Skip to main content

The Multivariate Hidden Number Problem

  • Conference paper
Information Theoretic Security (ICITS 2015)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 9063))

Included in the following conference series:

Abstract

This work extends the line of research on the hidden number problem. Motivated by studying bit security in finite fields, we define the multivariate hidden number problem. Here, the secret and the multiplier are vectors, and partial information about their dot product is given. Using tools from discrete Fourier analysis introduced by Akavia, Goldwasser and Safra, we show that if one can find the significant Fourier coefficients of some function, then one can solve the multivariate hidden number problem for that function. This allows us to generalise the work of Akavia on the hidden number problem with (non-adaptive) chosen multipliers to all finite fields.

We give two further applications of our results, both of which generalise previous works to all (finite) extension fields. The first considers the general (random samples) hidden number problem in \(\mathbb{F}_{p^m}\) and assumes an advice is given to the algorithm. The second considers a model that allows changing representations, where we show hardness of individual bits for elliptic curve and pairing based functions for elliptic curves over extension fields, as well as hardness of any bit of any component of the Diffie-Hellman secret in \(\mathbb{F}_{p^m} (m>1)\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Akavia, A.: Learning Noisy Characters, Multiplication Codes and Hardcore Predicates. Ph.D. Thesis, Massachusetts Institute of Technology (2008)

    Google Scholar 

  2. Akavia, A.: Solving Hidden Number Problem with One Bit Oracle and Advice. In: Halevi, S. (ed.) CRYPTO 2009. LNCS, vol. 5677, pp. 337–354. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  3. Akavia, A., Goldwasser, S., Safra, S.: Proving Hard-Core Predicates Using List Decoding. In: FOCS 2003, pp. 146–157. IEEE Computer Society, Washington (2003)

    Google Scholar 

  4. Alexi, W., Chor, B., Goldreich, O., Schnorr, C.P.: RSA and Rabin Functions: Certain Parts are as Hard as the Whole. SIAM Journal on Computing 17(2), 194–209 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  5. Ben-Or, M., Chor, B., Shamir, A.: On the Cryptographic Security of Single RSA Bits. In: Johnson, D.S., Fagin, R., Fredman, M.L., Harel, D., Karp, R.M., Lynch, N.A., Papadimitriou, C.H., Rivest, R.L., Ruzzo, W.L., Seiferas, J.I. (eds.) STOC 1983, pp. 421–430. ACM, New York (1983)

    Google Scholar 

  6. Boneh, D., Shparlinski, I.E.: On the Unpredictability of Bits of the Elliptic Curve Diffie–Hellman Scheme. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 201–212. Springer, Heidelberg (2001)

    Chapter  Google Scholar 

  7. Boneh, D., Venkatesan, R.: Hardness of Computing the Most Significant Bits of Secret Keys in Diffie-Hellman and Related Schemes. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 129–142. Springer, Heidelberg (1996)

    Google Scholar 

  8. Boneh, D., and Venkatesan, R.: Rounding in Lattices and its Cryptographic Applications. In: Saks, M.E. (ed.) SODA 1997, pp. 675–681. ACM/SIAM, Philadelphia (1997)

    Google Scholar 

  9. Duc, A., Jetchev, D.: Hardness of Computing Individual Bits for One-Way Functions on Elliptic Curves. In: Safavi-Naini, R., Canetti, R. (eds.) CRYPTO 2012. LNCS, vol. 7417, pp. 832–849. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  10. De Mulder, E., Hutter, M., Marson, M.E., Pearson, P.: Using Bleichenbacher”s Solution to the Hidden Number Problem to Attack Nonce Leaks in 384-Bit ECDSA. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 435–452. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  11. Verheul, E.R.: Certificates of Recoverability with Scalable Recovery Agent Security. In: Imai, H., Zheng, Y. (eds.) PKC 2000. LNCS, vol. 1751, pp. 258–275. Springer, Heidelberg (2000)

    Chapter  Google Scholar 

  12. Fazio, N., Gennaro, R., Perera, I.M., Skeith III, W.E.: Hard-Core Predicates for a Diffie-Hellman Problem over Finite Fields. In: Canetti, R., Garay, J.A. (eds.) CRYPTO 2013, Part II. LNCS, vol. 8043, pp. 148–165. Springer, Heidelberg (2013)

    Chapter  Google Scholar 

  13. Goldreich, O., Levin, L.A.: A Hard-Core Predicate for all One-Way Functions. In: Johnson, D.S. (ed.) STOC 1989, pp. 25–32. ACM, New York (1989)

    Google Scholar 

  14. Aranha, D.F., Fouque, P.-A., Gérard, B., Kammerer, J.-G., Tibouchi, M., Zapalowicz, J.-C.: GLV/GLS Decomposition, Power Analysis, and Attacks on ECDSA Signatures with Single-Bit Nonce Bias. In: Sarkar, P., Iwata, T. (eds.) ASIACRYPT 2014. LNCS, vol. 8873, pp. 262–281. Springer, Heidelberg (2014)

    Chapter  Google Scholar 

  15. Kushilevitz, E., Mansour, Y.: Learning Decision Trees Using the Fourier Sprectrum. In: Koutsougeras, C., Vitter, J.S. (eds.) STOC 1991, pp. 455–464. ACM, New York (1991)

    Google Scholar 

  16. Morillo, P., Ràfols, C.: The Security of All Bits Using List Decoding. In: Jarecki, S., Tsudik, G. (eds.) PKC 2009. LNCS, vol. 5443, pp. 15–33. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  17. Mansour, Y.: Learning Boolean Functions via the Fourier Transform. In: Roychowdhury, V., Siu, K.Y., Orlitsky, A. (eds.) Theoretical Advances in Neural Computation and Learning, pp. 391–424. Kluwer Academic Publishers (1994)

    Google Scholar 

  18. Shparlinski, I.: Playing “Hide-and-Seek” in Finite Fields: Hidden Number Problem and its Applications. In: Proceedings of the Seventh Spanish Meeting on Cryptology and Information Security, vol. 1, pp. 49–72. University of Oviedo (2002)

    Google Scholar 

  19. Shparlinski, I.E., Winterhof, A.: A Nonuniform Algorithm for the Hidden Number Problem in Subgroups. In: Bao, F., Deng, R., Zhou, J. (eds.) PKC 2004. LNCS, vol. 2947, pp. 416–424. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  20. Wang, M., Zhan, T., and Zhang, H.: Bits Security of the CDH Problems over Finite Fields. Cryptology ePrint Archive, Report 2014/685 (2014), http://eprint.iacr.org/2014/685

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven D. Galbraith .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Galbraith, S.D., Shani, B. (2015). The Multivariate Hidden Number Problem. In: Lehmann, A., Wolf, S. (eds) Information Theoretic Security. ICITS 2015. Lecture Notes in Computer Science(), vol 9063. Springer, Cham. https://doi.org/10.1007/978-3-319-17470-9_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17470-9_15

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17469-3

  • Online ISBN: 978-3-319-17470-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics