Skip to main content

Bulk Metallic Glasses: Mechanical Properties and Performance

  • Chapter
  • First Online:
Mechanics of Advanced Materials

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 2302 Accesses

Abstract

In this paper, a history of development of bulk metallic glasses (BMGs) was presented, followed by a review of fundamental mechanisms of their deformation and fracture. In this study, observations of fracture surfaces of the Zr-Cu-based BMG exposed to a 3-point test revealed features that are different from those observed in crystalline materials. Indentation techniques were extensively used to characterise elastic deformation of the studied BMG alloy, followed by a systematic analysis of initiation and evolution of shear-band localisation in the indented material. Our results, obtained with the suggested wedge-indentation technique, demonstrated initiation of shear bands in the material volume. This technique can be particularly useful for development of appropriate constitutive models to analyse plastic events in amorphous materials in the small-length scale. A current state of constitutive models of deformation and fracture behaviour of BMGs are presented together with modelling challenges. Simulation of simple tensile and compressive tests were conducted with JH-2, JHB and Drucker-Prager constitutive models by employing identical boundary conditions, type of element and specimen’s geometry. Based on the obtained simulation results, the JH-2 model was considered as not suitable for quasi-static analysis due to ambiguity of the data produced with it for uniaxial tensile and compressive conditions. However, it is concluded that the extended Drucker-Prager and JHB models can be used to study deformation modes in BMGs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aning, A., Wang, Z., Courtney, T.: Tungsten solution kinetics and amorphization of nickel in mechanically alloyed Ni-W alloys. Acta Metall. Mater. 41(1), 165–174 (1993)

    Article  Google Scholar 

  2. Argon, A.: Plastic deformation in metallic glasses. Acta Metall. 27(1), 47–58 (1979)

    Article  Google Scholar 

  3. Bharathula, A., Lee, S.W., Wright, W.J, Flores, K.M.: Compression testing of metallic glass at small length scales: Effects on deformation mode and stability. Acta Mater. 58, 5789–5796 (2010)

    Google Scholar 

  4. Bhowmick, R., Raghavan, R., Chattopadhyay, K., Ramamurty, U.: Plastic flow softening in a bulk metallic glass. Acta Mater. 54(16), 4221–4228 (2006)

    Article  Google Scholar 

  5. Brace, W.F., Bombolaski, E.G.: A note on brittle crack growth in compression. J. Geophys. Res. 68(12), 3709–3713 (1963)

    Article  Google Scholar 

  6. Brandtzaeg, A.: Failure of a Material Composed of Non-isotropic Elements, Trondnjem Bruns, Trondhjem (1927)

    Google Scholar 

  7. Byrne, C.J., Eldrup, M.: Materials science. Bulk metallic glasses. Science 321(5888), 502–503 (2008). (New York)

    Google Scholar 

  8. Cai, H., Kalceff, S.M.A., Lawn, B.R.: Deformation and fracture of mica-containing glass-ceramics in Hertzian contacts. J. Mater. Res. 9(03), 762–770 (1994)

    Article  Google Scholar 

  9. Chen, Y., Jiang, M.Q., Dai, L.H.: How does the initial free volume distribution affect shear band formation in metallic glass? Sci China 54(8), 1488–1494 (2011)

    Google Scholar 

  10. Cheng, J., Ghosh, S.: Computational modeling of plastic deformation and shear banding in bulk metallic glasses. Comput. Mater. Sci. 69, 494–504 (2013)

    Article  Google Scholar 

  11. Chu, Jinn P., Jang, J.S.C., Huang, J.C., Chouc, H.S., Yangd, Y., Yed, J.C., Wange, Y.C., Leef, J.W., Liug, F.X., Liawg, P.K., Chenh, Y.C., Leeh, C.M., Lih, C.L., Rullyania, Cut: Thin film metallic glasses: unique properties and potential applications. Thin Solid Films 520(16), 5097–5122 (2012)

    Article  Google Scholar 

  12. De Hosson, J.T.M.: Advances in transmission electron microscopy: In situ straining and in situ compression experiments on metallic glasses. Microsc. Res. Tech. 72, (2009)

    Google Scholar 

  13. Dubach, A., Raghavan, R., Loffler, J.F., Michler, J., Ramamurty, U.: Micropillar compression studies on a bulk metallic glass in different structural states. Scripta Mater. 60(7), 567–570 (2009)

    Google Scholar 

  14. Eswar Prasad, K., Ramamurty, U.: Effect of temperature on the plastic zone size and the shear band density in a bulk metallic glass. Mater. Sci. Eng. A 535, 48–52 (2012)

    Article  Google Scholar 

  15. Fischer-Cripps, A.: Elastic–plastic behaviour in materials loaded with a spherical indenter. J. Mater. Sci. 32(3), 727–736 (1997)

    Article  Google Scholar 

  16. Fischer-Cripps, A.: Use of combined elastic modulus in the analysis of depth-sensing indentation data. J. Mater. Res. 16(11), 3050–3052 (2001)

    Article  Google Scholar 

  17. Frost, H.J., Ashby, M.F.: Deformation Mechanism Maps: The Plasticity and Creep of Metals and Ceramics, Pergamon Press, New York (1982)

    Google Scholar 

  18. Gao, Y.F.: An implicit finite element method for simulating inhomogeneous deformation and shear bands of amorphous alloys based on the free-volume model. Modell. Simul. Mater. Sci. Eng. 14(8), 1329–1345 (2006)

    Article  Google Scholar 

  19. Glucklich, J.: Fracture of plain concrete. J. Eng. Mech. 89, 127–138 (1963)

    Google Scholar 

  20. Greer, A.L., Cheng, Y.Q., Ma, E.: Shear bands in metallic glasses. Mater. Sci. Eng., R 74(4), 71–132 (2013)

    Article  Google Scholar 

  21. Greer, J.R., Hosson, De, Jeff, ThM: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater Sci. 56(6), 654–724 (2011)

    Article  Google Scholar 

  22. Gözlüklü, B., Coker, D.: Modeling of the dynamic delamination of L-shaped unidirectional laminated composites. Compos. Struct. 94(4), 1430–1442 (2012)

    Article  Google Scholar 

  23. Holmquist, T.J., Johnson, G.R.: Characterization and evaluation of silicon carbide for high-velocity impact. J. Appl. Phys. 97(9), 093502 (2005)

    Article  Google Scholar 

  24. Huang, R., Suo, Z., Prevost, J., Nix, W.: Inhomogeneous deformation in metallic glasses. J. Mech. Phys. Solids 50(5), 1011–1027 (2002)

    Article  MATH  Google Scholar 

  25. Inoue, A., Shinohara, Y., Gook, J.S.: Thermal and magnetic properties of bulk Fe-based glassy alloys prepared by copper mold casting. Mater. Trans. JIM 36, 1427–1433 (1995)

    Article  Google Scholar 

  26. Jana, S., Bhowmick, R., Kawamura, Y., Chattopadhyay, K., Ramamurty, U.: Deformation morphology underneath the Vickers indent in a Zr-based bulk metallic glass. Intermetallics 12(10), 1097–1102 (2004)

    Article  Google Scholar 

  27. Jana, S., Ramamurty, U., Chattopadhyay, K., Kawamura, Y.: Subsurface deformation during Vickers indentation of bulk metallic glasses. Mater. Sci. Eng., A 375, 1191–1195 (2004)

    Article  Google Scholar 

  28. Jang, D., Greer, J.R.: Transition from a strong-yet-brittle to a stronger-and-ductile state by size reduction of metallic glasses. Nat. Mater. 9(3), 215–219 (2010)

    Google Scholar 

  29. Jiang, M.Q., Dai, L.H.: On the origin of shear banding instability in metallic glasses. J. Mech. Phys. Solids. 57 (8), 1267–1292 (2009)

    Google Scholar 

  30. Johnson, W.L.: Thermodynamic and kinetic aspects of the crystal to glass transformation in metallic materials. Prog. Mater. Sci. 30(2), 81–134 (1986)

    Article  Google Scholar 

  31. Johnson, G.R., Holmquist, T.J.: Response of boron carbide subjected to large strains, high strain rates, and high pressures. J. Appl. Phys. 85(12), 8060–8073 (1999)

    Article  Google Scholar 

  32. Klement, W., Willens, R. and Duwez, P.: Non-crystalline structure in solidified gold–silicon alloys. Nature. 187(5), 867–870 (1960)

    Google Scholar 

  33. Lai, Y.H., Lee, C.J., Cheng, Y.T., Chou, H.S., Chen, H.M., Du, X.H., Chang, C.I., Huang, J.C., Jian, S.R., Jang, J.S.C., Nieh, T.G.: Bulk and microscale compressive behavior of a Zr-based metallic glass. 58(10), 890–893 (2008)

    Google Scholar 

  34. Lee, C.J., Huang, J.C., Nieh, T.G.: Sample size effect and microcompression of Mg65Cu25Gd10 metallic glass. Appl. Phys. Lett. 91, (2007)

    Google Scholar 

  35. Lewandowski, J., Wang, W., Greer, A.: Intrinsic plasticity or brittleness of metallic glasses. Philos. Mag. Lett. 85(2), 77–87 (2005)

    Article  Google Scholar 

  36. Li, J.C., Wei, Q., Chen, X.W., Huang, F.L.: On the mechanism of deformation and failure in bulk metallic glasses. Mater. Sci. Eng., A 610, 91–105 (2014)

    Article  Google Scholar 

  37. Liu, Z., Wang, R., Qu, R., Zhang, Z.: Precisely predicting and designing the elasticity of metallic glasses. J. Appl. Phys. 115(20), 203513 (2014)

    Article  Google Scholar 

  38. Madge, S., Louzguine-Luzgin, D., Lewandowski, J., Greer, A.: Toughness, extrinsic effects and Poisson’s ratio of bulk metallic glasses. Acta Mater. 60(12), 4800–4809 (2012)

    Article  Google Scholar 

  39. Matthews, D., Ocelik, V., Bronsveld, P., De Hosson, JThM: An electron microscopy appraisal of tensile fracture in metallic glasses. Acta Mater. 56(8), 1762–1773 (2008)

    Article  Google Scholar 

  40. Megusar, J., Argon, A., Grant, N.: Plastic flow and fracture in Pd80Si20 near Tg. Mater. Sci. Eng. 38(1), 63–72 (1979)

    Article  Google Scholar 

  41. Mulhern, J., Rogers, T., Spencer, A.: A continuum theory of a plastic-elastic fibre-reinforced material. Int. J. Eng. Sci. 7(2), 129–152 (1969)

    Article  MATH  Google Scholar 

  42. Nekouie, V., Abeygunawardane-Arachchige, G., Kühn, U., Roy, A., Silberschmidt, V.V.: Indentation-induced deformation localisation in Zr-Cu-based metallic glass. J. Alloy. Compd. 615(5), 93–97 (2014)

    Article  Google Scholar 

  43. Nemat-Nasser, S., Li, J.Y.: Electromechanical response of ionic polymer-metal composites. J. Appl. Phys. 87(7), 3321–3331 (2000)

    Article  Google Scholar 

  44. Packard, C., Schuh, C.: Initiation of shear bands near a stress concentration in metallic glass. Acta Mater. 55(16), 5348–5358 (2007)

    Article  Google Scholar 

  45. Ramamurty, U., Jana, S., Kawamura, Y., Chattopadhyay, K.: Hardness and plastic deformation in a bulk metallic glass. Acta Mater. 53(3), 705–717 (2005)

    Article  Google Scholar 

  46. Ruan, H., Zhang, L., Lu, J.: A new constitutive model for shear banding instability in metallic glass. Int. J. Solids Struct. 48(21), 3112–3127 (2011)

    Article  Google Scholar 

  47. Schroers, J., Johnson, W.L.: Ductile bulk metallic glass. Phys. Rev. Lett. 93(25), 255506 (2004)

    Article  Google Scholar 

  48. Schuh, C.A., Hufnagel, T.C., Ramamurty, U.: Mechanical behavior of amorphous alloys. Acta Mater. 55(12), 4067–4109 (2007)

    Article  Google Scholar 

  49. Schuster, B.E., Wei, Q., Hufnagel, T.C., Ramesh, K.T.: Size-independent strength and deformation mode in compression of a Pd-based metallic glass. Acta Matter. 56, 5091–5100 (2013)

    Google Scholar 

  50. Schwarz, R., Johnson, W.: Formation of an amorphous alloy by solid-state reaction of the pure polycrystalline metals. Phys. Rev. Lett. 51(5), 415 (1983)

    Article  Google Scholar 

  51. Shi, Y., Falk Michael, L.: Stress-induced structural transformation and shear banding during simulated nanoindentation of a metallic glass. Acta Mater. 55(13), 4317–4324 (2007)

    Article  Google Scholar 

  52. Spaepen, F.: A microscopic mechanism for steady state inhomogeneous flow in metallic glasses. Acta Metall. 25(4), 407–415 (1977)

    Article  Google Scholar 

  53. Steif, P., Spaepen, F., Hutchinson, J.: Strain localization in amorphous metals. Acta Metall. 30(2), 447–455 (1982)

    Article  Google Scholar 

  54. Thamburaja, P.: Length scale effects on the shear localization process in metallic glasses: A theoretical and computational study. J. Mech. Phys. Solids 59(8), 1552–1575 (2011)

    Article  MATH  Google Scholar 

  55. Vaidyanathan, R., Dao, M., Ravichandran, G., Suresh, S.: Study of mechanical deformation in bulk metallic glass through instrumented indentation. Acta Mater. 49(18), 3781–3789 (2001)

    Article  Google Scholar 

  56. Van Diepen, A., Buschow, K.: Hydrogen absorption in CeFe2 and ThFe3. Solid State Commun. 22(2), 113–115 (1977)

    Article  Google Scholar 

  57. Vincent, S., Basu, J., Murty, B., Bhatt, J.: Micro indentation study on Cu 60Zr20Ti20 metallic glass. Mater. Sci. Eng., A 550, 160–166 (2012)

    Article  Google Scholar 

  58. Volkert, C.A., Donohue, A., Spaepen, F.: Effect of sample size on deformation in amorphous metals. J. Appl. Phys. 103, 1–5 (2008)

    Google Scholar 

  59. Wang, W.H.: The elastic properties, elastic models and elastic perspectives of metallic glasses. Prog. Mater. Sci. 57(3), 487–656 (2012)

    Article  Google Scholar 

  60. Wang, E.Z., Shrive, N.G.: Brittle fracture in compression: Mechanisms, models and criteria. Eng. Fract. Mech. 52(6), 1107–1126 (1995)

    Article  Google Scholar 

  61. Yang, Q., Mota, A., Oriz, M.: A finite-deformation constitutive model of bulk metallic glass plasticity. Comput. Mech. 37, 194–204 (2006)

    Article  MATH  Google Scholar 

  62. Yeh, X., Samwer, K., Johnson, W.: Formation of an amorphous metallic hydride by reaction of hydrogen with crystalline intermetallic compounds—a new method of synthesizing metallic glasses. Appl. Phys. Lett. 42(3), 242–243 (1983)

    Article  Google Scholar 

  63. Zhang, H., Jing, X., Subhash, G., Kecskes, L.J., Dowding, R.J.: Investigation of shear band evolution in amorphous alloys beneath a Vickers indentation. Acta Mater. 53(14), 3849–3859 (2005)

    Article  Google Scholar 

  64. Zhao, M., Li, M.: A constitutive theory and modeling on deviation of shear band inclination angles in bulk metallic glasses. J. Mater. Res. 24(08), 2688–2696 (2009)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to V. Nekouie .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Nekouie, V., Abeygunawardane-Arachchige, G., Roy, A., Silberschmidt, V.V. (2015). Bulk Metallic Glasses: Mechanical Properties and Performance. In: Silberschmidt, V., Matveenko, V. (eds) Mechanics of Advanced Materials. Engineering Materials. Springer, Cham. https://doi.org/10.1007/978-3-319-17118-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-17118-0_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-17117-3

  • Online ISBN: 978-3-319-17118-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics