Skip to main content

Some New Consequences of the Hypothesis That P Has Fixed Polynomial-Size Circuits

  • Conference paper
  • First Online:
Book cover Theory and Applications of Models of Computation (TAMC 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9076))

Abstract

We present some new consequences of the hypothesis that \(\mathbf {P}\) can be computed by fixed polynomial-size circuits since [Lipton SCTC 94]. For instance, we show that the hypothesis implies that some small circuit family and BPP machines cannot be fooled by any complexity-theoretic pseudorandom generator \(G: \{0,1\}^{\varTheta (\log n)}\) to \(\{0,1\}^{n}\), which means the known derandomization argument of \(\mathbf {BPP}=\mathbf {P}\) no longer works. It also implies the existence of 2-round public-coin zero-knowledge proofs for \(\mathbf {NP}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Barak, B., Goldreich, O., Impagliazzo, R., Rudich, S., Sahai, A., Vadhan, S.P., Yang, K.: On the (im)possibility of obfuscating programs. J. ACM 59(2), 6 (2012)

    Article  MathSciNet  Google Scholar 

  2. Barak, B., Lindell, Y., Vadhan, S.P.: Lower bounds for non-black-box zero knowledge. J. Comput. Syst. Sci. 72(2), 321–391 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Buhrman, H., Fortnow, L., Thierauf, T.: Nonrelativizing separations. In: IEEE Conference on Computational Complexity, pp. 8–12. IEEE Computer Society (1998)

    Google Scholar 

  4. Dwork, C., Naor, M.: Zaps and their applications. In: FOCS, pp. 283–293. IEEE Computer Society (2000)

    Google Scholar 

  5. Garg, S., Gentry, C., Halevi, S., Raykova, M., Sahai, A., Waters, B.: Candidate indistinguishability obfuscation and functional encryption for all circuits. In: FOCS, pp. 40–49. IEEE Computer Society (2013)

    Google Scholar 

  6. Goldreich, O., Kahan, A.: How to construct constant-round zero-knowledge proof systems for np. J. Cryptol. 9(3), 167–190 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goldreich, O., Oren, Y.: Definitions and properties of zero-knowledge proof systems. J. Cryptol. 7(1), 1–32 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Comput. 18(1), 186–208 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Håstad, J., Impagliazzo, R., Levin, L.A., Luby, M.: A pseudorandom generator from any one-way function. SIAM J. Comput. 28(4), 1364–1396 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  10. Impagliazzo, R., Wigderson, A.: P = BPP if e requires exponential circuits: derandomizing the xor lemma. In: Leighton, F.T., Shor, P.W. (eds.) STOC, pp. 220–229. ACM (1997)

    Google Scholar 

  11. Iwama, K., Morizumi, H.: An explicit lower bound of 5\(n\)-\(o\)(\(n\)) for boolean circuits. In: Diks, K., Rytter, W. (eds.) MFCS 2002. LNCS, vol. 2420, pp. 353–364. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Kannan, R.: Circuit-size lower bounds and non-reducibility to sparse sets. Inf. Control 55(1–3), 40–56 (1982)

    Article  MATH  Google Scholar 

  13. Karp, R.M., Lipton, R.J.: Some connections between nonuniform and uniform complexity classes. In: Miller, R.E., Ginsburg, S., Burkhard, W.A., Lipton, R.J. (eds.) STOC, pp. 302–309. ACM (1980)

    Google Scholar 

  14. Katz, J.: Which languages have 4-round zero-knowledge proofs? In: Canetti, R. (ed.) TCC 2008. LNCS, vol. 4948, pp. 73–88. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  15. Koppula, V., Lewko, A.B., Waters, B.: Indistinguishability obfuscation for turing machines with unbounded memory. Cryptology ePrint Archive, Report 2014/925 (2014). http://eprint.iacr.org/

  16. Lipton, R.J.: Some consequences of our failure to prove non-linear lower bounds on explicit functions. In: Structure in Complexity Theory Conference, pp. 79–87. IEEE Computer Society (1994)

    Google Scholar 

  17. Santhanam, R.: Circuit lower bounds for merlin-arthur classes. In: Johnson, D.S., Feige, U. (eds.) STOC, pp. 275–283. ACM (2007)

    Google Scholar 

  18. Shaltiel, R., Umans, C.: Simple extractors for all min-entropies and a new pseudo-random generator. In: FOCS, pp. 648–657. IEEE Computer Society (2001)

    Google Scholar 

  19. Umans, C.: Pseudo-random generators for all hardnesses. J. Comput. Syst. Sci. 67(2), 419–440 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  20. Vinodchandran, N.V.: A note on the circuit complexity.In: Electronic Colloquium on Computational Complexity (ECCC) (056) (2004)

    Google Scholar 

  21. Williams, R.: Improving exhaustive search implies superpolynomial lower bounds. In: Schulman, L.J. (ed.) STOC, pp. 231–240. ACM (2010)

    Google Scholar 

Download references

Acknowledgments

The author is grateful to the reviewers of TAMC 2015 for their detailed and useful comments. This work is supported by the National Natural Science Foundation of China (Grant No. 61100209) and Doctoral Fund of Ministry of Education of China (Grant No. 20120073110094).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Ding .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Ding, N. (2015). Some New Consequences of the Hypothesis That P Has Fixed Polynomial-Size Circuits. In: Jain, R., Jain, S., Stephan, F. (eds) Theory and Applications of Models of Computation. TAMC 2015. Lecture Notes in Computer Science(), vol 9076. Springer, Cham. https://doi.org/10.1007/978-3-319-17142-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17142-5_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17141-8

  • Online ISBN: 978-3-319-17142-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics