Skip to main content

The SVZ and Its Relationship to Stem Cell Based Neuro-oncogenesis

  • Chapter

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 853))

Abstract

Gliomas are primary cancers of the brain and the most lethal cancers known to man. In recent years the discovery of germinal regions in the postnatal brain containing neuronal stem and progenitor cell populations has led to the hypothesis that these cells may themselves serve as an origin of brain tumors. Stem cells that reside within the glioma tumor have been shown to display nonneoplastic stem-like characteristics, including expression of various stem cell markers, as well as capacity for self-renewal and multipotency. Furthermore, glioma tumors display marked similarities to the germinal regions of the brain. Investigations of human neural stem cells and their potential for malignancy may finally identify a cell-of-origin for human gliomas. This, in turn, may facilitate better therapeutic targeting leading to improved prognosis for glioma patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Calabrese C, Poppleton H, Kocak M, Hogg TL, Fuller C, Hamner B, Allen M. A perivascular niche for brain tumor stem cells. Cancer Cell. 2007;11(1):69–82.

    Article  CAS  PubMed  Google Scholar 

  2. Gilbertson RJ, Rich JN. Making a tumour’s bed: glioblastoma stem cells and the vascular niche. Nat Rev Cancer. 2007;7(10):733–6.

    Article  CAS  PubMed  Google Scholar 

  3. Palmer TD, Willhoite AR, Gage FH. Vascular niche for adult hippocampal neurogenesis. J Comp Neurol. 2000;425(4):479–94.

    Article  CAS  PubMed  Google Scholar 

  4. Knizetova P, Darling JL, Bartek J. Vascular endothelial growth factor in astroglioma stem cell biology and response to therapy. J Cell Mol Med. 2008;12(1):111–25.

    Article  CAS  PubMed  Google Scholar 

  5. Jain RK, Di Tomaso E, Duda DG, Loeffler JS, Sorensen AG, Batchelor TT. Angiogenesis in brain tumours. Nat Rev Neurosci. 2007;8(8):610–22.

    Article  CAS  PubMed  Google Scholar 

  6. Bao S, Wu Q, Sathornsumetee S, Hao Y, Li Z, Hjelmeland AB, Rich JN. Stem cell-like glioma cells promote tumor angiogenesis through vascular endothelial growth factor. Cancer Res. 2006;66(16):7843–8.

    Article  CAS  PubMed  Google Scholar 

  7. Ruiz C, Huang W, Hegi ME, Lange K, Hamou M-F, Fluri E, Orend G. Differential gene expression analysis reveals activation of growth promoting signaling pathways by tenascin-C. Cancer Res. 2004;64(20):7377–85.

    Article  CAS  PubMed  Google Scholar 

  8. Garcion E, Halilagic A, Faissner A. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development. 2004;131(14):3423–32.

    Article  CAS  PubMed  Google Scholar 

  9. Anido J, Sáez-Borderías A, Gonzàlez-Juncà A, Rodón L, Folch G, Carmona MA, Prudkin L. TGF-β Receptor Inhibitors Target the CD44 high/Id1 high Glioma-Initiating Cell Population in Human Glioblastoma. Cancer Cell. 2010;18(6):655–68.

    Google Scholar 

  10. Fu J, Yang Q-Y, Sai K, Chen F-R, Pang JC, Ng H-K, Chen Z-P. TGM2 inhibition attenuates ID1 expression in CD44-high glioma-initiating cells. Neuro Oncol. 2013;15(10):1353–65.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Haylock DN, Nilsson SK. Perspective stem cell regulation by the hematopoietic stem cell niche. Cell Cycle. 2005;4(10):1353–5.

    Article  CAS  PubMed  Google Scholar 

  12. Pietras A, Katz AM, Ekström EJ, Wee B, Halliday JJ, Pitter KL, Holland EC. Osteopontin-CD44 signaling in the glioma perivascular niche enhances cancer stem cell phenotypes and promotes aggressive tumor growth. Cell Stem Cell. 2014;14(3):357–69.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Chetty C, Vanamala SK, Gondi CS, Dinh DH, Gujrati M, Rao JS. MMP-9 induces CD44 cleavage and CD44 mediated cell migration in glioblastoma xenograft cells. Cell Signal. 2012;24(2):549–59.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  14. Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov K, Tarasova Y, Wobus A. Nestin expression: a property of multi-lineage progenitor cells? Cell Mol Life Sci CMLS. 2004;61(19–20):2510–22.

    Article  CAS  Google Scholar 

  15. Yang XH et al. Nestin expression in different tumours and its relevance to malignant grade. J Clin Pathol. 2008;61(4):467–473.

    Google Scholar 

  16. Arai H, Ikota H, Sugawara K-I, Nobusawa S, Hirato J, Nakazato Y. Nestin expression in brain tumors: its utility for pathological diagnosis and correlation with the prognosis of high-grade gliomas. Brain Tumor Pathol. 2012;29(3):160–7.

    Article  CAS  PubMed  Google Scholar 

  17. Dahmane N, Sánchez P, Gitton Y, Palma V, Sun T, Beyna M, Ruiz i Altaba A. The Sonic Hedgehog-Gli pathway regulates dorsal brain growth and tumorigenesis. Development. 2001;128(24):5201–12.

    CAS  PubMed  Google Scholar 

  18. Doetsch F, Petreanu L, Caille I, Garcia-Verdugo J-M, Alvarez-Buylla A. EGF converts transit-amplifying neurogenic precursors in the adult brain into multipotent stem cells. Neuron. 2002;36(6):1021–34.

    Article  CAS  PubMed  Google Scholar 

  19. Jackson EL, Garcia-Verdugo JM, Gil-Perotin S, Roy M, Quinones-Hinojosa A, VandenBerg S, Alvarez-Buylla A. PDGFRα-positive B cells are neural stem cells in the adult SVZ that form glioma-like growths in response to increased PDGF signaling. Neuron. 2006;51(2):187–99.

    Article  CAS  PubMed  Google Scholar 

  20. Sanai N. Adult neural stem cells and gliomagenesis. In: Glioblastoma. Springer; 2010. p. 153–65.

    Google Scholar 

  21. Savarese TM, Jang T, Pang Low H, Salmonsen R, Litofsky NS, Matijasevic Z, Recht LD. Isolation of immortalized, INK4a/ARF-deficient cells from the subventricular zone after in utero N-ethyl-N-nitrosourea exposure. J Neurosurg. 2005;102(1):98–108.

    Article  PubMed  Google Scholar 

  22. McLendon R, Friedman A, Bigner D, Van Meir EG, Brat DJ, Mastrogianakis GM, Aldape K. Comprehensive genomic characterization defines human glioblastoma genes and core pathways. Nature. 2008;455(7216):1061–8.

    Article  CAS  Google Scholar 

  23. Jang T, Litofsky NS, Smith TW, Ross AH, Recht LD. Aberrant nestin expression during ethylnitrosourea-(ENU)-induced neurocarcinogenesis. Neurobiol Dis. 2004;15(3):544–52.

    Article  CAS  PubMed  Google Scholar 

  24. Gil-Perotin S, Marin-Husstege M, Li J, Soriano-Navarro M, Zindy F, Roussel MF, Casaccia-Bonnefil P. Loss of p53 induces changes in the behavior of subventricular zone cells: implication for the genesis of glial tumors. J Neurosci. 2006;26(4):1107–16.

    Article  CAS  PubMed  Google Scholar 

  25. Katayama K-I, Ueno M, Yamauchi H, Nagata T, Nakayama H, Doi K. Ethylnitrosourea induces neural progenitor cell apoptosis after S-phase accumulation in a p53-dependent manner. Neurobiol Dis. 2005;18(1):218–25.

    Article  CAS  PubMed  Google Scholar 

  26. Leonard JR, D’Sa C, Klocke BJ, Roth KA. Neural precursor cell apoptosis and glial tumorigenesis following transplacental ethyl-nitrosourea exposure. Oncogene. 2001;20(57):8281–6.

    Article  CAS  PubMed  Google Scholar 

  27. Wang Y, Yang J, Zheng H, Tomasek GJ, Zhang P, McKeever PE, Zhu Y. Expression of mutant p53 proteins implicates a lineage relationship between neural stem cells and malignant astrocytic glioma in a murine model. Cancer Cell. 2009;15(6):514–26.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  28. Zhu Y, Guignard F, Zhao D, Liu L, Burns DK, Mason RP, Parada LF. Early inactivation of p53 tumor suppressor gene cooperating with NF1 loss induces malignant astrocytoma. Cancer Cell. 2005;8(2):119–30.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  29. Chen J, McKay RM, Parada LF. Malignant glioma: lessons from genomics, mouse models, and stem cells. Cell. 2012;149(1):36–47.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  30. Chow LM, Endersby R, Zhu X, Rankin S, Qu C, Zhang J, Baker SJ. Cooperativity within and among Pten, p53, and Rb pathways induces high-grade astrocytoma in adult brain. Cancer Cell. 2011;19(3):305–16.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  31. Lei L, Sonabend AM, Guarnieri P, Soderquist C, Ludwig T, Rosenfeld S, Canoll P. Glioblastoma models reveal the connection between adult glial progenitors and the proneural phenotype. PLoS One. 2011;6(5):e20041.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Llaguno SRA, Chen J, Parada LF. Signaling in malignant astrocytomas: role of neural stem cells and its therapeutic implications. Clin Cancer Res. 2009;15(23):7124–9.

    Article  Google Scholar 

  33. Marumoto T, Tashiro A, Friedmann-Morvinski D, Scadeng M, Soda Y, Gage FH, Verma IM. Development of a novel mouse glioma model using lentiviral vectors. Nat Med. 2009;15(1):110–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Li L, Liu F, Salmonsen RA, Turner TK, Litofsky NS, Di Cristofano A, Ross AH. PTEN in neural precursor cells: regulation of migration, apoptosis, and proliferation. Mol Cell Neurosci. 2002;20(1):21–9.

    Article  CAS  PubMed  Google Scholar 

  35. Zheng H, Ying H, Yan H, Kimmelman AC, Hiller DJ, Chen A-J, Ding Z. p53 and Pten control neural and glioma stem/progenitor cell renewal and differentiation. Nature. 2008;455(7216):1129–33.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Jafri NF, Clarke JL, Weinberg V, Barani IJ, Cha S. Relationship of glioblastoma multiforme to the subventricular zone is associated with survival. Neuro Oncol. 2013;15(1):91–6.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  37. Lim DA, Cha S, Mayo MC, Chen M-H, Keles E, VandenBerg S, Berger MS. Relationship of glioblastoma multiforme to neural stem cell regions predicts invasive and multifocal tumor phenotype. Neuro Oncol. 2007;9(4):424–9.

    Article  PubMed Central  PubMed  Google Scholar 

  38. Young GS, Macklin EA, Setayesh K, Lawson JD, Wen PY, Norden AD, Kesari S. Longitudinal MRI evidence for decreased survival among periventricular glioblastoma. J Neurooncol. 2011;104(1):261–9.

    Article  PubMed Central  PubMed  Google Scholar 

  39. Schulenburg A, Ulrich-Pur H, Thurnher D, Erovic B, Florian S, Sperr WR, Zielinski CC. Neoplastic stem cells: a novel therapeutic target in clinical oncology. Cancer. 2006; 107(10):2512–20.

    Article  CAS  PubMed  Google Scholar 

  40. Adeberg S, Bostel T, König L, Welzel T, Debus J, Combs SE. A comparison of long-term survivors and short-term survivors with glioblastoma, subventricular zone involvement: a predictive factor for survival? Age (years). 2014;64:8.

    Google Scholar 

  41. Corn BW, Raizer J, Kanner AA. Should the subventricular zone be part of the “rad” zone? J Neurooncol. 2014;118:423–4.

    Article  PubMed  Google Scholar 

  42. Evers P, Lee PP, DeMarco J, Agazaryan N, Sayre JW, Selch M, Pajonk F. Irradiation of the potential cancer stem cell niches in the adult brain improves progression-free survival of patients with malignant glioma. BMC Cancer. 2010;10(1):384.

    Article  PubMed Central  PubMed  Google Scholar 

  43. Gupta T, Nair V, Paul SN, Kannan S, Moiyadi A, Epari S, Jalali R. Can irradiation of potential cancer stem-cell niche in the subventricular zone influence survival in patients with newly diagnosed glioblastoma? J Neurooncol. 2012;109(1):195–203.

    Article  PubMed  Google Scholar 

  44. Lee P, Eppinga W, Lagerwaard F, Cloughesy T, Slotman B, Nghiemphu PL, Demarco J. Evaluation of high ipsilateral subventricular zone radiation therapy dose in glioblastoma: a pooled analysis. Int J Radiat Oncol Biol Phys. 2013;86(4):609–15.

    Article  PubMed  Google Scholar 

  45. Sonoda Y, Saito R, Kanamori M, Kumabe T, Uenohara H, Tominaga T. The association of subventricular zone involvement at recurrence with survival after repeat surgery in patients with recurrent glioblastoma. Neurol Med Chir. 2014;54(4):302–9.

    Article  Google Scholar 

  46. Friedmann-Morvinski D, Bushong EA, Ke E, Soda Y, Marumoto T, Singer O, Verma IM. Dedifferentiation of neurons and astrocytes by oncogenes can induce gliomas in mice. Science. 2012;338(6110):1080–4.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  47. Bachoo RM, Maher EA, Ligon KL, Sharpless NE, Chan SS, You MJ, Weissleder R. Epidermal growth factor receptor and Ink4a/Arf: Convergent mechanisms governing terminal differentiation and transformation along the neural stem cell to astrocyte axis. Cancer Cell. 2002;1(3):269–77.

    Google Scholar 

  48. Lindberg N, Kastemar M, Olofsson T, Smits A, Uhrbom L. Oligodendrocyte progenitor cells can act as cell of origin for experimental glioma. Oncogene. 2009;28(23):2266–75.

    Article  CAS  PubMed  Google Scholar 

  49. Liu C, Sage JC, Miller MR, Verhaak RG, Hippenmeyer S, Vogel H, Luo L. Mosaic analysis with double markers reveals tumor cell of origin in glioma. Cell. 2011;146(2):209–21.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  50. Sugiarto S, Persson AI, Munoz EG, Waldhuber M, Lamagna C, Andor N, Siu J. Asymmetry-defective oligodendrocyte progenitors are glioma precursors. Cancer Cell. 2011;20(3):328–40.

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nader Sanai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Kusne, Y., Sanai, N. (2015). The SVZ and Its Relationship to Stem Cell Based Neuro-oncogenesis. In: Ehtesham, M. (eds) Stem Cell Biology in Neoplasms of the Central Nervous System. Advances in Experimental Medicine and Biology, vol 853. Springer, Cham. https://doi.org/10.1007/978-3-319-16537-0_2

Download citation

Publish with us

Policies and ethics