Skip to main content

Optimal Elbow Angle for MMG Signal Classification of Biceps Brachii during Dynamic Fatiguing Contraction

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 9043))

Abstract

Mechanomyography (MMG) activity of the biceps muscle was recorded from thirteen subjects. Data was recorded while subjects performed dynamic contraction until fatigue. The signals were segmented into two parts (Non-Fatigue and Fatigue), An evolutionary algorithm was used to determine the elbow angles that best separate (using DBi) both Non-Fatigue and Fatigue segments of the MMG signal. Establishing the optimal elbow angle for feature extraction used in the evolutionary process was based on 70% of the conducted MMG trials. After completing twenty-six independent evolution runs, the best run containing the best elbow angles for separation (fatigue and non-fatigue) was selected and then tested on the remaining 30% of the data to measure the classification performance. Testing the performance of the optimal angle was undertaken on eight features that where extracted from each of the two classes (non-fatigue and fatigue) to quantify the performance. Results show that the elbow angles produced by the Genetic algorithm can be used for classification showing 80.64% highest correct classification for one of the features and on average of all eight features including worst performing features giving 66.50%.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Toma, K., Honda, M., Hanakawa, T., Okada, T., Fukuyama, H., Ikeda, A., Nishizawa, S., Konishi, J., Shibasaki, H.: Activities of the primary and supplementary motor areas increase in preparation and execution of voluntary muscle relaxation: an event-related fMRI study. J. Neurosci. 19(9), 3527–3534 (1999)

    Google Scholar 

  2. Djordjevic, S., Tomazic, S., Zupancic, G., Pisot, R., Dahmane, R.: The influence of different elbow angles on the twitch response of the biceps brachii muscle between intermittent electrical stimulations

    Google Scholar 

  3. Mamghani, N.K., Shimomura, Y., Iwanaga, K., Katsuur, T.: Mechanomyogram and Electromyogram Responses of Upper Limb During Sustained Isometric Fatigue with Varying Shoulder and Elbow Postures. J. Physiol. Anthropol. 21(1), 29–43 (2002)

    Article  Google Scholar 

  4. Fitch, S., McComas, A.: Influence of human muscle length on fatigue. J. Physiol (Lond.) 362, 205–213 (1985)

    Article  Google Scholar 

  5. Sacco, P., McIntyre, D.B., Jones, D.A.: Effects of length and stimulation frequency on fatigue of the human tibialis anterior muscle. J. Appl. Physiol. 77(3), 1148–1154 (1994)

    Google Scholar 

  6. Doud, J.R., Walsh, J.M.: Muscle fatigue and muscle length interaction: effect on the EMG frequency components. Electromyogr. Clin. Neurophysiol. 35(6), 331–339 (1995)

    Google Scholar 

  7. Weir, J.P., McDonough, A.L., Hill, V.J.: The effects of joint angle on electromyographic indices of fatigue. Eur. J. Appl. Physiol. Occup. Physiol. 73(3-4), 387–392 (1996)

    Article  Google Scholar 

  8. Weir, J.P., Ayers, K.M., Lacefield, J.F., Walsh, K.L.: Mechanomyographic and electromyographic responses during fatigue in humans: influence of muscle length. Eur. J. Appl. Physiol. 81(4), 352–359 (2000)

    Article  Google Scholar 

  9. Jaskolska, A., Kisiel, K., Brzenczek, W., Jaskolski, A.: EMG and MMG of synergists and antagonists during relaxation at three joint angles. Eur. J. Appl. Physiol. 90(1-2), 58–68 (2003)

    Article  Google Scholar 

  10. Ebersole, K.T., Housh, T.J., Johnson, G.O., Evetovich, T.K., Smith, D.B., Perry, S.R.: The effect of leg flexion angle on the mechanomyographic responses to isometric muscle actions. Eur. J. Appl. Physiol. Occup. Physiol. 78(3), 264–269 (1998)

    Article  Google Scholar 

  11. Xie, H.B., Zheng, Y.P., Guo, J.Y., Chen, X., Shi, J.: Estimation of wrist angle from sonomyography using support vector machine and artificial neural network models. Medical Engineering and Physics 31, 384–391 (2009)

    Article  Google Scholar 

  12. Silva, J., Heim, W., Chau, T.: A self-contained, mechanomyography-driven externally powered prosthesis. Arch. Phys. Med. Rehabil. 86(10), 2066–2070 (2005)

    Article  Google Scholar 

  13. Al-Mulla, M.R., Sepulveda, F., Colley, M.: Semg techniques to detect and predict localised muscle fatigue. EMG Methods for Evaluating Muscle and Nerve Function, 978–953 (2012)

    Google Scholar 

  14. Kattan, A., Al-Mulla, M.R., Sepulveda, F., Poli, R.: Detecting localised muscle fatigue during isometric contraction using genetic programming. In: IJCCI, pp. 292–297 (2009)

    Google Scholar 

  15. Al-Mulla, M.R., Sepulveda, F., Colley, M., Kattan, A.: Classification of localized muscle fatigue with genetic programming on sEMG during isometric contraction. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society EMBC, September 2-6, pp. 2633–2638 (2009)

    Google Scholar 

  16. Al-Mulla, M.R.: Evolutionary computation extracts a super semg feature to classify localized muscle fatigue during dynamic contractions. In: 2012 4th Computer Science and Electronic Engineering Conference (CEEC), pp. 220–224 (2012)

    Google Scholar 

  17. Al-Mulla, M.R., Sepulveda, F., Colley, M.: Evolved pseudo-wavelet function to optimally decompose sEMG for automated classification of localized muscle fatigue. Med. Eng. Phys. 33(4), 411–417 (2011)

    Article  Google Scholar 

  18. Al-Mulla, M.R., Sepulveda, F., Colley, M., Al-Mulla, F.: Statistical class separation using sEMG features towards automated muscle fatigue detection and prediction. In: International Congress on Image and Signal Processing, pp. 1–5 (2009)

    Google Scholar 

  19. Al-Mulla, M.R., Sepulveda, F.: A Novel Feature Assisting in the Prediction of sEMG Muscle Fatigue Towards a Wearable Autonomous System. In: Proceedings of the 16th IEEE International Mixed-Signals, Sensors and Systems Test Workshop (IMS3TW 2010), France (2010)

    Google Scholar 

  20. Al-Mulla, M.R., Sepulveda, F.: Novel feature modelling the prediction and detection of semg muscle fatigue towards an automated wearable system. Sensors 10(5), 4838–4854 (2010)

    Article  Google Scholar 

  21. Al-Mulla, M.R., Sepulveda, F.: “Predicting the time to localized muscle fatigue using ANN and evolved sEMG feature. In: IEEE International Conference on Autonomous and Intelligent Systems (AIS 2010), Povoa de Varzim, Portugal, pp. 1–6 (2010)

    Google Scholar 

  22. Al-Mulla, M.R., Sepulveda, F., Colley, M.: An autonomous wearable system for predicting and detecting localised muscle fatigue. Sensors (Basel) 11(2), 1542–1557 (2011)

    Article  Google Scholar 

  23. Al-Mulla, M.R., Sepulveda, F.: Novel pseudo-wavelet function for mmg signal extraction during dynamic fatiguing contractions. Sensors 14(6), 9489–9504 (2014)

    Article  Google Scholar 

  24. Vedsted, P., Blangsted, A.K., Søgaard, K., Orizio, C., Sjøgaard, G.: Muscle tissue oxygenation, pressure, electrical, and mechanical responses during dynamic and static voluntary contractions. European Journal of Applied Physiology 96, 165–177 (2006)

    Article  Google Scholar 

  25. Kumar, D.K., Pah, N.D., Bradley, A.: Wavelet analysis of surface electromyography to determine muscle fatigue. IEEE Trans. Neural Syst. Rehabil. Eng. 11, 400–406 (2003)

    Article  Google Scholar 

  26. Michalewicz, Z.: Genetic algorithms + data structures = evolution programs. Springer, New York (1996)

    Book  MATH  Google Scholar 

  27. Sepulveda, F., Meckes, M., Conway, B.A.: Cluster separation index suggests usefulness of non-motor eeg channels in detecting wrist movement direction intention. In: IEEE Conference on Cybernetics and Intelligent Systems, pp. 943–947. IEEE Press (2004)

    Google Scholar 

  28. Tarata, M.T.: Mechanomyography versus electromyography, in monitoring the muscular fatigue. Biomed. Eng. Online 2, 3 (2003)

    Article  Google Scholar 

  29. Beck, T.W., Housh, T.J., Cramer, J.T., Weir, J.P., Johnson, G.O., Coburn, J.W., Malek, M.H., Mielke, M.: Mechanomyographic amplitude and frequency responses during dynamic muscle actions: a comprehensive review. Biomedical Engineering Online 4, 67 (2005)

    Article  Google Scholar 

  30. Tarata, M.: Noninvasive Monitoring of Neuramuscular Fatigue: Techniques and Results. University of Pietisti Scientific Bulletin: Electyronics and Computer Science 11(1), 201–243 (2011)

    Google Scholar 

  31. Ryan, E.D., Cramer, J.T., Egan, A.D., Hartman, M.J., Herda, T.J.: Time and frequency domain responses of the mechanomyogram and electromyogram during isometric ramp contractions: A comparison of the short-time fourier and continuous wavelet transforms. Journal of Electromyography and Kinesiology 18(1), 54 (2008)

    Article  Google Scholar 

  32. Caldwell, L.S.: Relative muscle loading and endurance. J. Eng. Psychol. 2(4), 155–161 (1963)

    Google Scholar 

  33. Petrofsky, J.S., Phillips, C.A.: The effect of elbow angle on the isometric strength and endurance of the elbow flexors in men and women. J. Hum. Ergol (Tokyo) 9(2), 125–131 (1980)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Al-Mulla, M.R., Sepulveda, F., Suoud, M. (2015). Optimal Elbow Angle for MMG Signal Classification of Biceps Brachii during Dynamic Fatiguing Contraction. In: Ortuño, F., Rojas, I. (eds) Bioinformatics and Biomedical Engineering. IWBBIO 2015. Lecture Notes in Computer Science(), vol 9043. Springer, Cham. https://doi.org/10.1007/978-3-319-16483-0_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-16483-0_31

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-16482-3

  • Online ISBN: 978-3-319-16483-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics