Skip to main content

Dose Calculation in a Mouse Lung Tumor and in Secondary Organs During Radiotherapy Treatment: A Monte Carlo Study

  • Conference paper
  • 2486 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9043))

Abstract

Radiotherapy in cancer treatment always affects surrounding tissues and even deposits doses in distant tissues not traversed by the radiation beams. In the present work, we report energy transfer and absorbed dose in a target tumor and in other distant organs in a digital mouse by Monte Carlo simulations. We simulated a selection of X-rays beams with seven energies, 50, 100, 150, 200, 250, 350 and 450 keV each oriented in seven irregularly incremented angles, and we computed the dose and the energy deposit as a function of photon interaction types. The results show that the absorbed dose increased with increasing energy even in the secondary organs not receiving the radiation beam, and that the lowest dose was obtained with 100 keV beam. The spinal cord, of comparable size to the tumor and excluding the spinal bones, which was not directly irradiated by the beams, received a dose representing in average 1% of that of the tumor, while the spinal bone received doses of 6.6 and 0.12 times those in the tumor at 50 and 450 keV, respectively. Such Monte Carlo simulations could be necessary to select the appropriate beam energy and beam angles to efficiently treat the tumor and to moderately reduce the impact of the radiations in the other organs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Leal, A., Sanchez-Doblado, F., Perucha, M., Carrasco, E., Rincon, M., Arrans, R., Bernal, C.: Monte Carlo Simulation of Complex Radiotherapy Treatments. Computing in Science and Engg. 6(4), 60–68 (2004)

    Article  Google Scholar 

  2. Wang, H., Ma, Y., Pratx, G., Xing, L.: Toward Real-Time Monte Carlo Simulation Using a Commercial Cloud Computing Infrastructure. Physics in Medicine and Biology 56(17), N175–N181 (2011)

    Google Scholar 

  3. Dogdas, B., Stout, D., Chatziioannou, A.F., Leahy, R.M.: Digimouse: a 3D whole body mouse atlas from CT and cryosection data. Phys. Med. Biol. 52(3), 577–587 (2007)

    Article  Google Scholar 

  4. Segars, W.P., Tsui, B.M.W.: MCAT to XCAT: The Evolution of 4-D Computerized Phantoms for Imaging Research. Proceedings of the IEEE 97(12), 1954–1968 (2009)

    Article  Google Scholar 

  5. Mauxion, T., Barbet, J., Suhard, J., Pouget, J.-P., Poirot, M., Bardiès, M.: Improved realism of hybrid mouse models not be sufficient to generate reference dosimetric data. Medical Physics 40(5), 052501 (2013)

    Google Scholar 

  6. Jan, S., Santin, G., Strul, D., Staelens, S., Assié, K., Autret, D., Avner, S., Barbier, R., Bardiès, M., Bloomfield, P.M., Brasse, D., Breton, V., Bruyndonckx, P., Buvat, I., Chatziioannou, A.F., Choi, Y., Chung, Y.H., Comtat, C., Donnarieix, D., Ferrer, L., Glick, S.J., Groiselle, C.J., Guez, D., Honore, P., Kerhoas-Cavata, S., Kirov, A.S., Kohli, V., Koole, M., Krieguer, M., van der Laan, D.J., Lamare, F., Largeron, G., Lartizien, C., Lazaro, D., Maas, M.C., Maigne, L., Mayet, F., Melot, F., Merheb, C., Pennacchio, E., Perez, J., Pietrzyk, U., Rannou, F.R., Rey, M., Schaart, D.R., Schmidtlein, C.R., Simon, L., Song, T.Y., Vieira, J., Visvikis, D., Van de Walle, R., Wieërs, E., Morel, C.: GATE - Geant4 Application for Tomographic Emission: a simulation toolkit for PET and SPECT. Phys. Med. Biol. 49(19), 4543–4561 (2004)

    Article  Google Scholar 

  7. Schneider, W., Bortfeld, T., Schlegel, W.: Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions. Phys. Med. Biol. 45(2), 459–478 (2000)

    Article  Google Scholar 

  8. Sarrut, D., Bardies, M., Boussion, N., Freud, N., Jan, S., Letang, J.M., Loudos, G., Maigne, L., Marcatili, S., Mauxion, T., Papadimitroulas, P., Perrot, Y., Pietrzyk, U., Robert, C., Schaart, D.R., Visvikis, D., Buvat, I.: A review of the use and potential of the GATE Monte Carlo simulation code for radiation therapy and dosimetry applications. Med. Phys. 41(6), 064301 (2014)

    Google Scholar 

  9. Chow, J.C.L., Leung, M.K.K.: Treatment planning for a small animal using Monte Carlo simulation. Medical Physics 34(12), 4810–4817 (2007)

    Article  Google Scholar 

  10. Mah, P., Reeves, T.E., McDavid, W.D.: Deriving Hounsfield units using grey levels in cone beam computed tomography. Dentomaxillofac Radiol. 39(6), 323–335 (2010)

    Article  Google Scholar 

  11. Suryanto, A., Herlambang, K., Rachmatullah, P.: Comparison of tumor density by CT scan based on histologic type in lung cancer patients. Acta Med. Indones 37(4), 195–198 (2005)

    Google Scholar 

  12. Larsson, E., Ljungberg, M., Strand, S.-E., Jönsson, B.-A.: Monte Carlo calculations of absorbed doses in tumours using a modified MOBY mouse phantom for pre-clinical dosimetry studies. Acta Oncologica 50(6), 973–980 (2011)

    Article  Google Scholar 

  13. Loening, A.M., Gambhir, S.S.: AMIDE: a free software tool for multimodality medical image analysis. Mol. Imaging 2(3), 131–137 (2003)

    Article  Google Scholar 

  14. Kirkpatrick, J.P., van der Kogel, A.J., Schultheiss, T.E.: Radiation Dose–Volume Effects in the Spinal Cord. International Journal of Radiation Oncology*Biology*Physics 76(suppl. 3), S42–S49 (2010)

    Google Scholar 

  15. Rodriguez, M., Zhou, H., Keall, P., Graves, E.: Commissioning of a novel microCT/RT system for small animal conformal radiotherapy. Phys. Med. Biol. 54(12), 3727–3740 (2009)

    Article  Google Scholar 

  16. Zhou, H., Rodriguez, M., van den Haak, F., Nelson, G., Jogani, R., Xu, J., Zhu, X., Xian, Y., Tran, P.T., Felsher, D.W., Keall, P.J., Graves, E.E.: Development of a MicroCT-Based Image-Guided Conformal Radiotherapy System for Small Animals. Int. J. Radiat. Oncol. Biol. Phys. 78(1), 297–305 (2010)

    Article  Google Scholar 

  17. Chow, J.C.L.: Dosimetric impact of monoenergetic photon beams in the small-animal irradiation with inhomogeneities: A Monte Carlo evaluation. Radiation Physics and Chemistry 86(0), 31–36 (2013)

    Article  Google Scholar 

  18. Brun, R., Rademakers, F.: ROOT — An object oriented data analysis framework. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 389(1-2), 81–86 (1997)

    Article  Google Scholar 

  19. Visvikis, D., Bardies, M., Chiavassa, S., Danford, C., Kirov, A., Lamare, F., Maigne, L., Staelens, S., Taschereau, R.: Use of the GATE Monte Carlo package for dosimetry applications. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment 569(2), 335–340 (2006)

    Article  Google Scholar 

  20. Ford, N.L., Thornton, M.M., Holdsworth, D.W.: Fundamental image quality limits for microcomputed tomography in small animals. Med. Phys. 30(11), 2869–2877 (2003)

    Article  Google Scholar 

  21. Bartling, S.H.: Small Animal Computed Tomography Imaging. Current Medical Imaging Reviews 3, 45–59 (2007)

    Article  Google Scholar 

  22. Taschereau, R., Chow, P.L., Chatziioannou, A.F.: Monte Carlo simulations of dose from microCT imaging procedures in a realistic mouse phantom. Med. Phys. 33(1), 216–224 (2006)

    Article  Google Scholar 

  23. Graves, E.E., Zhou, H., Chatterjee, R., Keall, P.J., Gambhir, S.S., Contag, C.H., Boyer, A.L.: Design and evaluation of a variable aperture collimator for conformal radiotherapy of small animals using a microCT scanner. Medical Physics 34(11), 4359–4367 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Hamdi, M., Mimi, M., Bentourkia, M. (2015). Dose Calculation in a Mouse Lung Tumor and in Secondary Organs During Radiotherapy Treatment: A Monte Carlo Study. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9043. Springer, Cham. https://doi.org/10.1007/978-3-319-16483-0_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16483-0_36

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16482-3

  • Online ISBN: 978-3-319-16483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics