Skip to main content

GPS Data Processing for Scientific Studies of the Earth’s Atmosphere and Near-Space Environment

  • Reference work entry
  • First Online:
  • 233 Accesses

Definition

A global navigation satellite system (GNSS) consists of a set of globally distributed satellites that are used for geospatial positioning and timing. Examples of existing GNSS are the US Global Positioning System (GPS), the Russian GLONASS system, the European Union GALILEO system, and the Chinese BEIDOU system. This article focuses on data processing used in the GPS system and illustrates its particular uses for scientific studies of the Earth’s atmosphere, covering only ground-based analysis.

Historical Background

The Global Positioning System (GPS) was originally deployed to serve primarily as a navigation aid. It was developed by the US Department of Defense as an all-weather space-based navigation, positioning, and timing system. GPS superseded the first satellite-based navigation system, TRANSIT, and other ground-based navigation systems such as LORAN. The design of GPS took advantage of advances in atomic clock technology allowing the use of these clocks in a space...

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   1,599.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   1,999.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Baker D et al (2009) Severe space weather events – understanding societal and economic impacts. Workshop report, National Academies Press

    Google Scholar 

  • Bevis M, Businger S, Chiswell S, Herring TA, Anthes RA, Rocken C, Ware RH (1994) GPS meteorology: mapping Zenith wet delays onto precipitable water. J Appl Meteorol 33:379–386

    Article  Google Scholar 

  • Bust GS, Mitchell CN (2008). History, current state, and future directions of ionospheric imaging. Rev Geophys 46(1):1–23

    Article  Google Scholar 

  • Bothmer V, Daglis IA (2007) Space weather. Physics and effects. Springer, Berlin/New York

    Google Scholar 

  • Coster AJ, Niell AE, Burke HK, Czerwinski MG (1997) The Westford water vapor experiment: use of GPS to determine total precipitable water vapor. Technical report 1038, MIT Lincoln Laboratory, ESC-TR-97-060, 17 Dec 1997

    Google Scholar 

  • Coster A, Komjathy A (2008) Space weather and the global positioning system. Space Weather 6. doi:10.1029/2008SW000400

    Google Scholar 

  • Davies K (1990) Ionospheric radio, vol 31. IET, London

    Book  Google Scholar 

  • Davis JL, Herring TA, Shapiro II, Rogers AEE, Elgered G (1985) Geodesy by radio interferometry: effects of atmospheric modeling errors on estimates of baseline length. Radio Sci 20:1593–1607

    Article  Google Scholar 

  • Feltens J (1998) Chapman profile approach for 3-D global TEC representation. IGS presentation

    Google Scholar 

  • Galvan DA, Komjathy A, Hickey MP, Stephens P, Snively J, Song YT, Butala MD, Mannucci AJ (2012) Ionospheric signatures of Tohoku–Oki tsunami of March 11, 2011: model comparisons near the epicenter. Radio Sci 47:RS4003

    Article  Google Scholar 

  • Institute of Navigation (1980) Monographs of the global positioning system: papers published in navigation (“Redbook”), vol I. ION, Alexandria

    Google Scholar 

  • Kaplan ED, Hegarty CJ (2006) Understanding GPS. Principles and applications, 2nd edn. Artech House, Boston

    Google Scholar 

  • Komjathy A, Yang Y-M, Mannucci AJ (2013) Detecting ionospheric TEC perturbations generated by natural hazards using a real-time network of GPS receivers. In: READI Meeting at AGU, San Francisco 11 Dec 2013

    Google Scholar 

  • Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. JGR Solid Earth 101(B2):3227–3246

    Google Scholar 

  • Pankratius V, Lind F, Coster A, Erickson P, Semeter J (2014) Mobile crowd sensing in space weather monitoring: the Mahali project. IEEE Commun Mag 52(8):22–28. doi:10.1109/MCOM.2014.6871665

    Article  Google Scholar 

  • Pankratius V, Li J, Gowanlock M, Blair D, Rude C, Herring T, Lind F, Erickson PJ, Lonsdale C (2016) Computer-aided discovery: toward scientific insight generation with machine support. IEEE Intell Syst

    Google Scholar 

  • Rideout W, Coster AJ (2006) Automated GPS processing for global total electron content data. GPS Solut 10(3):219–228. Springer

    Google Scholar 

  • Rueger JM (2002) Refractive index formulae for radio waves. Integration of techniques and corrections to achieve accurate engineering, pp 19–26

    Google Scholar 

  • Saastamoinen J (1972) Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites. In: Hendriksen SW et al (eds) The use of artificial satellites for geodesy. Geophysical monograph series, vol 15. AGU, Washington, DC, pp 247–251

    Google Scholar 

  • Song P, Singer HJ, Siscoe GL (eds) (2001) Space weather. Geophysical monograph, vol 125. American Geophysical Union, Washington, DC

    Google Scholar 

  • Vierinen J, Norberg J, Lehtinen MS, Amm O, Roininen L, Väänänen A, Erickson PJ, McKay-Bukowski D (2014) Beacon satellite receiver for ionospheric tomography. Radio Sci 49:1141–1152. doi:10.1002/2014RS005434

    Article  Google Scholar 

  • Yang Y-M, Komjathy A, Langley RB, Vergados P, Butala MD, Mannucci AJ (2014) The 2013 Chelyabinsk meteor ionospheric impact studied using GPS measurements. Radio Sci 49(5):341–350

    Article  Google Scholar 

Recommended Reading

  • Carrano CS, Groves K (2006) The GPS segment of the AFRL-SCINDA global network and the challenges of real-time TEC estimation in the equatorial ionosphere. In: Proceedings of the 2006 national technical meeting of the institute of navigation, Monterey

    Google Scholar 

  • Hargreaves JK (1995) The solar-terrestrial environment: an introduction to geospace – the science of the terrestrial upper atmosphere, ionosphere, and magnetosphere. Cambridge University Press, Cambridge/New York

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Victor Pankratius .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this entry

Cite this entry

Pankratius, V., Coster, A., Vierinen, J., Erickson, P., Rideout, B. (2017). GPS Data Processing for Scientific Studies of the Earth’s Atmosphere and Near-Space Environment. In: Shekhar, S., Xiong, H., Zhou, X. (eds) Encyclopedia of GIS. Springer, Cham. https://doi.org/10.1007/978-3-319-17885-1_1651

Download citation

Publish with us

Policies and ethics