Skip to main content

Pulmonary Arterial Hypertension: A Stem Cell Hypothesis

  • Chapter
Lung Stem Cells in the Epithelium and Vasculature

Abstract

Pulmonary arterial hypertension (PAH) is caused by precapillary arteriolar vasoconstriction and/or alterations of the anatomy of the small lung vessels, also known as pulmonary vascular remodeling. While the muscularization of the small pulmonary arteries is a physiological and reversible response to chronic hypoxia, the vascular changes known as “angioproliferative” are irreversible and refractory to therapy. Our hypothesis of the “quasi-malignancy” of the complex and multicellular vascular lesions leaves room for stem cell niches and seeding of the lung vessels with precursor or stem cells released from the bone marrow.

In this chapter we introduce the concept that the development and progression of the angio-obliterative lung vascular lesions is part of a “wound healing process gone awry” and depends on the growth of apoptosis-resistant stem—or stem-like cells. Indeed, immunohistochemistry indicates that cells which express stem cell markers are present in the lung vessels from rats that developed severe angio-obliterative PAH in the Sugen 5416/chronic hypoxia (Su/Hx) model and in the lungs from patients with severe PAH. Acceptance of a stem cell hypothesis of severe angio-obliterative PAH leads to the conclusion that effective treatment of severe, angio-obliterative PAH would require strategies directed towards differentiation of lung vascular stem cells.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ADAMTS1:

A disintegrin and metalloproteinase with thrombospondin motifs 1

BMPR2:

Bone morphogenic protein receptor 2

CD133:

Cluster of differentiation 133 (aka prominin 1)

CD146:

Cluster of differentiation 146 (aka melanoma cell adhesion molecule (MCAM))

EnMT:

Endothelial mesenchymal transition

HIF:

Hypoxia-inducible factor

HOXC6/8:

Homeobox C6/8

IPAH:

Idiopathic pulmonary hypertension

IPSC:

Induced pluripotent stem cells

Muse:

Multilineage differentiating stress-enduring cells

NG2:

Neural/glial antigen 2

PAH:

Pulmonary arterial hypertension

PDGFR:

Platelet-derived growth factor receptor

Sca-1:

Ly-6 A/E

VEGF:

Vascular endothelial growth factor

References

  • Angelini DJ, Su Q, Kolosova IA, Skinner JT, Yamaji-Kegan K, Collector M et al (2010) Hypoxia-induced mitogenic factor (HIMF/FIZZ1/RELM alpha) recruits bone marrow-derived cells to the murine pulmonary vasculature. PLoS One 5:11251–11262

    Article  Google Scholar 

  • Aosingh K, Aldred MA, Vasanji A, Drazba J, Sharp J, Farver C et al (2008) Circulating angiogenic precursors in idiopathic pulmonary arterial hypertension. Am J Pathol 172:615–627

    Article  Google Scholar 

  • Bogaard HJ, Mizuno S, Guignabert C, Al Hussaini A, Farkas D, Ruiter G, Kraskauskas D, Fadel E, Allegood JC, Humbert M (2012) Copper dependence of angioproliferation in pulmonary hypertension in rats and humans. Am J Respir Cell Mol Biol 46:582–591

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brenner O (1935) Pathology of vessels of pulmonary circulation. Arch Intern Med (Chic) 56:211–457

    Article  Google Scholar 

  • Bull TM, Golpon H, Hebbel RP, Solovey A, Cool CD, Tuder RM, Gerci MW, Voelkel NF (2003) Circulating endothelial cells in pulmonary hypertension. Thromb Haemost 90:698–703

    CAS  PubMed  Google Scholar 

  • Chow K, Fessel JP, Ihida-Stansburu K, Schmidt E-P, Gaskill C, Alvarez D et al (2013) Dysfunctional resident lung mesenchymal stem cells contribute to pulmonary microvascular remodeling. Pulm Circ 3:31–49

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Cool CD, Stewart JS, Werahera P, Miller GJ, Williams RL, Voelkel NF et al (1999) Three-dimensional reconstruction of pulmonary arteries in plexiform pulmonary hypertension using cell-specific markers: evidence for a dynamic and heterogeneous process of pulmonary endothelial cell growth. Am J Pathol 155(2):411–419

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Daley E, Emson C, Giugnabert C, de Waal Malefyt R, Louten J, Kurup VP et al (2008) Pulmonary arterial remodeling induced by a Th2 response. J Exp Med 205:361–372

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Das JK, Voelkel NF, Felty Q (2014) Overexpression of ID3 promotes a stem-like molecular signature in human vascular endothelial cells. It’s implication in the development of hyper-proliferative endothelial lesions associated with pulmonary arterial hypertension. Microvasc Research 105(2):203–212

    Google Scholar 

  • Davie NJ, Crossno JT, Frid MG, Hofmeister SE, Reeves JT, Hyde DM et al (2004) Hypoxia-induced pulmonary artery adventitial remodeling and neoveascularization: contribution of progenitor cells. Am J Physiol Lung Cell Mol Physiol 286:L668–L678

    Article  CAS  PubMed  Google Scholar 

  • de Raaf MA, Schalij I, Gomez-Arroyo JG, Rol N, Happe C, de Man FS et al (2014) SuHx rat model: partly reversible pulmonary hypertension and progressive intima obstruction. Eur Respir J 44(1):160–168

    Article  PubMed  Google Scholar 

  • Diller G-P, van Eiji S, Okonko DO, Howard L, Ali O, Thum T, Wort SJ et al (2008) Circulating endothelial progenitor cells in patients with Eisenmenger syndrome and idiopathic pulmonary hypertension. Circulation 117:3020–3030

    Article  CAS  PubMed  Google Scholar 

  • Dingli D, Utz JP, Krowka MJ, Oberg AL, Tefferi A (2001) Unexplained pulmonary hypertension in chronic myelodysplastic disorders. Chest 120:801–808

    Article  CAS  PubMed  Google Scholar 

  • Du YB, Dong B, Shen LY, Yan WP et al (2014) The survival predictive significance of HoxC6 and HoxC8 in esophageal squamous cell carcinoma. J Surg Res 188(2):442–450 [Epub 2014 Jan 17]

    Article  CAS  PubMed  Google Scholar 

  • Ergun S, Tilki D, Klein D (2011) Vascular wall as a reservoir for different types of stem and progenitor cells. Antioxid Redox Signal 15:981–995

    Article  PubMed  Google Scholar 

  • Erwig LP, Henson PM (2007) Immunological consequences of apoptotic cell phagocytosis. Am J Pathol 171(1):2–8

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farha S, Aosingh K, Xu W, George D, Comhair S, Park M et al (2011) Hypoxia-inducible factors in human pulmonary arterial hypertension: a link to the intrinsic myeloid abnormalities. Blood 117:3485–3493

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Farkas L, Farkas D, Al Hussaini A, Kraskauskas D, Voelkel NF (2013) NfKB inhibition differentially alters accumulation of progenitor and stem-like cell populations and prevents angioobliteration and severe PAH in the Su5416 hypoxia model. Am J Respir Crit Care Med 187 (Abstract)

    Google Scholar 

  • Farkas D, Kraskauskas D, Drake JI, Alhussaini AA, Kraskauskiene V, Bogaard HJ, Cool CD, Voelkel NF, Farkas L (2014) CXCR4 inhibition ameliorates severe obliterative pulmonary hypertension and accumulation of C-kit(+) cells in rats. PLoS One 9:e89810

    Article  PubMed Central  PubMed  Google Scholar 

  • Firth AL, Yao W, Ogawa A, Madani MM, Lin GY, Yuan JX (2010a) Multipotent mesenchymal progenitor cells are present in endarterectomized tissues from patients with chronic thromboembolic pulmonary hypertension. Am J Physiol Cell Physiol 298:C1217–C1225

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Firth AL, Yao W, Ogawa A, Yuan JX (2010b) Upregulation of Oct-4 isoforms in pulmonary artery smooth muscle cells from patients with pulmonary arterial hypertension. Am J Physiol Lung Cell Mol Physiol 298:L548–L557

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Flamme I, Breier G, Risau W (1995) Vascular endothelial growth factor (VEGF) and VEGF receptor 2(flk-1) are expressed during vasculogenesis and vascular differentiation in the quail embryo. Dev Biol 169:699–712

    Article  CAS  PubMed  Google Scholar 

  • Freire-de-Lima CG, Xiao YQ, Gardai SJ, Bratton DL, Schiemann WP, Henson PM (2006) Apoptotic cells, through transforming growth factor beta, coordinately induce anti-inflammatory and suppress pro-inflammatory eicosanoid and NO synthesis in murine macrophages. J Biol Chem 281(50):38376–38383

    Article  CAS  PubMed  Google Scholar 

  • Frid MG, Kale VA, Stenmark KR (2002) Mature vascular endothelium can give rise to smooth muscle cells via endothelial-mesenchymal transdifferentiation: in vitro analysis. Circ Res 90:1189–1196

    Article  CAS  PubMed  Google Scholar 

  • Frid MG, Brunetti JA, Burke DL, Carpenter TC, Davie NJ, Reeves JT, Roedersheimer MT et al (2006) Hypoxia-induced pulmonary vascular remodeling requires recruitment of circulating mesenchymal precursors of monocyte/macrophage lineage. Am J Pathol 168:659–669

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gambaryan N, Perros F, Montani D, Cohen-Kaminsky S, Mazmanian M, Renaud JF et al (2011) Targeting of c-kit + haematopoietic progenitor cells prevents hypoxic pulmonary hypertension. Eur Respir J 37:1392–1399

    Article  CAS  PubMed  Google Scholar 

  • Ghofrani HA, Morrell NW, Hoeper MM, Olschewski H et al (2010) Imatinib in pulmonary arterial hypertension patients with inadequate response to established therapy. Am J Respir Crit Care Med 182:1171–1177

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Golpon HA, Geraci MW, Moore MD, Miller HL, Miller GJ, Tuder RM, Voelkel NF (2001) Hox genes in human lung: altered expression in primary pulmonary hypertension and emphysema. Am J Pathol 158:955–966

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Gomez-Arroyo JG, Voelkel NF (2014) The role of vascular endothelial growth factor in pulmonary arterial hypertension. The angiogenesis paradox. Am J Respir Cell Mol Biol 51(4):474–484

    Article  PubMed  Google Scholar 

  • Groeneveldt JA, Gans SJ, Bogaard HJ, Vonk-Noordegraaf A (2013) Eur Respir J 42:869–870

    Article  PubMed  Google Scholar 

  • Hanahan D, Weinberg RA (2011) Hallmarks of cancer: the next generation. Cell 144:646–674

    Article  CAS  PubMed  Google Scholar 

  • Hassoun PM, Mouthon L, Barbera JA, Eddahibi S, Flores SC et al (2009) Inflammation, growth factors and pulmonary vascular remodeling. J Am Coll Cardiol 54:S10–S19

    Article  CAS  PubMed  Google Scholar 

  • Heath D, Edwards JE (1958) The pathology of hypertensive pulmonary vascular disease: a description of six grades of structural changes in the pulmonary arteries with special reference to congenital cardiac septal defects. Circulation 18:533–547

    Article  CAS  PubMed  Google Scholar 

  • Heddleston JM, Li Z, McLendon RE et al (2009) The hypoxic microenvironment maintains glioblastoma stem cells and promotes reprogramming towards a cancer stem cell phenotype. Cell Cycle 8:3274–3284

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Heneidi S, Simerman AA, Keller E, Singh P et al (2013) Awakened by cellular stress: isolation and characterization of a novel population of pluripotent stem cells derived from human adipose tissue. PLoS One 8:e64752

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ingram DA, Mead LE, Moore DB, Woodard W et al (2005) Vessel wall derived endothelial cells rapidly proliferate because they contain a complete hierarchy of endothelial progenitor cells. Blood 105:2783–2786

    Article  CAS  PubMed  Google Scholar 

  • Jain S, Cohen J, Ward MM, Kornhauser N, Chuang E, Cigler T, Moore A et al (2013) Tetrathiomolybdate-associated copper chelation decreases circulating endothelial progenitor cells in women with breast cancer at high risk of relapse. Ann Oncol 24:1491–1498

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jurasz P, Courtman D, Babaie S, Stewart DJ (2010) Role of apoptosis in pulmonary hypertension: from experimental models to clinical trials. Pharmacol Ther 126(1):1–8

    Article  CAS  PubMed  Google Scholar 

  • Kasahara Y, Tuder RM, Taraseveciene-Stewart L, Le Cras TD, Abman S, Hirth PK, Waltenberger J, Voelkel NF, Cool CD, Lynch DA, Flores SC, Voelkel NF (2000) Inhibition of VEGF receptors causes lung cell apoptosis and emphysema. J Clin Invest 106:1311–1319

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Klein D et al (2011) Vascular wall resident CD44+ multipotent stem cells give rise to pericytes and smooth muscle cells and contribute to new vessel maturation. PLoS One 6:e20540

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kugimiya F, Yano F, Ohba S, Igawa K, Nakamura K et al (2005) Mechanism of osteogenic induction by FK506 via BMP/Smad pathways. Biochem Biophys Res Commun 338:872–879

    Article  CAS  PubMed  Google Scholar 

  • Lee SD, Shroyer KR, Markham NE, Cool CD, Voelkel NF, Tuder RM (1998) Monoclonal endothelial cell proliferation is present in primary but not secondary pulmonary hypertension. J Clin Invest 101:927–934

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liang OD, Mitsialis SA, Chang MS, Vergadi E, Lee C, Aslam M et al (2011) Mesenchymal stromal cells expressing heme oxygenase 1 reverse pulmonary hypertension. Stem Cells 29:99–107

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Liu JF, Du ZD, Chen Z, Han ZC, He ZX (2013) Granulocyte colony-stimulating factor attenuates monocrotaline-induced pulmonary hypertension by upregulating endothelial progenitor cells via the nitric oxide system. Exp Ther Med 6:1402–1408

    PubMed Central  CAS  PubMed  Google Scholar 

  • Majesky MW, Dong XR, Hoglund V, Daum G, Mahoney WM (2012) The adventitia: a progenitor cell niche for the vessel wall. Cells Tissues Organs 195:73–81

    Article  PubMed  Google Scholar 

  • Majka SM, Beutz MA, Hagen M, Izzo AA, Voelkel NF, Helm KM (2005) Identification of novel resident pulmonary stem cells: form and function of side population. Stem Cells 23:1073–1081

    Article  PubMed  Google Scholar 

  • Medici D, Kalluri R (2012) Endothelial-mesenchymal transition and its contribution to the emergence of stem cell phenotype. Semin Cancer Biol 22:379–384

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Meyrick B, Fujiwara K, Reid L (1981) Smooth muscle myosin in precursor and mature smooth muscle cells in normal pulmonary arteries and the effect of hypoxia. Exp Lung Res 2:303–313

    Article  CAS  PubMed  Google Scholar 

  • Mimeault M, Batra SK (2013) Hypoxia-inducing factors as master regulators of stemness properties and altered metabolism of cancer- and metastasis-initiating cells. J Cell Mol Med 17:30–54

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Montani D, Perros F, Gambaryan N, Girerd B, Dorfmueller P, Price LC, Huertas A et al (2011) C-kit positive cells accumulate in remodeled vessels of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 183:116–123

    Article  Google Scholar 

  • Moon SM, Kim SA, Yoon JH, Ahn SG (2012) HoxC6 is deregulated in human head and neck squamous cell carcinoma and modulates Bcl2 expression. J Biol Chem 287:35678–35688

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nagata S, Hanayama R, Kawane K (2010) Autoimmunity and the clearance of dead cells. Cell 140:619–629

    Article  CAS  PubMed  Google Scholar 

  • Nicolls MR, Mizuno S, Taraseveciene-Stewart L, Farkas L, Drake JI, Al Husseini A, Gomez-Arroyo JG, Voelkel NF, Boggard HJ (2012) New models of pulmonary hypertension based on VEGF receptor blockade-induced endothelial cell apoptosis. Pulm Circ 2:432–442

    Google Scholar 

  • Nijmeh H, Balasubramanian V, Burns N, Ahmad A, Stenmark KR, Gerasimovaskaya EV (2014) High proliferative potential endothelial colony forming cells contribute to hypoxia-induced pulmonary artery vasa vasorum neovascularization. Am J Physiol Lung Cell Mol Physiol 306(7):L661–L671 [Epub 2014 Feb 7]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noh K-H, Kim BW, Song K-H, Cho H, Lee Y-H et al (2012) Nanog signaling in cancer promotes stem-like phenotype and immune evasion. J Clin Invest 122:4077–4093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ohta-Ogo K, Hao H, Ishibashi-Ueda H, Hirota S et al (2012) CD44 expression in plexiform lesions of idiopathic pulmonary arterial hypertension. Pathol Int 62:219–225

    Article  PubMed  Google Scholar 

  • Oka M, Homma N, Taraseveciene-Stewart L, Morris KG, Kraskauskas D, Burns N, Voelkel NF, McMurtry IF (2007) Rho kinase-mediated vasoconstriction is important in severe occlusive pulmonary arterial hypertension in rats. Circ Res 100:923–929

    Article  CAS  PubMed  Google Scholar 

  • Pasquinelli G et al (2007) Thoracic aortas from multiorgan donors are suitable for obtaining resident angiogenic mesenchymal stromal cells. Stem Cells 25:1627–1634

    Article  CAS  PubMed  Google Scholar 

  • Rabinovitch M (2012) Molecular pathogenesis of pulmonary arterial hypertension. J Clin Invest 122:4306–4313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Rai PR, Cool CD, King JA, Sevens T, Burns N, Winn RA, Kasper M, Voelkel NF (2008) The cancer paradigm of severe pulmonary arterial hypertension. Am J Respir Crit Care Med 178:558–564

    Article  PubMed Central  PubMed  Google Scholar 

  • Rokavec M, Oner MG, Li H, Jackstadt R, Jiang L, Lodygin D, Kaller M et al (2014) IL-6R/STAT3/miR-34a feedback loop promotes EMT-mediated colorectal cancer invasion and metastasis. J Clin Invest 124(4):1853–1867 [Epub 2014 Mar 18]

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sakao S, Taraseveciene-Stewart L, Cool CD, Tada Y, KasaharaY KK, Tanabe Y, Tatsumi K, Kuriyama T, Voelkel NF (2007) VEGF-R blockade causes endothelial cell apoptosis, expansion of surviving CD34+ precursor cells and transdifferentiation to smooth muscle-like and neuronal cells. FASEB J 21:3640–3652

    Article  CAS  PubMed  Google Scholar 

  • Sanchez Alvarado A, Yamanaka S (2014) Rethinking differentiation: stem cells, regeneration and plasticity. Cell 157:110–119

    Article  CAS  PubMed  Google Scholar 

  • Savai R, Pullamsetti SS, Kolbe J, Bienek E, Voswinckel R et al (2012) Immune and inflammatory cell involvement in the pathology of idiopathic pulmonary arterial hypertension. Am J Respir Crit Care Med 186:897–908

    Article  CAS  PubMed  Google Scholar 

  • Scadden DT (2014) Nice neighbourhood: emerging concepts of the stem cell niche. Cell 157:41–50

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sgonc R, Gruschwitz MS, Dietrich H, Recheis H, Gershwin ME et al (1996) Endothelial cell apoptosis is a primary pathogenetic event underlying skin lesions in avian and human scleroderma. J Clin Invest 98:785–792

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shenoy V, Gjymishka A, Jarajapu YP, Qi Y, Afzal A et al (2013) Diminazene attenuates pulmonary hypertension and improves progenitor cell function in experimental models. Am J Respir Crit Care Med 187:648–657

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smadja DM, Mauge L, Sanchez O, Silvestre JS, Guerin C, Godier A, Henno P et al (2010) Distinct patterns of circulating endothelial cells in pulmonary hypertension. Eur Respir J 36:1284–1293

    Article  CAS  PubMed  Google Scholar 

  • Smadja DM, Mauge L, Gaussem P, d’Audigier C, Israel-Biet D et al (2011) Treprostinil increases the number and angiogenic potential of endothelial progenitor cells in children with pulmonary hypertension. Angiogenesis 14:17–27

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Smith P, Heath D (1979) Electron microscopy of the plexiform lesion. Thorax 34:177–186

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Spees JL, Whitney MJ, Sullivan DE, Lasky JA, Laboy M et al (2008) Bone marrow progenitor cells contribute to repair and remodeling of the lung and heart in a model of progressive pulmonary hypertension. FASEB J 22:1226–1236

    Article  CAS  PubMed  Google Scholar 

  • Spiekerkoetter E, Tian X, Cai J, Hopper RK, Sudheendra D et al (2013) FK506 activates BMPR2, rescues endothelial dysfunction and reverses pulmonary hypertension. J Clin Invest 123:3600–3613

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Stacher E, Graham BB, Hunt JM, Gangjeva A, Groshong SD et al (2012) Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med 186:261–272

    Article  PubMed Central  PubMed  Google Scholar 

  • Suh H, Kim D, Kim H, Helfman DM, Choi JH et al (2014) Modeling of Menkes disease via human induced pluripotent stem cells. Biochem Biophys Res Commun 444:311–318

    Article  CAS  PubMed  Google Scholar 

  • Takahashi M, Nakamura T, Toba T, Kajiwara N, Kato H et al (2004) Transplantation of endothelial progenitor cells into the lung to alleviate pulmonary hypertension in dogs. Tissue Eng 10:771–779

    Article  PubMed  Google Scholar 

  • Tamosiuniene R, Tian W, Dhillon G, Wang L, Sung YK, Gera L, Patterson A, Agrawal R et al (2011) Regulatory T Cells limit vascular endothelial injury and prevent pulmonary hypertension. Circ Res 109:867–879

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Taraseveciene-Stewart L, Voelkel NF (2008) Molecular pathogenesis of emphysema. J Clin Invest 118:394–402

    Article  Google Scholar 

  • Taraseveciene-Stewart L, Kasahara Y, Alger L, Hirth P, McMahon G, Waltenberger J, Voelkel NF, Tuder RM (2001) Inhibition of the VEGF receptor 2 combined with chronic hypoxia causes cell death-dependent pulmonary endothelial cell proliferation and severe pulmonary hypertension. FASEB J 15:427–438

    Article  Google Scholar 

  • Taraseveciene-Stewart L, Gera L, Hirth P, Voelkel NF, Tuder RM, Stewart JM (2002) A bradykinin antagonist and a caspase inhibitor prevent severe pulmonary hypertension in a rat model. Can J Physiol Pharmacol 80:269–274

    Article  Google Scholar 

  • Taraseveciene-Stewart L, Scerbavicius R, Choe KH, Cool CD, Wood K, Tuder RM, Kasper M, Voelkel NF (2006) Simvastatin causes endothelial cell apoptosis and attenuates severe pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 291:L668–L676

    Article  Google Scholar 

  • Tian W, Jiang X, Tamosiuniene R, Sung YK, Quian J, Dhillon G et al (2013) Blocking macrophage leukotriene B4 prevents endothelial injury and reverses pulmonary hypertension. Sci Transl Med 5(200):200ra117

    Article  PubMed Central  PubMed  Google Scholar 

  • Tigges U, Komatsu M, Stallcup WB (2013) Adventitial pericytes progenitor/mesenchymal stem cells participate in the restenotic response to arterial injury. J Vasc Res 50:134–144

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Toshner M, Voswinckel R, Southwood M, Al-Lamki R, Howard LS, Marchesan D et al (2009) Evidence of dysfunction of endothelial progenitors in pulmonary arterial hypertension. Am J Respir Crit Care Med 180:780–787

    Article  PubMed Central  PubMed  Google Scholar 

  • Tu L, Dewachter L, Gore B, Fadel E, Dartevelle P, Simonneau G, Humbert M et al (2011) Autocrine fibroblast growth factor-2 signaling contributes to altered endothelial phenotype in pulmonary hypertension. Am J Respir Crit Care Med 45:311–322

    CAS  Google Scholar 

  • Tuder RM, Groves BM, Badesch DB, Voelkel NF (1994) Exuberant endothelial cell growth and elements of inflammation are present in plexiform lesions of pulmonary hypertension. Am J Pathol 144(2):275–285

    PubMed Central  CAS  PubMed  Google Scholar 

  • Tuder RM, Archer SL, Dorfmueller P, Erzurum SC, Guignabert C, Michelakis E et al (2013) Relevant issues in the pathology and pathobiology of pulmonary hypertension. J Am Coll Cardiol 62:D4–D12

    Article  PubMed Central  PubMed  Google Scholar 

  • Voelkel NF (2013) Pulmonary vascular diseases: in search of a hub among the spokes-an exercise in hypothesis generation. Pulm Circ 3:723–727

    Article  PubMed Central  PubMed  Google Scholar 

  • Voelkel NF, Gomez-Arroyo J, Abbate A, Bogaard HJ, Nicolls MR (2012) Pathobiology of pulmonary arterial hypertension and right ventricular failure. Eur Respir J 40(6):1555–1565

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Voelkel NF, Mizuno S, Bogaard HJ (2013) The role of hypoxia in pulmonary vascular diseases: a perspective. Am J Physiol Lung Cell Mol Physiol 304:L457–L465

    Article  CAS  PubMed  Google Scholar 

  • Wagenvoort CA, Wagenvoort N (eds) (1977) Pathology of pulmonary hypertension. Wiley, New York

    Google Scholar 

  • Wanjare M, Kusama S, Gerecht S (2014) Defining differences among perivascular cells derived from human pluripotent stem cells. Stem Cell Reports 2:561–575

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yao W, Firth AL, Sacks RS, Ogawa A, Auger WR, Fedullo PF, Madani MM et al (2009) Am J Physiol Lung Cell Mol Physiol 296:L870–L878

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Yeager ME, Halley GR, Golpon HA, Voelkel NF, Tuder RM (2001) Microsatellite instability of endothelial cell growth and apoptosis genes within plexiform lesions in primary pulmonary hypertension. Circ Res 88:E2–E11

    Article  CAS  PubMed  Google Scholar 

  • Zaker F, Nasiri N, Oodi A, Amirizadeh N (2013) Evaluation of umbilical cord blood CD34+ hematopoietic stem cell expansion in co-culture with bone marrow mesenchymal stem cells in the presence of TEPA. Hematology 18:39–45

    Article  CAS  PubMed  Google Scholar 

  • Zengin E et al (2006) Vascular wall resident progenitor cells: a source for postnatal vasculogenesis. Development 133:1543–1551

    Article  CAS  PubMed  Google Scholar 

  • Zhao YD, Courtman DW, Deng Y, Kugathasan L, Zhang Q, Stewart DJ (2005) Rescue of monocrotaline-induced pulmonary arterial hypertension using bone marrow-derived endothelial-like progenitor cells. Circ Res 96:442–450

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Some of the experimental work on which this chapter is based was supported by funding from the Victoria Johnson Center for Lung Research at Virginia Commonwealth University. Excellent immunohistochemistry was performed by Mrs. Daniela Farkas.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert F. Voelkel .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Felty, Q., Sakao, S., Voelkel, N.F. (2015). Pulmonary Arterial Hypertension: A Stem Cell Hypothesis. In: Firth, A., Yuan, JJ. (eds) Lung Stem Cells in the Epithelium and Vasculature. Stem Cell Biology and Regenerative Medicine. Springer, Cham. https://doi.org/10.1007/978-3-319-16232-4_16

Download citation

Publish with us

Policies and ethics