  PubMed Central  PubMed  Google Scholar 

  • Fu X, Zhou K, Gao Q, Zheng S, Chen H, Li P, Zhang Y, Suo K, Simoncini T, Wang T (2013) 17β-estradiol attenuates atherosclerosis development: the possible role of hydrogen sulfide. Int J Cardiol 167:1061–1063

    PubMed  Google Scholar 

  • Gollasch M (2012) Vasodilator signals from perivascular adipose tissue. Br J Pharmacol 165:633–642, Review

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guan Q, Zhang Y, Yu C, Liu Y, Gao L, Zhao J (2012) Hydrogen sulfide protects against high-glucose-induced apoptosis in endothelial cells. J Cardiovasc Pharmacol 59:188–193

    CAS  PubMed  Google Scholar 

  • Han J, Chen ZW, He GW (2013) Acetylcholine- and sodium hydrosulfide-induced endothelium-dependent relaxation and hyperpolarization in cerebral vessels of global cerebral ischemia-reperfusion rat. J Pharmacol Sci 121:318–326

    CAS  PubMed  Google Scholar 

  • Hassan MI, Boosen M, Schaefer L, Kozlowska J, Eisel F, von Knethen A, Beck M, Hemeida RA, El-Moselhy MA, Hamada FM, Beck KF, Pfeilschifter J (2012) Platelet-derived growth factor-BB induces cystathionine γ-lyase expression in rat mesangial cells via a redox-dependent mechanism. Br J Pharmacol 166:2231–2242

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hoefer IE (2007) Something is rotten in the state of angiogenesis – H2S as gaseous stimulator of angiogenesis. Cardiovasc Res 76:1–2

    CAS  PubMed  Google Scholar 

  • Hosoki R, Matsuki N, Kimura H (1997) The possible role of hydrogen sulfide as an endogenous smooth muscle relaxant in synergy with nitric oxide. Biochem Biophys Res Commun 237:527–531

    CAS  PubMed  Google Scholar 

  • Itou T, Maldonado N, Yamada I, Goettsch C, Matsumoto J, Aikawa M, Singh S, Aikawa E (2014) Cystathionine γ-lyase accelerates osteoclast differentiation: identification of a novel regulator of osteoclastogenesis by proteomic analysis. Arterioscler Thromb Vasc Biol 34:626–634

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jamroz-Wiśniewska A, Gertler A, Solomon G, Wood ME, Whiteman M, Bełtowski J (2014) Leptin-induced endothelium-dependent vasorelaxation of peripheral arteries in lean and obese rats: role of nitric oxide and hydrogen sulfide. PLoS One 9:e86744

    PubMed Central  PubMed  Google Scholar 

  • Jiang B, Tang G, Cao K, Wu L, Wang R (2010) Molecular mechanism for H(2)S-induced activation of K(ATP) channels. Antioxid Redox Signal 12:1167–1178

    CAS  PubMed  Google Scholar 

  • Jin HF, Sun Y, Liang JM, Tang CS, DU JB (2008) Hypotensive effects of hydrogen sulfide via attenuating vascular inflammation in spontaneously hypertensive rats. Zhonghua Xin Xue Guan Bing Za Zhi 36:541–545

    CAS  PubMed  Google Scholar 

  • Kida M, Sugiyama T, Yoshimoto T, Ogawa Y (2013) Hydrogen sulfide increases nitric oxide production with calcium-dependent activation of endothelial nitric oxide synthase in endothelial cells. Eur J Pharm Sci 48:211–215

    CAS  PubMed  Google Scholar 

  • Kiss L, Deitch EA, Szabó C (2008) Hydrogen sulfide decreases adenosine triphosphate levels in aortic rings and leads to vasorelaxation via metabolic inhibition. Life Sci 83:589–594

    CAS  PubMed Central  PubMed  Google Scholar 

  • Köhn C, Dubrovska G, Huang Y, Gollasch M (2012a) Hydrogen sulfide: potent regulator of vascular tone and stimulator of angiogenesis. Int J Biomed Sci 8:81–86

    PubMed Central  PubMed  Google Scholar 

  • Köhn C, Schleifenbaum J, Szijártó IA, Markó L, Dubrovska G, Huang Y, Gollasch M (2012b) Differential effects of cystathionine-γ-lyase-dependent vasodilatory H2S in periadventitial vasoregulation of rat and mouse aortas. PLoS ONE 7:e41951

    PubMed Central  PubMed  Google Scholar 

  • Kubo S, Kajiwara M, Kawabata A (2007) Dual modulation of the tension of isolated gastric artery and gastric mucosal circulation by hydrogen sulfide in rats. Inflammopharmacology 15:288–292

    CAS  PubMed  Google Scholar 

  • Lee SW, Cheng Y, Moore PK, Bian JS (2007) Hydrogen sulphide regulates intracellular pH in vascular smooth muscle cells. Biochem Biophys Res Commun 358:1142–1147

    CAS  PubMed  Google Scholar 

  • Leffler CW, Parfenova H, Basuroy S, Jaggar JH, Umstot ES, Fedinec AL (2011) Hydrogen sulfide and cerebral microvascular tone in newborn pigs. Am J Physiol Heart Circ Physiol 300:H440–H447

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li L, Liu D, Bu D, Chen S, Wu J, Tang C, Du J, Jin H (2013) Brg1-dependent epigenetic control of vascular smooth muscle cell proliferation by hydrogen sulfide. Biochim Biophys Acta 1833:1347–1355

    CAS  PubMed  Google Scholar 

  • Li L, Whiteman M, Guan YY, Neo KL, Cheng Y, Lee SW, Zhao Y, Baskar R, Tan CH, Moore PK (2008a) Characterization of a novel, water-soluble hydrogen sulfide-releasing molecule (GYY4137): new insights into the biology of hydrogen sulfide. Circulation 117:2351–2360

    CAS  PubMed  Google Scholar 

  • Li X, Du J, Jin H, Geng B, Tang C (2008b) Sodium hydrosulfide alleviates pulmonary artery collagen remodeling in rats with high pulmonary blood flow. Heart Vessels 23:409–419

    PubMed  Google Scholar 

  • Li W, Jin HF, Liu D, Sun JH, Jian PJ, Li XH, Tang CS, DU JB (2009) Hydrogen sulfide induces apoptosis of pulmonary artery smooth muscle cell in rats with pulmonary hypertension induced by high pulmonary blood flow. Chin Med J (Engl) 122:3032–3038

    CAS  Google Scholar 

  • Li H, Mani S, Cao W, Yang G, Lai C, Wu L, Wang R (2012) Interaction of hydrogen sulfide and estrogen on the proliferation of vascular smooth muscle cells. PLoS ONE 7:e41614

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li Y, Liu G, Cai D, Pan B, Lin Y, Li X, Li S, Zhu L, Liao X, Wang H (2014) H2S inhibition of chemical hypoxia-induced proliferation of HPASMCs is mediated by the upregulation of COX-2/PGI2. Int J Mol Med 33:359–366

    CAS  PubMed  Google Scholar 

  • Lim JJ, Liu YH, Khin ES, Bian JS (2008) Vasoconstrictive effect of hydrogen sulfide involves downregulation of cAMP in vascular smooth muscle cells. Am J Physiol Cell Physiol 295:C1261–C1270

    CAS  PubMed  Google Scholar 

  • Liu X, Pan L, Zhuo Y, Gong Q, Rose P, Zhu Y (2010) Hypoxia-inducible factor-1α is involved in the pro-angiogenic effect of hydrogen sulfide under hypoxic stress. Biol Pharm Bull 33:1550–1554

    CAS  PubMed  Google Scholar 

  • Liu YH, Yan CD, Bian JS (2011) Hydrogen sulfide: a novel signaling molecule in the vascular system. J Cardiovasc Pharmacol 58:560–569

    CAS  PubMed  Google Scholar 

  • Liu Z, Han Y, Li L, Lu H, Meng G, Li X, Shirhan M, Peh MT, Xie L, Zhou S, Wang X, Chen Q, Dai W, Tan CH, Pan S, Moore PK, Ji Y (2013) The hydrogen sulfide donor, GYY4137, exhibits antiatherosclerotic activity in high fat fed apolipoprotein E(−/−) mice. Br J Pharmacol 169:1795–1809

    CAS  PubMed Central  PubMed  Google Scholar 

  • Liu F, Chen DD, Sun X, Xie HH, Yuan H, Jia WP, Chen AF (2014) Hydrogen sulfide improves wound healing via restoration of endothelial progenitor cell functions and activation of angiopoietin-1 in type 2 diabetes. Diabetes 63:1763–1778

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma B, Liang G, Zhang F, Chen Y, Zhang H (2012) Effect of hydrogen sulfide on restenosis of peripheral arteries after angioplasty. Mol Med Rep 5:1497–1502

    CAS  PubMed  Google Scholar 

  • Mani S, Li H, Untereiner A, Wu L, Yang G, Austin RC, Dickhout JG, Lhoták Š, Meng QH, Wang R (2013) Decreased endogenous production of hydrogen sulfide accelerates atherosclerosis. Circulation 127:2523–2534

    CAS  PubMed  Google Scholar 

  • Mani S, Untereiner A, Wu L, Wang R (2014) Hydrogen sulfide and the pathogenesis of atherosclerosis. Antioxid Redox Signal 20:805–817

    CAS  PubMed  Google Scholar 

  • Martelli A, Testai L, Breschi MC, Lawson K, McKay NG, Miceli F, Taglialatela M, Calderone V (2013) Vasorelaxation by hydrogen sulphide involves activation of Kv7 potassium channels. Pharmacol Res 70:27–34

    CAS  PubMed  Google Scholar 

  • McCarty MF, DiNicolantonio JJ (2014) The molecular biology and pathophysiology of vascular calcification. Postgrad Med 126:54–64

    PubMed  Google Scholar 

  • Meng QH, Yang G, Yang W, Jiang B, Wu L, Wang R (2007) Protective effect of hydrogen sulphide on balloon injury-induced neointima hyperplasia in rat carotid arteries. Am J Pathol 170:1406–1414

    CAS  PubMed Central  PubMed  Google Scholar 

  • Monti M, Terzuoli E, Ziche M, Morbidelli L (2013) The sulphydryl containing ACE inhibitor Zofenoprilat protects coronary endothelium from Doxorubicin-induced apoptosis. Pharmacol Res 76:171–181

    CAS  PubMed  Google Scholar 

  • Muellner MK, Schreier SM, Laggner H, Hermann M, Esterbauer H, Exner M, Gmeiner BM, Kapiotis S (2009) Hydrogen sulfide destroys lipid hydroperoxides in oxidized LDL. Biochem J 420:277–281

    CAS  PubMed  Google Scholar 

  • Mustafa AK, Sikka G, Gazi SK, Steppan J, Jung SM, Bhunia AK, Barodka VM, Gazi FK, Barrow RK, Wang R, Amzel LM, Berkowitz DE, Snyder SH (2011) Hydrogen sulfide as endothelium-derived hyperpolarizing factor sulfhydrates potassium channels. Circ Res 109:1259–1268

    CAS  PubMed Central  PubMed  Google Scholar 

  • Muzaffar S, Jeremy JY, Sparatore A, Del Soldato P, Angelini GD, Shukla N (2008) H2S-donating sildenafil (ACS6) inhibits superoxide formation and gp91phox expression in arterial endothelial cells: role of protein kinases A and G. Br J Pharmacol 155:984–994

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olson KR, Whitfield NL, Bearden SE, St LJ, Nilson E, Gao Y, Madden JA (2010) Hypoxic pulmonary vasodilation: a paradigm shift with a hydrogen sulfide mechanism. Am J Physiol Regul Integr Comp Physiol 298:R51–R60

    CAS  PubMed Central  PubMed  Google Scholar 

  • Owens GK (2007) Molecular control of vascular smooth muscle cell differentiation and phenotypic plasticity. Novartis Found Symp 283:174–191

    CAS  PubMed  Google Scholar 

  • Pan LL, Liu XH, Gong QH, Wu D, Zhu YZ (2011) Hydrogen sulfide attenuated tumor necrosis factor-α-induced inflammatory signaling and dysfunction in vascular endothelial cells. PLoS ONE 6:e19766

    CAS  PubMed Central  PubMed  Google Scholar 

  • Pan LL, Liu XH, Zheng HM, Yang HB, Gong QH, Zhu YZ (2012) S-propargyl-cysteine, a novel hydrogen sulfide-modulated agent, attenuated tumor necrosis factor-α-induced inflammatory signaling and dysfunction in endothelial cells. Int J Cardiol 155:327–332

    PubMed  Google Scholar 

  • Papapetropoulosa A, Pyriochoua A, Altaany Z, Yang G, Maraziotia A, Jeschkec MG, Branskic LK, Herndonc DN, Wang R, Szabo C (2009) Hydrogen sulfide is an endogenous stimulator of angiogenesis. Proc Natl Acad Sci USA 106:21972–21977

    Google Scholar 

  • Patel P, Vatish M, Heptinstall J, Wang R, Carson RJ (2009) The endogenous production of hydrogen sulphide in intrauterine tissues. Reprod Biol Endocrinol 7:10

    PubMed Central  PubMed  Google Scholar 

  • Perna AF, Sepe I, Lanza D, Capasso R, Zappavigna S, Capasso G, Caraglia M, Ingrosso D (2013) Hydrogen sulfide reduces cell adhesion and relevant inflammatory triggering by preventing ADAM17-dependent TNF-α activation. J Cell Biochem 114:1536–1548

    CAS  PubMed  Google Scholar 

  • Polhemus DJ, Lefer DJ (2014) Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 114:730–737

    CAS  PubMed Central  PubMed  Google Scholar 

  • Predmore BL, Alendy MJ, Ahmed KI, Leeuwenburgh C, Julian D (2010) The hydrogen sulfide signaling system: changes during aging and the benefits of caloric restriction. Age (Dordr) 32:467–481

    CAS  Google Scholar 

  • Predmore BL, Julian D, Cardounel AJ (2011) Hydrogen sulfide increases nitric oxide production from endothelial cells by an akt-dependent mechanism. Front Physiol 2:104

    PubMed Central  PubMed  Google Scholar 

  • Pupo E, Pla AF, Avanzato D, Moccia F, Cruz JE, Tanzi F, Merlino A, Mancardi D, Munaron L (2011) Hydrogen sulfide promotes calcium signals and migration in tumor-derived endothelial cells. Free Radic Biol Med 51:1765–1773

    CAS  PubMed  Google Scholar 

  • Qabazard B, Li L, Gruber J, Peh MT, Ng LF, Kumar SD, Rose P, Tan CH, Dymock BW, Wei F, Swain SC, Halliwell B, Stürzenbaum SR, Moore PK (2014) Hydrogen sulfide is an endogenous regulator of aging in caenorhabditis elegans. Antioxid Redox Signal 20:2621–2630

    CAS  PubMed Central  PubMed  Google Scholar 

  • Qi HN, Cui J, Liu L, Lu FF, Song CJ, Shi Y, Yan CD (2012) Exogenous hydrogen sulfide delays the senescence of human umbilical vein endothelial cells by lessening oxidative stress. Sheng Li Xue Bao 64:425–432

    CAS  PubMed  Google Scholar 

  • Qiao W, Chaoshu T, Hongfang J, Junbao D (2010) Endogenous hydrogen sulfide is involved in the pathogenesis of atherosclerosis. Biochem Biophys Res Commun 396:182–186

    PubMed  Google Scholar 

  • Renga B, Mencarelli A, Migliorati M, Distrutti E, Fiorucci S (2009) Bile-acid-activated farnesoid X receptor regulates hydrogen sulfide production and hepatic microcirculation. World J Gastroenterol 15:2097–2108

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rossoni G, Manfredi B, Tazzari V, Sparatore A, Trivulzio S, Del Soldato P, Berti F (2010) Activity of a new hydrogen sulfide-releasing aspirin (ACS14) on pathological cardiovascular alterations induced by glutathione depletion in rats. Eur J Pharmacol 648:139–145

    CAS  PubMed  Google Scholar 

  • Sen N, Paul BD, Gadalla MM, Mustafa AK, Sen T, Xu R, Kim S, Snyder SH (2012a) Hydrogen sulfide-linked sulfhydration of NF-κB mediates its antiapoptotic actions. Mol Cell 45:13–24

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sen U, Sathnur PB, Kundu S, Givvimani S, Coley DM, Mishra PK, Qipshidze N, Tyagi N, Metreveli N, Tyagi SC (2012b) Increased endogenous H2S generation by CBS, CSE, and 3MST gene therapy improves ex vivo renovascular relaxation in hyperhomocysteinemia. Am J Physiol Cell Physiol 303:C41–C51

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shibuya N, Mikami Y, Kimura Y, Nagahara N, Kimura H (2009) Vascular endothelium expresses 3-mercaptopyruvate sulfurtransferase and produces hydrogen sulfide. J Biochem 46:623–626

    Google Scholar 

  • Siebert N, Cantré D, Eipel C, Vollmar B (2008) H2S contributes to the hepatic arterial buffer response and mediates vasorelaxation of the hepatic artery via activation of K(ATP) channels. Am J Physiol Gastrointest Liver Physiol 295:G1266–G1273

    CAS  PubMed  Google Scholar 

  • Skovgaard N, Gouliaev A, Aalling M, Simonsen U (2011) The role of endogenous H2S in cardiovascular physiology. Curr Pharm Biotechnol 12:1385–1393, Review

    CAS  PubMed  Google Scholar 

  • Sun Y, Tang CS, Jin HF, Du JB (2011) The vasorelaxing effect of hydrogen sulfide on isolated rat aortic rings versus pulmonary artery rings. Acta Pharmacol Sin 32:456–464

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suo R, Zhao ZZ, Tang ZH, Ren Z, Liu X, Liu LS, Wang Z, Tang CK, Wei DH, Jiang ZS (2013) Hydrogen sulfide prevents H2O2-induced senescence in human umbilical vein endothelial cells through SIRT1 activation. Mol Med Rep 7:1865–1870

    CAS  PubMed  Google Scholar 

  • Suzuki K, Olah G, Modis K, Coletta C, Kulp G, Gerö D, Szoleczky P, Chang T, Zhou Z, Wu L, Wang R, Papapetropoulos A, Szabo C (2011) Hydrogen sulfide replacement therapy protects the vascular endothelium in hyperglycemia by preserving mitochondrial function. Proc Natl Acad Sci USA 108:13829–13834

    CAS  PubMed Central  PubMed  Google Scholar 

  • Szczesny B, Módis K, Yanagi K, Coletta C, Le Trionnaire S, Perry A, Wood ME, Whiteman M, Szabo C (2014) AP39, a novel mitochondria-targeted hydrogen sulfide donor, stimulates cellular bioenergetics, exerts cytoprotective effects and protects against the loss of mitochondrial DNA integrity in oxidatively stressed endothelial cells in vitro. Nitric Oxide S1089–8603(14):00206–00207

    Google Scholar 

  • Tang G, Wu L, Liang W, Wang R (2005) Direct stimulation of K(ATP) channels by exogenous and endogenous hydrogen sulfide in vascular smooth muscle cells. Mol Pharmacol 68:1757–1764

    CAS  PubMed  Google Scholar 

  • Tang G, Wu L, Wang R (2010) Interaction of hydrogen sulfide with ion channels. Clin Exp Pharmacol Physiol 37:753–763, Review

    CAS  PubMed  Google Scholar 

  • Tang G, Yang G, Jiang B, Ju Y, Wu L, Wang R (2013) H2S is an endothelium-derived hyperpolarizing factor. Antioxid Redox Signal 19:1634–1646

    CAS  PubMed  Google Scholar 

  • Thyberg J (1998) Phenotypic modulation of smooth muscle cells during formation of neointimal thickenings following vascular injury. Histol Histopathol 13:871–891

    CAS  PubMed  Google Scholar 

  • Tyagi N, Moshal KS, Sen U, Vacek TP, Kumar M, Hughes WM Jr, Kundu S, Tyagi SC (2009) H2S protects against methionine-induced oxidative stress in brain endothelial cells. Antioxid Redox Signal 11:25–33

    CAS  PubMed Central  PubMed  Google Scholar 

  • Vacek TP, Gillespie W, Tyagi N, Vacek JC, Tyagi SC (2010) Hydrogen sulfide protects against vascular remodeling from endothelial damage. Amino Acids 39:1161–1169

    CAS  PubMed  Google Scholar 

  • Wang R (2002) Two’s company, three’s a crowd – can H2S be the third endogenous gaseous transmitter? FASEB J 16:1792–1798

    CAS  PubMed  Google Scholar 

  • Wang R (ed) (2004) Signal transduction and the gasotransmitters: NO, CO, and H2S in biology and medicine. Humana, Totowa

    Google Scholar 

  • Wang R (2009) Hydrogen sulfide: a new EDRF. Kidney Int 76:700–704, Review

    CAS  PubMed  Google Scholar 

  • Wang R (2012a) Shared signaling pathways among gasotransmitters. Proc Natl Acad Sci USA 109:8801–8802

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang R (2012b) Physiological implications of hydrogen sulfide – a whiff exploration that blossomed. Physiol Rev 92:791–896

    CAS  PubMed  Google Scholar 

  • Wang R (2014) Gasotransmitter: growing pains and joys. Trends Biochem Sci 39:227–232

    CAS  PubMed  Google Scholar 

  • Wang Y, Zhao X, Jin H, Wei H, Li W, Bu D, Tang X, Ren Y, Tang C, Du J (2009) Role of hydrogen sulfide in the development of atherosclerotic lesions in apolipoprotein E knockout mice. Arterioscler Thromb Vasc Biol 29:173–179

    CAS  PubMed  Google Scholar 

  • Wang P, Zhang G, Wondimu T, Ross B, Wang R (2011) Hydrogen sulfide and asthma. Exp Physiol 96:847–852

    CAS  PubMed  Google Scholar 

  • Wang K, Ahmad S, Cai M, Rennie J, Fujisawa T, Crispi F, Baily J, Miller MR, Cudmore M, Hadoke PW, Wang R, Gratacós E, Buhimschi IA, Buhimschi CS, Ahmed A (2013a) Dysregulation of hydrogen sulfide producing enzyme cystathionine γ-lyase contributes to maternal hypertension and placental abnormalities in preeclampsia. Circulation 127:2514–2522

    CAS  PubMed  Google Scholar 

  • Wang XH, Wang F, You SJ, Cao YJ, Cao LD, Han Q, Liu CF, Hu LF (2013b) Dysregulation of cystathionine γ-lyase (CSE)/hydrogen sulfide pathway contributes to ox-LDL-induced inflammation in macrophage. Cell Signal 25:2255–2262

    CAS  PubMed  Google Scholar 

  • Webb GD, Lim LH, Oh VM, Yeo SB, Cheong YP, Ali MY, El Oakley R, Lee CN, Wong PS, Caleb MG, Salto-Tellez M, Bhatia M, Chan ES, Taylor EA, Moore PK (2008) Contractile and vasorelaxant effects of hydrogen sulfide and its biosynthesis in the human internal mammary artery. J Pharmacol Exp Ther 324:876–882

    CAS  PubMed  Google Scholar 

  • Wen YD, Wang H, Kho SH, Rinkiko S, Sheng X, Shen HM, Zhu YZ (2013) Hydrogen sulfide protects HUVECs against hydrogen peroxide induced mitochondrial dysfunction and oxidative stress. PLoS ONE 8:e53147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Whiteman M, Winyard PG (2011) Hydrogen sulfide and inflammation: the good, the bad, the ugly and the promising. Expert Rev Clin Pharmacol 4:13–32

    CAS  PubMed  Google Scholar 

  • Whiteman M, Li L, Kostetski I, Chu SH, Siau JL, Bhatia M, Moore PK (2006) Evidence for the formation of a novel nitrosothiol from the gaseous mediators nitric oxide and hydrogen sulphide. Biochem Biophys Res Commun 343:303–310

    CAS  PubMed  Google Scholar 

  • Wójcicka G, Jamroz-Wiśniewska A, Atanasova P, Chaldakov GN, Chylińska-Kula B, Bełtowski J (2011) Differential effects of statins on endogenous H2S formation in perivascular adipose tissue. Pharmacol Res 63:68–76

    PubMed  Google Scholar 

  • Wu SY, Pan CS, Geng B, Zhao J, Yu F, Pang YZ, Tang CS, Qi YF (2006) Hydrogen sulfide ameliorates vascular calcification induced by vitamin D3 plus nicotine in rats. Acta Pharmacol Sin 27:299–306

    CAS  PubMed  Google Scholar 

  • Wu B, Teng H, Yang G, Wu L, Wang R (2012) Hydrogen sulfide inhibits the translational expression of hypoxia-inducible factor-1α. Br J Pharmacol 167:1492–1505

    CAS  PubMed Central  PubMed  Google Scholar 

  • Xu S, Liu Z, Liu P (2014) Targeting hydrogen sulfide as a promising therapeutic strategy for atherosclerosis. Int J Cardiol 172:313–317

    PubMed  Google Scholar 

  • Yang G (2011) Hydrogen sulfide in cell survival: a double-edged sword. Expert Rev Clin Pharmacol 4:33–47

    CAS  PubMed  Google Scholar 

  • Yang G, Sun X, Wang R (2004) Hydrogen sulfide-induced apoptosis in human aorta smooth muscle cells is associated with activation of MAP kinases and caspase-3. FASEB J 18:1782–1784

    CAS  PubMed  Google Scholar 

  • Yang G, Wu L, Wang R (2006) Pro-apoptotic effect of endogenous H2S on human aorta smooth muscle cells. FASEB J 20:553–555

    CAS  PubMed  Google Scholar 

  • Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang G, Wu L, Bryan S, Khaper N, Mani S, Wang R (2010) Cystathionine gamma-lyase deficiency and overproliferation of smooth muscle cells. Cardiovasc Res 86:487–495

    CAS  PubMed  Google Scholar 

  • Yang G, Pei Y, Teng H, Cao Q, Wang R (2011) Specificity protein-1 as a critical regulator of human cystathionine gamma-lyase expression in smooth muscle cells. J Biol Chem 286:26450–26460

    CAS  PubMed Central  PubMed  Google Scholar 

  • Yang G, Li H, Tang G, Wu L, Cao Q, Xu C, Wang R (2012a) Increased neointimal formation in cystathionine gamma-lyase deficient mice: role of hydrogen sulfide in α5β1-integrin and matrix metalloproteinase-2 expression in smooth muscle cells. J Mol Cell Cardiol 52:677–688

    CAS  PubMed  Google Scholar 

  • Yang G, Pei Y, Cao Q, Wang R (2012b) MicroRNA-21 regulates cystathionine gamma-lyase expression in smooth muscle cells by targeting at specificity protein-1. J Cell Physiol 227:3192–3200

    CAS  PubMed  Google Scholar 

  • Zanardo RC, Brancaleone V, Distrutti E, Fiorucci S, Cirino G, Wallace JL (2006) Hydrogen sulfide is an endogenous modulator of leukocyte-mediated inflammation. FASEB J 20:2118–2120

    CAS  PubMed  Google Scholar 

  • Zavaczki E, Jeney V, Agarwal A, Zarjou A, Oros M, Katkó M, Varga Z, Balla G, Balla J (2011) Hydrogen sulfide inhibits the calcification and osteoblastic differentiation of vascular smooth muscle cells. Kidney Int 80:731–739

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang L, Yang G, Tang G, Wu L, Wang R (2011) Rat pancreatic level of cystathionine γ-lyase is regulated by glucose level via specificity protein 1 (SP1) phosphorylation. Diabetologia 54:2615–2625

    CAS  PubMed  Google Scholar 

  • Zhang H, Guo C, Wu D, Zhang A, Gu T, Wang L, Wang C (2012a) Hydrogen sulfide inhibits the development of atherosclerosis with suppressing CX3CR1 and CX3CL1 expression. PLoS One 7:e41147

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhang H, Guo C, Zhang A, Fan Y, Gu T, Wu D, Sparatore A, Wang C (2012b) Effect of S-aspirin, a novel hydrogen-sulfide-releasing aspirin (ACS14), on atherosclerosis in apoE-deficient mice. Eur J Pharmacol 697:106–116

    CAS  PubMed  Google Scholar 

  • Zhao W, Zhang J, Lu Y, Wang R (2001) The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener. EMBO J 20:6008–6016

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhao X, Zhang LK, Zhang CY, Zeng XJ, Yan H, Jin HF, Tang CS, DU JB (2008) Regulatory effect of hydrogen sulfide on vascular collagen content in spontaneously hypertensive rats. Hypertens Res 31:1619–1630

    CAS  PubMed  Google Scholar 

  • Zhao ZZ, Wang Z, Li GH, Wang R, Tan JM, Cao X, Suo R, Jiang ZS (2011) Hydrogen sulfide inhibits macrophage-derived foam cell formation. Exp Biol Med (Maywood) 236:169–176

    CAS  Google Scholar 

  • Zhao K, Ju Y, Li S, Al Tanny Z, Wang R, Yang G (2014) S-sulfhydration of MEK1 leads to PARP-1 activation and DNA damage repair. EMBO Rep 15(7):792–800 [Epub ahead of print]

    CAS  PubMed Central  PubMed  Google Scholar 

  • Zhou K, Gao Q, Zheng S, Pan S, Li P, Suo K, Simoncini T, Wang T, Fu X (2013) 17β-estradiol induces vasorelaxation by stimulating endothelial hydrogen sulfide release. Mol Hum Reprod 19:169–176

    CAS  PubMed  Google Scholar 

Download references

Acknowledgment

The study has been supported by an operating grant to RW from Canadian Institutes of Health Research and a New Investigator award to GY from the Heart and Stroke Foundation of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rui Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Yang, G., Wang, R. (2015). H2S and Blood Vessels: An Overview. In: Moore, P., Whiteman, M. (eds) Chemistry, Biochemistry and Pharmacology of Hydrogen Sulfide. Handbook of Experimental Pharmacology, vol 230. Springer, Cham. https://doi.org/10.1007/978-3-319-18144-8_4

Download citation

Publish with us

Policies and ethics