Skip to main content

Amyloid-Forming Properties of Human Apolipoproteins: Sequence Analyses and Structural Insights

  • Chapter
Lipids in Protein Misfolding

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 855))

Abstract

Apolipoproteins are protein constituents of lipoproteins that transport cholesterol and fat in circulation and are central to cardiovascular health and disease. Soluble apolipoproteins can transiently dissociate from the lipoprotein surface in a labile free form that can misfold, potentially leading to amyloid disease. Misfolding of apoA-I, apoA-II, and serum amyloid A (SAA) causes systemic amyloidoses, apoE4 is a critical risk factor in Alzheimer’s disease, and apolipoprotein misfolding is also implicated in cardiovascular disease. To explain why apolipoproteins are over-represented in amyloidoses, it was proposed that the amphipathic α-helices, which form the lipid surface-binding motif in this protein family, have high amyloid-forming propensity. Here, we use 12 sequence-based bioinformatics approaches to assess amyloid-forming potential of human apolipoproteins and to identify segments that are likely to initiate β-aggregation. Mapping such segments on the available atomic structures of apolipoproteins helps explain why some of them readily form amyloid while others do not. Our analysis shows that nearly all amyloidogenic segments: (i) are largely hydrophobic, (ii) are located in the lipid-binding amphipathic α-helices in the native structures of soluble apolipoproteins, (iii) are predicted in both native α-helices and β-sheets in the insoluble apoB, and (iv) are predicted to form parallel in-register β-sheet in amyloid. Most of these predictions have been verified experimentally for apoC-II, apoA-I, apoA-II and SAA. Surprisingly, the rank order of the amino acid sequence propensity to form amyloid (apoB > apoA-II > apoC-II ≥ apoA-I, apoC-III, SAA, apoC-I > apoA-IV, apoA-V, apoE) does not correlate with the proteins’ involvement in amyloidosis. Rather, it correlates directly with the strength of the protein-lipid association, which increases with increasing protein hydrophobicity. Therefore, the lipid surface-binding function and the amyloid-forming propensity are both rooted in apolipoproteins’ hydrophobicity, suggesting that functional constraints make it difficult to completely eliminate pathogenic apolipoprotein misfolding. We propose that apolipoproteins have evolved protective mechanisms against misfolding, such as the sequestration of the amyloidogenic segments via the native protein-lipid and protein-protein interactions involving amphipathic α-helices and, in case of apoB, β-sheets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

AA:

Amyloid A

AApoAI:

Familial apoA-I amyloidosis

Apo:

Apolipoprotein

Aβ:

Amyloid beta peptide

DPC:

Dodecylphosphocholine

EPR:

Electron paramagnetic resonance

HDL:

High-density lipoprotein

LDL:

Low-density lipoprotein

NMR:

Nuclear magnetic resonance.

SAA:

Serum amyloid A

SDS:

Sodium dodecyl sulfate

TG:

Triacylglycerol

VLDL:

Very low-density lipoprotein

References

  • Acharya P, Segall ML, Zaiou M, Morrow J, Weisgraber KH, Phillips MC, Lund-Katz S, Snow J (2002) Comparison of the stabilities and unfolding pathways of human apolipoprotein E isoforms by differential scanning calorimetry and circular dichroism. Biochim Biophys Acta 1584(1):9–19

    CAS  PubMed  Google Scholar 

  • Adachi E, Nakajima H, Mizuguchi C, Dhanasekaran P, Kawashima H, Nagao K, Akaji K, Lund-Katz S, Phillips MC, Saito H (2013) Dual role of an N-terminal amyloidogenic mutation in apolipoprotein A-I: destabilization of helix bundle and enhancement of fibril formation. J Biol Chem 288:2848–2856

    CAS  PubMed Central  PubMed  Google Scholar 

  • Adachi E, Kosaka A, Tsuji K, Mizuguchi C, Kawashima H, Shigenaga A, Nagao K, Akaji K, Otaka A, Saito H (2014) The extreme N-terminal region of human apolipoprotein A-I has a strong propensity to form amyloid fibrils. FEBS Lett 588(3):389–394

    CAS  PubMed  Google Scholar 

  • Arciello A, De Marco N, Del Giudice R, Guglielmi F, Pucci P, Relini A, Monti DM, Piccoli R (2011) Insights into the fate of the N-terminal amyloidogenic polypeptide of ApoA-I in cultured target cells. J Cell Mol Med 15:2652–2663

    CAS  PubMed Central  PubMed  Google Scholar 

  • Asatryan L, Hamilton RT, Isas JM, Hwang J, Kayed R, Sevanian A (2005) LDL phospholipid hydrolysis produces modified electronegative particles with an unfolded apoB-100 protein. J Lipid Res 46(1):115–122

    CAS  PubMed Central  PubMed  Google Scholar 

  • Banach M (2014) Editorial: current research, knowledge and controversies on high density lipoprotein. Curr Med Chem 21(25):2853–2854

    CAS  PubMed  Google Scholar 

  • Bancells C, Villegas S, Blanco FJ, Benitez S, Gallego I, Beloki L, Perez-Cuellar M, Ordonez-Llanos J, Sanchez-Quesada JL (2010) Aggregated electronegative low-density lipoprotein in human plasma shows high tendency to phospholipolysis and particle fusion. J Biol Chem 285(42):32425–32435

    CAS  PubMed Central  PubMed  Google Scholar 

  • Beckstead JA, Wong K, Gupta V, Wan CP, Cook VR, Weinberg RB, Weers PM, Ryan RO (2007) The C terminus of apolipoprotein A-V modulates lipid-binding activity. J Biol Chem 282(21):15484–15489

    CAS  PubMed  Google Scholar 

  • Benson MD, Liepnieks JJ, Yazaki M, Yamashita T, Hamidi Asl K, Guenther B, Kluve-Beckerman B (2001) A new human hereditary amyloidosis: the result of a stop-codon mutation in the apolipoprotein AII gene. Genomics 72(3):272–277

    CAS  PubMed  Google Scholar 

  • Benson MD, Kalopissis AD, Charbert M, Liepnieks JJ, Kluve-Beckerman B (2011) A transgenic mouse model of human systemic ApoA-II amyloidosis. Amyloid 18(Suppl 1):32–33

    PubMed  Google Scholar 

  • Bergström J, Murphy CL, Weiss DT, Solomon A, Sletten K, Hellman U, Westermark P (2004) Two different types of amyloid deposits – apolipoprotein A-IV and transthyretin – in a patient with systemic amyloidosis. Lab Invest 84(8):981–988

    PubMed  Google Scholar 

  • Borhani DW, Rogers DP, Engler JA, Brouillette CG (1997) Crystal structure of truncated human apolipoprotein A-I suggests a lipid-bound conformation. Proc Natl Acad Sci U S A 94(23):12291–12296

    CAS  PubMed Central  PubMed  Google Scholar 

  • Brouillette CG, Anantharamaiah GM, Engler JA, Borhani DW (2001) Structural models of human apolipoprotein A-I: a critical analysis and review. Biochim Biophys Acta 1531(1–2):4–46

    CAS  PubMed  Google Scholar 

  • Brunelli R, De Spirito M, Mei G, Papi M, Perrone G, Stefanutti C, Parasassi T (2014) Misfolding of apoprotein B-100, LDL aggregation and 17-β-estradiol in atherogenesis. Curr Med Chem 21(20):2276–2283

    CAS  PubMed  Google Scholar 

  • Camejo G, Hurt-Camejo E, Wiklund O, Bondjers G (1998) Association of apo B lipoproteins with arterial proteoglycans: pathological significance and molecular basis. Atherosclerosis 139(2):205–222

    CAS  PubMed  Google Scholar 

  • Castelli WP, Anderson K, Wilson PW, Levy D (1992) Lipids and risk of coronary heart disease. The Framingham study. Ann Epidemiol 2(1–2):23–28

    CAS  PubMed  Google Scholar 

  • Castillo V, Ventura S (2009) Amyloidogenic regions and interaction surfaces overlap in globular proteins related to conformational diseases. PLoS Comput Biol 5(8):e1000476

    PubMed Central  PubMed  Google Scholar 

  • Cavigiolio G, Geier EG, Shao B, Heinecke JW, Oda MN (2010) Exchange of apolipoprotein A-I between lipid-associated and lipid-free states: a potential target or oxidative generation of dysfunctional high density lipoproteins. J Biol Chem 285:18847–18857

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chan GK, Witkowski A, Gantz DL, Zhang TO, Zanni MT, Jayaraman S, Cavigiolio G (2015) Myeloperoxidase-mediated methionine oxidation promotes an amyloidogenic outcome for apolipoprotein A-I. J Biol Chem 290(17):10958–10971

    CAS  PubMed  Google Scholar 

  • Chen J, Li Q, Wang J (2011) Topology of human apolipoprotein E3 uniquely regulates its diverse biological functions. Proc Natl Acad Sci U S A 108(36):14813–14818

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chetty PS, Mayne L, Lund-Katz S, Stranz D, Englander SW, Phillips MC (2009) Helical structure and stability in human apolipoprotein A-I by hydrogen exchange and mass spectrometry. Proc Natl Acad Sci U S A 106:19005–19010

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chetty PS, Ohshiro M, Saito H, Dhanasekaran P, Lund-Katz S, Mayne L, Englander W, Phillips MC (2012) Effects of the Iowa and Milano mutations on apolipoprotein A-I structure and dynamics determined by hydrogen exchange and mass spectrometry. Biochemistry 51:8993–9001

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chiti F, Dobson CM (2009) Amyloid formation by globular proteins under native conditions. Nat Chem Biol 5(1):15–22

    CAS  PubMed  Google Scholar 

  • Cho HS, Hyman BT, Greenberg SM, Rebeck GW (2001) Quantitation of apoE domains in Alzheimer disease brain suggests a role for apoE in Aβ aggregation. J Neuropathol Exp Neurol 60:342–349

    CAS  PubMed  Google Scholar 

  • Conchillo-Solé O, de Groot NS, Avilés FX, Vendrell J, Daura X, Ventura S (2007) AGGRESCAN: a server for the prediction and evaluation of “hot spots” of aggregation in polypeptides. BMC Bioinformatics 8:65

    PubMed Central  PubMed  Google Scholar 

  • Cui Y, Huang M, He Y, Zhang S, Luo Y (2011) Genetic ablation of apolipoprotein A-IV accelerates Alzheimer’s disease pathogenesis in a mouse model. Am J Pathol 178:1298–1308

    CAS  PubMed Central  PubMed  Google Scholar 

  • Das M, Jayaraman S, Mei X, Atkinson D, Gursky O (2014) Amyloidogenic mutations in human apolipoprotein A-I are not necessarily destabilizing: a common mechanism of apoA-I misfolding in familial amyloidosis and atherosclerosis. FEBS J 281(11):2525–2542

    CAS  PubMed Central  PubMed  Google Scholar 

  • De Beer FC, Mallya RK, Fagan EA, Lanham JG, Hughes GR, Pepys MB (1982) Serum amyloid-A protein concentration in inflammatory diseases and its relationship to the incidence of reactive systemic amyloidosis. Lancet 2(8292):231–234

    PubMed  Google Scholar 

  • de Messieres M, Huang RK, He Y, Lee JC (2014) Amyloid triangles, squares, and loops of apolipoprotein C-III. Biochemistry 53(20):3261–3263

    PubMed Central  PubMed  Google Scholar 

  • Deng X, Morris J, Dressmen J, Tubb MR, Tso P, Jerome WG, Davidson WS, Thompson TB (2012) The structure of dimeric apolipoprotein A-IV and its mechanism of self-association. Structure 20(5):767–779

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deng X, Morris J, Chaton C, Schröder GF, Davidson WS, Thompson TB (2013) Small-angle X-ray scattering of apolipoprotein A-IV reveals the importance of its termini for structural stability. J Biol Chem 288(7):4854–4866

    CAS  PubMed Central  PubMed  Google Scholar 

  • Deng X, Walker RG, Morris J, Davidson WS, Thompson TB (2015) Role of conserved proline residues in human apolipoprotein A-IV structure and function. J Biol Chem 290(17):10689–10702

    CAS  PubMed  Google Scholar 

  • Derebe MG, Zlatkov CM, Gattu S, Ruhn KA, Vaishnava S, Diehl GE, MacMillan JB, Williams NS, Hooper LV (2014) Serum amyloid A is a retinol binding protein that transports retinol during bacterial infection. Elife 3:e03206

    PubMed Central  PubMed  Google Scholar 

  • Der-Sarkissian A, Jao CC, Chen J, Langen R (2003) Structural organization of α-synuclein fibrils studied by site-directed spin labeling. J Biol Chem 278:37530–37535

    CAS  PubMed  Google Scholar 

  • Egashira M, Takase H, Yamamoto I, Tanaka M, Saito H (2011) Identification of regions responsible for heparin-induced amyloidogenesis of human serum amyloid A using its fragment peptides. Arch Biochem Biophys 511(1–2):101–1016

    CAS  PubMed  Google Scholar 

  • Eklund KK, Niemi K, Kovanen PT (2012) Immune functions of serum amyloid A. Crit Rev Immunol 32(4):335–348

    CAS  PubMed  Google Scholar 

  • Fernandez-Escamilla AM, Rousseaux F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22:1302–1306

    CAS  PubMed  Google Scholar 

  • Galzitskaya OV, Garbuzynskiy SG, Lobanov MV (2006) Prediction of amyloidogenic and disordered regions in protein chains. PLoS Comput Biol 2(12):e177

    PubMed Central  PubMed  Google Scholar 

  • Gangabadage CS, Zdunek J, Tessari M, Nilsson S, Olivecrona G, Wijmenga SS (2008) Structure and dynamics of human apolipoprotein CIII. J Biol Chem 283(25):17416–17427

    CAS  PubMed  Google Scholar 

  • Gao X, Yuan S, Jayaraman S, Gursky O (2012) Effect of apolipoprotein A-II on the structure and stability of human high-density lipoprotein: implications for the role of apoA-II in HDL metabolism. Biochemistry 51(23):4633–4641

    CAS  PubMed  Google Scholar 

  • Garbuzynskiy SO, Lobanov MY, Galzitskaya OV (2010) FoldAmyloid: a method of prediction of amyloidogenic regions from protein sequence. Bioinformatics 26(3):326–332

    CAS  PubMed  Google Scholar 

  • Getz GS, Reardon CA (2009) Apoprotein E as a lipid transport and signaling protein in the blood, liver and artery wall. J Lipid Res 50:S156–S161

    PubMed Central  PubMed  Google Scholar 

  • Gillard BK, Lin HY, Massey JB, Pownall HJ (2009) Apolipoproteins A-I, A-II and E are independently distributed among intracellular and newly secreted HDL of human hepatoma cells. Biochim Biophys Acta 1791:1125–1132

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gillmore JD, Lovat LB, Persey MR, Pepys MB, Hawkins PN (2001) Amyloid load and clinical outcome in AA amyloidosis in relation to circulating concentration of serum amyloid A protein. Lancet 358(9275):24–29

    CAS  PubMed  Google Scholar 

  • Gillmore JD, Stangou AJ, Lachmann HJ, Goodman HJ, Wechalekar AD, Acheson J, Tennent GA, Bybee A, Gilbertson J, Rowczenio D, O’Grady J, Heaton ND, Pepys MB, Hawkins PN (2006) Organ transplantation in hereditary apolipoprotein AI amyloidosis. Am J Transplant 6(10):2342–2347

    CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS (1976) The LDL pathway in human fibroblasts: a receptor-mediated mechanism for the regulation of cholesterol metabolism. Curr Top Cell Regul 11:147–181

    CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS (1992) Lipoprotein receptors and the control of plasma LDL cholesterol levels. Eur Heart J 13(Suppl B):34–36

    CAS  PubMed  Google Scholar 

  • Gordon DJ, Probstfield JL, Garrison RJ, Neaton JD, Castelli WP, Knoke JD, Jacobs DR Jr, Bangdiwala S, Tyroler HA (1989) High-density lipoprotein cholesterol and cardiovascular disease. Circulation 79:8–15

    CAS  PubMed  Google Scholar 

  • Green PH, Glickman RM, Riley JW, Quinet E (1980) Human apolipoprotein A-IV. Intestinal origin and distribution in plasma. J Clin Invest 65:911–919

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guha M, England CO, Herscovitz H, Gursky O (2007) Thermal transitions in human very low-density lipoprotein: fusion, rupture and dissociation of HDL-like particles. Biochemistry 46(20):6043–6049

    CAS  PubMed Central  PubMed  Google Scholar 

  • Guha M, Gao X, Jayaraman S, Gursky O (2008) Structural stability and functional remodeling of high-density lipoproteins: the importance of being disordered. Biochemistry 47(44):11393–11397

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gursky O (2005) Apolipoprotein structure and dynamics. Curr Opin Lipidol 16(3):287–294

    CAS  PubMed  Google Scholar 

  • Gursky O (2013) Crystal structure of Δ(185–243)apoA-I suggests a mechanistic framework for the protein adaptation to the changing lipid load in good cholesterol: from flatland to sphereland via double belt, belt buckle, double hairpin and trefoil/tetrafoil. J Mol Biol 425:1–16

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gursky O (2014) Hot spots in apolipoprotein A-II misfolding and amyloidosis in mice and men. FEBS Lett 588(6):845–850

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gursky O, Atkinson D (1996a) Thermal unfolding of human high-density apolipoprotein A-1: implications for a lipid-free molten globular state. Proc Natl Acad Sci U S A 93:2991–2995

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gursky O, Atkinson D (1996b) High- and low-temperature unfolding of human high-density apolipoprotein A-2. Protein Sci 5(9):1874–1882

    CAS  PubMed Central  PubMed  Google Scholar 

  • Gursky O, Atkinson D (1998) Thermodynamic analysis of human plasma apolipoprotein C-1: high-temperature unfolding and low-temperature oligomer dissociation. Biochemistry 37(5):1283–1291

    CAS  PubMed  Google Scholar 

  • Gursky O, Mei X, Atkinson D (2012) Crystal structure of the C-terminal truncated apolipoprotein A-I sheds new light on the amyloid formation by the N-terminal segment. Biochemistry 51(1):10–18

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hamodrakas SJ, Liappa C, Iconomidou VA (2007) Consensus prediction of amyloidogenic determinants in amyloid-forming proteins. Int J Biol Macromol 41:295–300

    CAS  PubMed  Google Scholar 

  • Hatters DM, Howlett GJ (2002) The structural basis for amyloid formation by plasma apolipoproteins: a review. Eur Biophys J 31(1):2–8

    CAS  PubMed  Google Scholar 

  • Hatters DM, Budamagunta MS, Voss JC, Weisgraber KH (2005) Modulation of apolipoprotein E structure by domain interaction: differences in lipid-bound and lipid-free forms. J Biol Chem 280(40):34288–34295

    CAS  PubMed  Google Scholar 

  • Hatters DM, Zhong N, Rutenber E, Weisgraber KH (2006) Amino-terminal domain stability mediates apolipoprotein E aggregation into neurotoxic fibrils. J Mol Biol 361(5):932–944

    CAS  PubMed  Google Scholar 

  • Hauser PS, Ryan RO (2013) Impact of apolipoprotein E on Alzheimer’s disease. Curr Alzheimer Res 10(8):809–817

    CAS  PubMed Central  PubMed  Google Scholar 

  • Hauser PS, Narayanaswami V, Ryan RO (2011) Apolipoprotein E: from lipid transport to neurobiology. Prog Lipid Res 50(1):62–74

    CAS  PubMed Central  PubMed  Google Scholar 

  • Holtzman DM, Herz J, Bu G (2012) Apolipoprotein E and apolipoprotein E receptors: normal biology and roles in Alzheimer disease. Cold Spring Harb Perspect Med 2(3):a006312

    PubMed Central  PubMed  Google Scholar 

  • Howlett GJ, Moore KJ (2006) Untangling the role of amyloid in atherosclerosis. Curr Opin Lipidol 17(5):541–547

    CAS  PubMed  Google Scholar 

  • Huang Y (2010) Mechanisms linking apolipoprotein E isoforms with cardiovascular and neurological diseases. Curr Opin Lipidol 21(4):337–345

    CAS  PubMed  Google Scholar 

  • Jayaraman S, Gantz DL, Gursky O (2005a) Kinetic stabilization and fusion of discoidal lipoproteins containing human apoA-2 and DMPC: comparison with apoA-1 and apoC-1. Biophys J 88(4):2907–2918

    CAS  PubMed Central  PubMed  Google Scholar 

  • Jayaraman S, Gantz DL, Gursky O (2005b) Structural basis for thermal stability of human low-density lipoprotein. Biochemistry 44(10):3965–3971

    CAS  PubMed  Google Scholar 

  • Jayaraman S, Gantz DL, Gursky O (2006) Effects of salt on the thermal stability of human plasma high-density lipoprotein. Biochemistry 45(14):4620–4628

    CAS  PubMed  Google Scholar 

  • Jayaraman S, Gantz DL, Gursky O (2007) Effects of oxidation on the structure and stability of human low-density lipoprotein. Biochemistry 46(19):5790–5797

    CAS  PubMed  Google Scholar 

  • Jayaraman S, Cavigiolio G, Gursky O (2012) Folded functional lipid-poor apolipoprotein A-I obtained by heating of high-density lipoproteins: relevance to HDL biogenesis. Biochem J 442(3):703–712

    CAS  PubMed  Google Scholar 

  • Jong MC, Hofker MH, Havekes LM (1999) Role of ApoCs in lipoprotein metabolism: functional differences between ApoC1, ApoC2, and ApoC3. Arterioscler Thromb Vasc Biol 19(3):472–484

    CAS  PubMed  Google Scholar 

  • Kei AA, Filippatos TD, Tsimihodimos V, Elisaf MS (2012) A review of the role of apolipoprotein C-II in lipoprotein metabolism and cardiovascular disease. Metabolism 61(7):906–921

    CAS  PubMed  Google Scholar 

  • Kim C, Choi J, Lee SJ, Welsh WJ, Yoon S (2009) NetCSSP: web application for predicting chameleon sequences and amyloid fibril formation. Nucleic Acids Res 37:W469–W473

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kingwell BA, Chapman MJ, Kontush A, Miller NE (2014) HDL-targeted therapies: progress, failures and future. Nat Rev Drug Discov 13(6):445–464

    CAS  PubMed  Google Scholar 

  • Krauss RM (1998) Atherogenicity of triglyceride-rich lipoproteins. Am J Cardiol 81(4A):13B–17B

    CAS  PubMed  Google Scholar 

  • Kumar V, Butcher SJ, Öörni K, Engelhardt P, Heikkonen J, Kaski K, Ala-Korpela M, Kovanen PT (2011) Three-dimensional cryoEM reconstruction of native LDL particles to 16Å resolution at physiological body temperature. PLoS ONE 6:e18841

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ladu MJ, Reardon C, Van Eldik L, Fagan AM, Bu G, Holtzman D, Getz GS (2000) Lipoproteins in the central nervous system. Ann N Y Acad Sci 903:167–175

    CAS  PubMed  Google Scholar 

  • Lamarche B, Rashid S, Lewis GF (1999) HDL metabolism in hypertriglyceridemic states: an overview. Clin Chim Acta 286(1–2):145–161

    CAS  PubMed  Google Scholar 

  • Lane-Donovan C, Philips GT, Herz J (2014) More than cholesterol transporters: lipoprotein receptors in CNS function and neurodegeneration. Neuron 83(4):771–787

    CAS  PubMed  Google Scholar 

  • Lepedda AJ, Cigliano A, Cherchi GM, Spirito R, Maggioni M, Carta F, Turrini F, Edelstein C, Scanu AM, Formato M (2009) A proteomic approach to differentiate histologically classified stable and unstable plaques from human carotid arteries. Atherosclerosis 203(1):112–118

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lewis TL, Cao D, Lu H, Mans RA, Su YR, Jungbauer L, Linton MF, Fazio S, LaDu MJ, Li L (2010) Overexpression of human apolipoprotein A-I preserves cognitive function and attenuates neuroinflammation and cerebral amyloid angiopathy in a mouse model of Alzheimer disease. J Biol Chem 285(47):36958–36968

    CAS  PubMed Central  PubMed  Google Scholar 

  • Li WH, Tanimura M, Luo CC, Datta S, Chan L (1988) The apolipoprotein multigene family: biosynthesis, structure, structure-function relationships, and evolution. J Lipid Res 29(3):245–271

    CAS  PubMed  Google Scholar 

  • Liu Y, Atkinson D (2011) Immuno-electron cryo-microscopy imaging reveals a looped topology of apoB at the surface of human LDL. J Lipid Res 52(6):1111–1116

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu M, Gursky O (2013) Aggregation and fusion of low-density lipoproteins in vivo and in vitro. Biomol Concepts. doi:10.155/bmc-2013-0016

    PubMed Central  PubMed  Google Scholar 

  • Lu M, Gantz DL, Herscovitz H, Gursky O (2012) Kinetic analysis of thermal stability of human low-density lipoproteins: model for LDL fusion in atherogenesis. J Lipid Res 53(10):2175–2185

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lu JX, Qiang W, Yau WM, Schwieters CD, Meredith SC, Tycko R (2013) Molecular structure of β-amyloid fibrils in Alzheimer’s disease brain tissue. Cell 154(6):1257–1268

    CAS  PubMed  Google Scholar 

  • Lu J, Yu Y, Zhu I, Cheng Y, Sun PD (2014) Structural mechanism of serum amyloid A-mediated inflammatory amyloidosis. Proc Natl Acad Sci U S A 111(14):5189–5194

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lv G, Kumar A, Giller K, Orcellet ML, Riedel D, Fernández CO, Becker S, Lange A (2012) Structural comparison of mouse and human α synuclein amyloid fibrils by solid-state NMR. J Mol Biol 420(1–2):99–111

    CAS  PubMed  Google Scholar 

  • Lyssenko NN, Hata M, Dhanasekaran P, Nickel M, Nguyen D, Chetty PS, Saito H, Lund-Katz S, Phillips MC (2012) Influence of C-terminal α-helix hydrophobicity and aromatic amino acid content on apolipoprotein A-I functionality. Biochim Biophys Acta 1821(3):456–463

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ma J, Yee A, Brewer HB Jr, Das S, Potter H (1994) Amyloid-associated proteins alpha 1-antichymotrypsin and apolipoprotein E promote assembly of Alzheimer beta-protein into filaments. Nature 372(6501):92–94

    CAS  PubMed  Google Scholar 

  • MacRaild CA, Hatters DM, Howlett GJ, Gooley PR (2001) NMR structure of human apolipoprotein C-II in the presence of sodium dodecyl sulfate. Biochemistry 40(18):5414–5421

    CAS  PubMed  Google Scholar 

  • MacRaild CA, Howlett GJ, Gooley PR (2004) The structure and interactions of human apolipoprotein C-II in dodecyl phosphocholine. Biochemistry 43(25):8084–8093

    CAS  PubMed  Google Scholar 

  • Magy N, Liepnieks JJ, Yazaki M, Kluve-Beckerman B, Benson MD (2003) Renal transplantation for apolipoprotein AII amyloidosis. Amyloid 10(4):224–228

    CAS  PubMed  Google Scholar 

  • Mahley RW, Innerarity TL, Rall SC Jr, Weisgraber KH (1984) Plasma lipoproteins: apolipoprotein structure and function. J Lipid Res 25(12):1277–1294

    CAS  PubMed  Google Scholar 

  • Mahley RW, Weisgraber K, Huang Y (2009) Apolipoprotein E: structure determines function, from atherosclerosis to Alzheimer’s disease to AIDS. J Lipid Res 50:S183–S18

    PubMed Central  PubMed  Google Scholar 

  • Maiga SF, Kalopissis AD, Chabert M (2014) Apolipoprotein A-II is a key regulatory factor of HDL metabolism as appears from studies with transgenic animals and clinical outcomes. Biochimie 96:56–66

    CAS  PubMed  Google Scholar 

  • Marchesi M, Parolini C, Valetti C, Mangione P, Obici L, Giorgetti S, Raimondi S, Donadei S, Gregorini G, Merlini G, Stoppini M, Chiesa G, Bellotti V (2011) The intracellular quality control system down-regulates the secretion of amyloidogenic apolipoprotein A-I variants: a possible impact on the natural history of the disease. Biochim Biophys Acta 1812(1):87–93

    CAS  PubMed  Google Scholar 

  • Margittai M, Langen R (2008) Fibrils with parallel in-register structure constitute a major class of amyloid fibrils: molecular insights from electron paramagnetic resonance spectroscopy. Rev Biophys 41(3–4):265–297

    CAS  Google Scholar 

  • Mauldin K, Lee BL, Oleszczuk M, Sykes BD, Ryan RO (2010) The carboxyl-terminal segment of apolipoprotein A-V undergoes a lipid-induced conformational change. Biochemistry 49(23):4821–4826

    CAS  PubMed Central  PubMed  Google Scholar 

  • Maurer-Stroh S, Debulpaep M, Kuemmerer N, Lopez de la Paz M, Martins IC, Reumers J, Morris KL, Copland A, Serpell L, Serrano L, Schymkowitz JW, Rousseau F (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7(3):237–242

    CAS  PubMed  Google Scholar 

  • Mehta R, Gantz DL, Gursky O (2003) Human plasma high-density lipoproteins are stabilized by kinetic factors. J Mol Biol 328(1):183–192

    CAS  PubMed  Google Scholar 

  • Mei X, Atkinson D (2011) Crystal structure of C-terminal truncated apolipoprotein A-I reveals the assembly of high density lipoprotein (HDL) by dimerization. J Biol Chem 286(44):38570–38582

    CAS  PubMed Central  PubMed  Google Scholar 

  • Mendoza-Espinosa P, Montalvan-Sorrosa D, Garcia-Gonzalez V, Moreno A, Castillo R, Mas-Oliva J (2014) Microenvironmentally controlled secondary structure motifs of apolipoprotein A-I derived peptides. Mol Cell Biochem 393(1–2):99–109

    CAS  PubMed Central  PubMed  Google Scholar 

  • Morrow JA, Segall ML, Lund-Katz S, Phillips MC, Knapp M, Rupp B, Weisgraber KH (2000) Differences in stability among the human apolipoprotein E isoforms determined by the amino-terminal domain. Biochemistry 39(38):11657–11666

    CAS  PubMed  Google Scholar 

  • Morrow JA, Hatters DM, Lu B, Hochtl P, Oberg KA, Rupp B, Weisgraber KH (2002) Apolipoprotein E4 forms a molten globule. A potential basis for its association with disease. J Biol Chem 277(52):50380–50385

    CAS  PubMed  Google Scholar 

  • Mucchiano GI, Haggqvist B, Sletten K, Westermark P (2001) Apolipoprotein A-1-derived amyloid in atherosclerotic plaques of the human aorta. J Pathol 193(2):270–275

    CAS  PubMed  Google Scholar 

  • Mulya A, Lee JY, Gebre AK, Boudyguina EY, Chung SK, Smith TL, Colvin PL, Jiang XC, Parks JS (2008) Initial interaction of apoA-I with ABCA1 impacts in vivo metabolic fate of nascent HDL. J Lipid Res 49(11):2390–2401

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nagao K, Hata M, Tanaka K, Takechi Y, Nguyen D, Dhanasekaran P, Lund-Katz S, Phillips MC, Saito H (2014) The roles of C-terminal helices of human apolipoprotein A-I in formation of high-density lipoprotein particles. Biochim Biophys Acta 1841(1):80–87

    CAS  PubMed  Google Scholar 

  • Nakajima K, Nagamine T, Fujita MQ, Ai M, Tanaka A, Schaefer E (2014) Apolipoprotein B-48: a unique marker of chylomicron metabolism. Adv Clin Chem 64:117–177

    CAS  PubMed  Google Scholar 

  • Navab M, Reddy ST, Van Lenten BJ, Fogelman AM (2011) HDL and cardiovascular disease: atherogenic and atheroprotective mechanisms. Nat Rev Cardiol 8(4):222–232

    CAS  PubMed  Google Scholar 

  • Nguyen D, Dhanasekaran P, Nickel M, Mizuguchi C, Watanabe M, Saito H, Phillips MC, Lund-Katz S (2014) Influence of domain stability on the properties of human apolipoprotein E3 and E4 and mouse Apolipoprotein E. Biochemistry 53(24):4025–4033

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nilsson SK, Christensen S, Raarup MK, Ryan RO, Nielsen MS, Olivecrona G (2008) Endocytosis of apolipoprotein A-V by members of the low density lipoprotein receptor and the VPS10p domain receptor families. J Biol Chem 283(38):25920–25927

    CAS  PubMed Central  PubMed  Google Scholar 

  • Nilsson SK, Heeren J, Olivecrona G, Merkel M (2011) Apolipoprotein A-V; a potent triglyceride reducer. Atherosclerosis 219(1):15–21

    CAS  PubMed  Google Scholar 

  • Obici L, Franceschini G, Calabresi L, Giorgetti S, Stoppini M, Merlini G, Bellotti V (2006) Structure, function and amyloidogenic propensity of apolipoprotein A-I. Amyloid 13(4):191–205

    CAS  PubMed  Google Scholar 

  • O’Donnell CW, Waldispühl J, Lis M, Halfmann R, Devadas S, Lindquist S, Berger B (2011) A method for probing the mutational landscape of amyloid structure. Bioinformatics 27(13):i34–i42

    PubMed Central  PubMed  Google Scholar 

  • Ohta S, Tanaka M, Sakakura K, Kawakami T, Aimoto S, Saito H (2009) Defining lipid-binding regions of human serum amyloid A using its fragment peptides. Chem Phys Lipids 162(1–2):62–68

    CAS  PubMed  Google Scholar 

  • Parasassi T, De Spirito M, Mei G, Brunelli R, Greco G, Lenzi L, Maulucci G, Nicolai E, Papi M, Arcovito G, Tosatto SC, Ursini F (2008) Low density lipoprotein misfolding and amyloidogenesis. FASEB J 22(7):2350–2356

    CAS  PubMed  Google Scholar 

  • Patel H, Bramall J, Waters H, De Beer MC, Woo P (1996) Expression of recombinant human serum amyloid A in mammalian cells and demonstration of the region necessary for high-density lipoprotein binding and amyloid fibril formation by site-directed mutagenesis. Biochem J 318(Pt 3):1041–1049

    CAS  PubMed Central  PubMed  Google Scholar 

  • Patel S, Chung SH, White G, Bao S, Celermajer DS (2010) The “atheroprotective” mediators apolipoprotein A-I and Foxp3 are over-abundant in unstable carotid plaques. Int J Cardiol 145(2):183–187

    CAS  PubMed  Google Scholar 

  • Paz M, Serrano L (2004) Sequence determinants of amyloid fibril formation. Proc Natl Acad Sci U S A 101:87–92

    Google Scholar 

  • Phillips MC (2013) New insights into the determination of HDL structure by apolipoproteins. J Lipid Res 54(8):2034–2048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Phillips MC (2014) Molecular mechanisms of cellular cholesterol efflux. J Biol Chem 289(35):24020–24029

    Google Scholar 

  • Rached FH, Chapman MJ, Kontush A (2014) An overview of the new frontiers in the treatment of atherogenic dyslipidemias. Clin Pharmacol Ther 96(1):57–63

    CAS  PubMed  Google Scholar 

  • Ramella NA, Rimoldi OJ, Prieto ED, Schinella GR, Sanchez SA, Jaureguiberry MS, Vela ME, Ferreira ST, Tricerri MA (2011) Human apolipoprotein A-I-derived amyloid: its association with atherosclerosis. PLoS ONE 6(7):e22532

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ramella NA, Schinella GR, Ferreira ST, Prieto ED, Vela ME, Ríos JL, Tricerri MA, Rimoldi OJ (2012) Human apolipoprotein A-I natural variants: molecular mechanisms underlying amyloidogenic propensity. PLoS ONE 7(8):e43755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Röcken C, Tautenhahn J, Bühling F, Sachwitz D, Vöckler S, Goette A, Bürger T (2006) Prevalence and pathology of amyloid in atherosclerotic arteries. Arterioscler Thromb Vasc Biol 26:676–677

    PubMed  Google Scholar 

  • Rothblat GH, Phillips MC (2010) High-density lipoprotein heterogeneity and function in reverse cholesterol transport. Curr Opin Lipidol 21:229–238

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rowczenio D, Dogan A, Theis JD, Vrana JA, Lachmann HJ, Wechalekar AD, Gilbertson JA, Hunt T, Gibbs SD, Sattianayagam PT, Pinney JH, Hawkins PN, Gillmore JD (2011) Amyloidogenicity and clinical phenotype associated with five novel mutations in apolipoprotein A-I. Am J Pathol 179(4):1978–1987

    CAS  PubMed Central  PubMed  Google Scholar 

  • Rozek A, Sparrow JT, Weisgraber KH, Cushley RJ (1999) Conformation of human apolipoprotein C-I in a lipid-mimetic environment determined by CD and NMR spectroscopy. Biochemistry 38(44):14475–14484

    CAS  PubMed  Google Scholar 

  • Rye KA, Barter PJ (2004) Formation and metabolism of prebeta-migrating, lipid-poor apolipoprotein A-I. Arterioscler Thromb Vasc Biol 24:421–428

    CAS  PubMed  Google Scholar 

  • Sabate R, Espargaro A, Graña-Montes R, Reverter D, Ventura S (2012) Native structure protects SUMO proteins from aggregation into amyloid fibrils. Biomacromolecules 13(6):1916–1926

    CAS  PubMed  Google Scholar 

  • Safar JG, Wille H, Geschwind MD, Deering C, Latawiec D, Serban A, King DJ, Legname G, Weisgraber KH, Mahley RW, Miller BL, Dearmond SJ, Prusiner SB (2006) Human prions and plasma lipoproteins. Proc Natl Acad Sci U S A 103(30):11312–11317

    CAS  PubMed Central  PubMed  Google Scholar 

  • Sawashita J, Kametani F, Hasegawa K, Tsutsumi-Yasuhara S, Zhang B, Yan J, Mori M, Naiki H, Higuchi K (2009) Amyloid fibrils formed by selective N-, C-terminal sequences of mouse apolipoprotein A-II. Biochim Biophys Acta 1794(10):1517–1529

    CAS  PubMed  Google Scholar 

  • Segrest JP, Pownall HJ, Jackson RL, Glenner GG, Pollock PS (1976) Amyloid A: amphipathic helixes and lipid binding. Biochemistry 15(15):3187–3191

    CAS  PubMed  Google Scholar 

  • Segrest JP, De Loof H, Dohlman JG, Brouillette CG, Anantharamaiah GM (1990) Amphipathic helix motif: classes and properties. Proteins 8:103–117

    CAS  PubMed  Google Scholar 

  • Segrest JP, Jones MK, De Loof H, Brouillette CG, Venkatachalapathi YV, Anantharamaiah GM (1992) The amphipathic helix in the exchangeable apolipoproteins: a review of secondary structure and function. J Lipid Res 33(2):141–166

    CAS  PubMed  Google Scholar 

  • Segrest JP, Garber DW, Brouillette CG, Harvey SC, Anantharamaiah GM (1994) The amphipathic alpha helix: a multifunctional structural motif in plasma apolipoproteins. Adv Protein Chem 45:303–369

    CAS  PubMed  Google Scholar 

  • Segrest JP, Jones MK, Dashti N (1999) N-terminal domain of apolipoprotein B has structural homology to lipovitellin and microsomal triglyceride transfer protein: a “lipid pocket” model for self-assembly of apob-containing lipoprotein particles. J Lipid Res 40(8):1401–1416

    CAS  PubMed  Google Scholar 

  • Segrest JP, Jones MK, De Loof H, Dashti N (2001) Structure of apolipoprotein B-100 in low density lipoproteins. J Lipid Res 42(9):1346–1367

    CAS  PubMed  Google Scholar 

  • Sehayek E, Eisenberg S (1991) Mechanisms of inhibition by apolipoprotein C of apolipoprotein E-dependent cellular metabolism of human triglyceride-rich lipoproteins through the low density lipoprotein receptor pathway. J Biol Chem 266(27):18259–18267

    CAS  PubMed  Google Scholar 

  • Shachter NS (2001) Apolipoproteins C-I and C-III as important modulators of lipoprotein metabolism. Curr Opin Lipidol 12(3):297–304

    CAS  PubMed  Google Scholar 

  • Sharma V, Forte TM, Ryan RO (2013) Influence of apolipoprotein A-V on the metabolic fate of triacylglycerol. Curr Opin Lipidol 24(2):153–159

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shewmaker F, McGlinchey RP, Wickner RB (2011) Structural insights into functional and pathological amyloid. J Biol Chem 286(19):16533–16540

    CAS  PubMed Central  PubMed  Google Scholar 

  • Shih YH, Tsai KJ, Lee CW, Shiesh SC, Chen WT, Pai MC, Kuo YM (2014) Apolipoprotein C-III is an Amyloid-β-binding protein and an early marker for Alzheimer’s disease. J Alzheimers Dis 41(3):855–865

    CAS  PubMed  Google Scholar 

  • Silva RA, Schneeweis LA, Krishnan SC, Zhang X, Axelsen PH, Davidson WS (2007) The structure of apolipoprotein A-II in discoidal high density lipoproteins. J Biol Chem 282(13):9713–9121

    CAS  PubMed  Google Scholar 

  • Silva BA, Breydo L, Uversky VN (2013) Targeting the chameleon: a focused look at α-synuclein and its roles in neurodegeneration. Mol Neurobiol 47(2):446–459

    CAS  PubMed  Google Scholar 

  • Sorci-Thomas MG, Thomas MJ (2002) The effects of altered apolipoprotein A-I structure on plasma HDL concentration. Trends Cardiovasc Med 12(3):121–128

    CAS  PubMed  Google Scholar 

  • Sorci-Thomas MG, Thomas MJ (2013) Why targeting HDL should work as a therapeutic tool, but has not. J Cardiovasc Pharmacol 62(3):239–246

    CAS  PubMed Central  PubMed  Google Scholar 

  • Srinivasan S, Patke S, Wang Y, Ye Z, Litt J, Srivastava SK, Lopez MM, Kurouski D, Lednev IK, Kane RS, Colón W (2013) Pathogenic serum amyloid A 1.1 shows a long oligomer-rich fibrillation lag phase contrary to the highly amyloidogenic non-pathogenic SAA2.2. J Biol Chem 288(4):2744–2755

    CAS  PubMed Central  PubMed  Google Scholar 

  • Stewart CR, Tseng AA, Mok YF, Staples MK, Schiesser CH, Lawrence LJ, Varghese JN, Moore KJ, Howlett GJ (2005) Oxidation of low-density lipoproteins induces amyloid-like structures that are recognized by macrophages. Biochemistry 44(25):9108–9116

    CAS  PubMed  Google Scholar 

  • Strittmatter WJ, Saunders AM, Schmechel D, Pericak-Vance M, Enghild J, Salvesen GS, Roses AD (1993) Apolipoprotein E: high-avidity binding to beta-amyloid and increased frequency of type 4 allele in late-onset familial Alzheimer disease. Proc Natl Acad Sci U S A 90(5):1977–1981

    CAS  PubMed Central  PubMed  Google Scholar 

  • Suri S, Heise V, Trachtenberg AJ, Mackay CE (2013) The forgotten APOE allele: a review of the evidence and suggested mechanisms for the protective effect of APOE ɛ2. Neurosci Biobehav Rev 37(10 Pt 2):2878–2886

    CAS  PubMed  Google Scholar 

  • Suzuki M, Wada H, Maeda S, Saito K, Minatoguchi S, Saito K, Seishima M (2005) Increased plasma lipid-poor apolipoprotein A-I in patients with coronary artery disease. Clin Chem 51:132–137

    CAS  PubMed  Google Scholar 

  • Takase H, Tanaka M, Miyagawa S, Yamada T, Mukai T (2014) Effect of amino acid variations in the central region of human serum amyloid A on the amyloidogenic properties. Biochem Biophys Res Commun 444(1):92–97

    CAS  PubMed  Google Scholar 

  • Teoh CL, Griffin MD, Howlett GJ (2011a) Apolipoproteins and amyloid fibril formation in atherosclerosis. Protein Cell 2(2):116–127

    CAS  PubMed  Google Scholar 

  • Teoh CL, Pham CL, Todorova N, Hung A, Lincoln CN, Lees E, Lam YH, Binger KJ, Thomson NH, Radford SE, Smith TA, Müller SA, Engel A, Griffin MD, Yarovsky I, Gooley PR, Howlett GJ (2011b) A structural model for apolipoprotein C-II amyloid fibrils: experimental characterization and molecular dynamics simulations. J Mol Biol 405(5):1246–1266

    CAS  PubMed  Google Scholar 

  • Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci U S A 103(11):4074–4078

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tian J, Wu N, Guo J, Fan Y (2009) Prediction of amyloid fibril-forming segments based on a support vector machine. BMC Bioinformatics 10(S1):S45

    PubMed Central  PubMed  Google Scholar 

  • Toth PP, Barter PJ, Rosenson RS, Boden WE, Chapman MJ, Cuchel M, D’Agostino RB Sr, Davidson MH, Davidson WS, Heinecke JW, Karas RH, Kontush A, Krauss RM, Miller M, Rader DJ (2013) High-density lipoproteins: a consensus statement from the National Lipid Association. J Clin Lipidol 7(5):484–525

    PubMed  Google Scholar 

  • Trovato A, Seno F, Tosatto SC (2007) The PASTA server for protein aggregation prediction. Protein Eng Des Sel 20(10):521–523

    CAS  PubMed  Google Scholar 

  • Tsolis AC, Papandreou NC, Iconomidou VA, Hamodrakas SJ (2013) A consensus method for the prediction of ‘aggregation-prone’ peptides in globular proteins. PLoS ONE 8(1):e54175

    CAS  PubMed Central  PubMed  Google Scholar 

  • Tubb MR, Silva RA, Pearson KJ, Tso P, Liu M, Davidson WS (2007) Modulation of apolipoprotein A-IV lipid binding by an interaction between the N and C termini. J Biol Chem 282(39):28385–28394

    CAS  PubMed  Google Scholar 

  • Tycko R (2006) Molecular structure of amyloid fibrils: insights from solid-state NMR. Q Rev Biophys 39(1):1–55

    CAS  PubMed  Google Scholar 

  • Tzotzos S, Doig AJ (2010) Amyloidogenic sequences in native protein structures. Protein Sci 19(2):327–348

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ursini F, Davies KJ, Maiorino M, Parasassi T, Sevanian A (2002) Atherosclerosis: another protein misfolding disease? Trends Mol Med 8(8):370–374

    CAS  PubMed  Google Scholar 

  • van der Hilst JC, Yamada T, Op den Camp HJ, van der Meer JW, Drenth JP, Simon A (2008) Increased susceptibility of serum amyloid A 1.1 to degradation by MMP-1: potential explanation for higher risk of type AA amyloidosis. Rheumatology 47(11):1651–1654

    PubMed  Google Scholar 

  • van der Westhuyzen DR, de Beer FC, Webb NR (2007) HDL cholesterol transport during inflammation. Curr Opin Lipidol 18(2):147–151

    PubMed  Google Scholar 

  • Ventura S, Zurdo J, Narayanan S, Parreño M, Mangues R, Reif B, Chiti F, Giannoni E, Dobson CM, Aviles FX, Serrano L (2004) Short amino acid stretches can mediate amyloid formation in globular proteins: the Src homology 3 (SH3) case. Proc Natl Acad Sci U S A 101(19):7258–7263

    CAS  PubMed Central  PubMed  Google Scholar 

  • Verghese PB, Castellano JM, Holtzman DM (2011) Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 10(3):241–252

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walker RG, Deng X, Melchior JT, Morris J, Tso P, Jones MK, Segrest JP, Thompson TB, Davidson WS (2014) The structure of human apolipoprotein A-IV as revealed by stable isotope-assisted cross-linking, molecular dynamics, and small angle x-ray scattering. J Biol Chem 289(9):5596–5608

    CAS  PubMed Central  PubMed  Google Scholar 

  • Walsh I, Seno F, Tosatto SC, Trovato A (2014) PASTA 2.0: an improved server for protein aggregation prediction. Nucleic Acids Res 42:W301–W307 (Web Server issue)

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wang L, Lashuel HA, Colón W (2005) From hexamer to amyloid: marginal stability of apolipoprotein SAA2.2 leads to in vitro fibril formation at physiological temperature. Amyloid 12(3):139–148

    CAS  PubMed  Google Scholar 

  • Wang L, Jiang ZG, McKnight CJ, Small DM (2010) Interfacial properties of apolipoprotein B292–593 (B6.4–13) and B611–782 (B13–17). Insights into the structure of the lipovitellin homology region in apolipoprotein B. Biochemistry 49(18):3898–3907

    CAS  PubMed Central  PubMed  Google Scholar 

  • Weers PM, Narayanaswami V, Choy N, Luty R, Hicks L, Kay CM, Ryan RO (2003) Lipid binding ability of human apolipoprotein E N-terminal domain isoforms: correlation with protein stability? Biophys Chem 100(1–3):481–492

    CAS  PubMed  Google Scholar 

  • Weinberg RB, Cook VR, Beckstead JA, Martin DD, Gallagher JW, Shelness GS, Ryan RO (2003) Structure and interfacial properties of human apolipoprotein A-V. J Biol Chem 278(36):34438–3444

    CAS  PubMed  Google Scholar 

  • Wilson C, Wardell MR, Weisgraber KH, Mahley RW, Agard DA (1991) Three-dimensional structure of the LDL receptor-binding domain of human apolipoprotein E. Science 252(5014):1817–1822

    CAS  PubMed  Google Scholar 

  • Wilson LM, Mok YF, Binger KJ, Griffin MD, Mertens HD, Lin F, Wade JD, Gooley PR, Howlett GJ (2007) A structural core within apolipoprotein C-II amyloid fibrils identified using hydrogen exchange and proteolysis. J Mol Biol 366(5):1639–1651

    CAS  PubMed  Google Scholar 

  • Wisniewski T, Lalowski M, Golabek A, Vogel T, Frangione B (1995) Is Alzheimer’s disease an apolipoprotein E amyloidosis? Lancet 345:956–958

    CAS  PubMed  Google Scholar 

  • Wong K, Beckstead JA, Lee D, Weers PM, Guigard E, Kay CM, Ryan RO (2008) The N-terminus of apolipoprotein A-V adopts a helix bundle molecular architecture. Biochemistry 47(33):8768–8774

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong YQ, Binger KJ, Howlett GJ, Griffin MD (2010) Methionine oxidation induces amyloid fibril formation by full-length apolipoprotein A-I. Proc Natl Acad Sci U S A 107(5):1977–1982

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wong YQ, Binger KJ, Howlett GJ, Griffin MD (2012) Identification of an amyloid fibril forming peptide comprising residues 46–59 of apolipoprotein A-I. FEBS Lett 586:1754–1758

    CAS  PubMed  Google Scholar 

  • Yamada T, Kluve-Beckerman B, Liepnieks JJ, Benson MD (1995) In vitro degradation of serum amyloid A by cathepsin D and other acid proteases: possible protection against amyloid fibril formation. Scand J Immunol 41(6):570–574

    CAS  PubMed  Google Scholar 

  • Yao Z, Wang Y (2012) Apolipoprotein C-III and hepatic triglyceride-rich lipoprotein production. Curr Opin Lipidol 23(3):206–212

    CAS  PubMed  Google Scholar 

  • Zhang Z, Chen H, Lai L (2007) Identification of amyloid fibril-forming segments based on structure and residue-based statistical potential. Bioinformatics 23:2218–2225

    CAS  PubMed  Google Scholar 

  • Zibaee S, Makin OS, Goedert M, Serpell LC (2007) A simple algorithm locates β-strands in the amyloid fibril core of α-synuclein, Aβ, and tau using the amino acid sequence alone. Protein Sci 16:906–918

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgement

We thank all members of the Gursky laboratory for useful discussions and support. Special thanks are due to Donald L. Gantz for editorial assistance and to Dr. Oxana Galzitskaya for critical comments and help with apolipoprotein ranking. This work was supported by the National Institutes of Health grant GM067260 to OG.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Olga Gursky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Das, M., Gursky, O. (2015). Amyloid-Forming Properties of Human Apolipoproteins: Sequence Analyses and Structural Insights. In: Gursky, O. (eds) Lipids in Protein Misfolding. Advances in Experimental Medicine and Biology, vol 855. Springer, Cham. https://doi.org/10.1007/978-3-319-17344-3_8

Download citation

Publish with us

Policies and ethics