Skip to main content

Origin of Lateral Heterogeneities in the Upper Mantle Beneath South-east Australia from Seismic Tomography

  • Chapter
  • First Online:

Part of the book series: Springer Geophysics ((SPRINGERGEOPHYS))

Abstract

We use teleseismic body wave tomography to reveal anomalous P wave velocity variations in the upper mantle beneath south-east Australia. Data are sourced from the WOMBAT transportable seismic array, the largest of its kind in the southern hemisphere, which enables horizontal resolution of approximately 50 km to be achieved over a large region that includes Victoria, New South Wales and southern South Australia. In order to account for long-wavelength structure that is lost due to the use of multiple teleseismic datasets from adjacent arrays with non-overlapping recording periods, the AuSREM mantle model is included as prior information in the inversion. Furthermore, AuSREM crust and Moho structure is explicitly included in the initial model in order to account for the presence of shallow heterogeneity which is poorly constrained by the teleseismic dataset. The P wave velocity model obtained from the joint inversion of WOMBAT teleseismic data represents a vast new resource on the seismic structure of the upper mantle beneath south-east Australia. One of the most striking features of the model is the presence of a north-dipping low-velocity anomaly beneath the Newer Volcanics province, a Quaternary intraplate basaltic province in western Victoria. The anomaly appears to terminate at approximately 200 km depth and has a structure that is more suggestive of a source confined to the upper mantle rather than a deeply rooted mantle plume. Other features that can be observed include a high-velocity anomaly beneath the Curnamona province and a high-velocity salient beneath the New England Orogen . Of particular interest is an extensive high-velocity anomaly beneath the Lachlan Orogen, which coincides almost exactly with the surface expression of the Hay–Booligal Zone in the south, and extends northwards beneath the Macquarie Arc. The higher velocities beneath the Hay–Booligal Zone are consistent with the idea that it may be floored by a fragment of Proterozoic continental lithosphere that was once part of the east Gondwana margin, while the higher velocities beneath the Macquarie Arc may be related to its origin as an intra-oceanic arc.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Afonso JC, Fernàndez N, Ranalli G, Griffin WL, Connolly JAD (2008) Integrated geophysical-petrological modelling of the lithospheric-sublithospheric upper mantle: methodology and applications. Geochem Geophys Geosyst 9. doi:10.1029/2007GC001834

  • Afonso JC, Fullea J, Griffin WL, Yang Y, Jones AG, Connolly JAD, O’Reilly SY (2013a) 3D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. I: a priori petrological information and geophysical observables. J Geophys Res (in press)

    Google Scholar 

  • Afonso JC, Fullea J, Yang Y, Connolly JAD, Jones AG (2013b) 3D multi-observable probabilistic inversion for the compositional and thermal structure of the lithosphere and upper mantle. II: General methodology and resolution analysis. J Geophys Res (in press)

    Google Scholar 

  • Belousova E, Preiss W, Schwarz M, Griffin W (2006) Tectonic affinities of the Houghton Inlier, South Australia: U-Pb and Hf-isotope data from zircons in modern stream sediments. Aust J Earth Sci 53:971–989

    Google Scholar 

  • Berry RF, Steele DA, Meffre S (2008) Proterozoic metamorphism in Tasmania: implications for tectonic reconstructions. Precambr Res 166:387–396

    Google Scholar 

  • Bolt BA, Niazi M (1964) Dispersion of Rayleigh waves across Australia. Geophys J Royal Astr Soc 9:21–35

    Google Scholar 

  • Bolt BA, Doyle HA, Sutton DJ (1958) Seismic observations from the 1956 atomic explosions in Australia. Geophys J Royal Astr Soc 1:135–145

    Google Scholar 

  • Bowman R, Kennett BLN (1990) An investigation of the upper mantle beneath northwestern australia using a hybrid seismograph array. Geophys J Int 101:411–424

    Google Scholar 

  • Bowman R, Kennett BLN (1993) The velocity structure of the Australian shield from seismic traveltimes. Bull Seism Soc Am 83:25–37

    Google Scholar 

  • Calvert CR, Walter MR (2000) The Late Neoproterozoic Grassy Group of King Island, Tasmania: correlation and palaeogeographic significance. Precambr Res 100:299–312

    Google Scholar 

  • Cammarano F, Goes S, Vacher P, Giardini D (2003) Inferring upper-mantle temperatures from seismic velocities. Phys Earth Planet Inter 138:197–222

    Google Scholar 

  • Cammarano F, Tackley P, Boschi L (2011) Seismic, petrological and geodynamical constraints on thermal and compositional structure of the upper mantle: global thermo-chemical models. Geophys J Int 187:1301–1318

    Google Scholar 

  • Cawood PA, Pisarevsky SA, Leitch EC (2011) Unraveling the New England orocline, East Gondwana accretionary margin. Tectonics 30. doi:10.1029/2011TC002864

  • Cayley R (2011) Exotic crustal block accretion to the Eastern Gondwana margin in the Late Cambrian-Tasmania, the Selwyn Block, and implications for the Cambrian-Silurian evolution of the Ross, Delamerian and Lachlan orogens. Gondwana Res 19:628–649

    Google Scholar 

  • Cayley R, Taylor DH, VandenBerg AHM, Moore DH (2002) Proterozoic—early Palaeozoic rocks and the Tyennan Orogeny in central Victoria: the Selwyn Block and its tectonic implications. Aust J Earth Sci 49:225–254

    Google Scholar 

  • Chappell BW, White AJR, Hine R (1988) Granite provinces and basement terranes in the Lachlan Fold Belt, Southeastern Australia. Aust J Earth Sci 35:505–521

    Google Scholar 

  • Clifford P, Greenhalgh S, Houseman G, Graeber F (2008) 3-d seismic tomography of the Adelaide fold belt. Geophys J Int 172:167–186

    Google Scholar 

  • Clitheroe G, Gudmundsson O, Kennett BLN (2000) The crustal thickness of Australia. J Geophys Res 105:13697–13713

    Google Scholar 

  • Conor CHH, Preiss WV (2008) Understanding the 1720-1640 Ma Palaeoproterozoic Willyama Supergroup, Curnamona province, Southeastern Australia: Implications for tectonics, basin evolution and ore genesis. Precambr Res 166:297–317

    Google Scholar 

  • Dalton CA, Faul UH (2010) The oceanic and cratonic upper mantle: Clues from joint interpretation of global velocity and attenuation models. Lithos 120:160–172

    Google Scholar 

  • De Jersey NI (1946) Seismological evidence bearing on crustal thickness in the southwest Pacific. University of Queensland, papers 3: no 2

    Google Scholar 

  • Debayle E (1999) SV-wave azimuthal anisotropy in the Australian upper mantle: preliminary results from automated Rayleigh waveform inversion. Geophys J Int 137:747–754

    Google Scholar 

  • Debayle E, Kennett BLN (2000) The Australian continental upper mantle: Structure and deformation inferred from surface waves. J Geophys Res 105:25423–25450

    Google Scholar 

  • de Kool M, Rawlinson N, Sambridge M (2006) A practical grid based method for tracking multiple refraction and reflection phases in 3D heterogeneous media. Geophys J Int 167:253–270

    Google Scholar 

  • Demidjuk Z, Turner S, Sandiford M, Rhiannon G, Foden J, Etheridge M (2007) U-series isotope and geodynamic constraints on mantle melting processes beneath the newer volcanic province in south australia. Earth Planet Sci Lett 261:517–533

    Google Scholar 

  • Direen NG, Crawford AJ (2003) The Tasman Line: where is it, what is it, and is it Australia’s Rodinian breakup boundary? Aust J Earth Sci 50:491–502

    Google Scholar 

  • Doyle HA (1957) Seismic recordings of atomic explosions in australia. Nature 180:132–134

    Google Scholar 

  • Evans JR, Achauer U (1993) Teleseismic tomography using the ach method: theory and application to continental scale studies. In: Iyer HM, Hirahara K (eds) Seismic tomography: theory and practice. Chapman & Hall, London, pp 319–360

    Google Scholar 

  • Faul UH, Jackson I (2005) The seismological signature of temperature and grain size variations in the upper mantle. Earth Planet Sci Lett 234:119–134

    Google Scholar 

  • Fichtner A, Trampert J (2011) Resolution analysis in full waveform inversion. Geophys J Int 187:1604–1624

    Google Scholar 

  • Finlayson DM (1993) Crustal architecture across Phanerozoic Australia along the Eromanga-Brisbane geoscience transect: evolution and analogues. Tectonophysics 219:191–211

    Google Scholar 

  • Finlayson DM, Cull JP, Drummond BJ (1974) Upper mantle structure from the trans-Australia seismic survey (TASS) and other seismic refraction data. J Geol Soc Aust 21:447–458

    Google Scholar 

  • Finlayson DM, Collins CDN, Denham D (1980) Crustal structure under the Lachlan Fold Belt, Southeastern Australia. Phys Earth Planet Inter 21:321–342

    Google Scholar 

  • Finlayson DM, Collins CDN, Lock J (1984) P-wave velocity features of the lithosphere under the Eromanga Basin, Eastern Australia, including a prominent MID-crustal (Conrad?) discontinuity. Tectonophysics 101:267–291

    Google Scholar 

  • Finlayson DM, Collins CDN, Lukaszyk I, Chudyk EC (1998) A transect across Australia’s southern margin in the Otway Basin region: crustal architecture and the nature of rifting from wide-angle seismic profiling. Tectonics 288:177–189

    Google Scholar 

  • Fishwick S, Rawlinson N (2012) 3-D structure of the Australian lithosphere from evolving seismic datasets. Aust J Earth Sci 59:809–826

    Google Scholar 

  • Fishwick S, Kennett BLN, Reading AM (2005) Contrasts in lithospheric structure within the Australian craton—insights from surface wave tomography. Earth Planet Sci Lett 231:163–176

    Google Scholar 

  • Fishwick S, Heintz M, Kennett BLN, Reading AM, Yoshizawa K (2008) Steps in lithospheric thickness within Eastern Australia, evidence from surface wave tomography. Tectonics 27. doi:10.1029/2007TC002116

  • Foden J, Sandiford M, Dougherty-Page J, Williams I (1999) Geochemistry and geochronology of the Rathjen Gneiss: implications for the early tectonic evolution of the Delamerian Orogen. Aust J Earth Sci 46:377–389

    Google Scholar 

  • Foden J, Elburg MA, Dougherty-Page J, Burtt A (2006) The timing and duration of the Delamerian Orogeny: correlation with the Ross Orogen and implications for Gondwana assembly. J Geol 114:189–210

    Google Scholar 

  • Foster DA, Gray DR (2000) Evolution and structure of the Lachlan Fold Belt (Orogen) of Eastern Australia. Ann Rev Earth Planet Sci 28:47–80

    Google Scholar 

  • Foster DA, Gray DR, Spaggiari CV (2005) Timing of subduction and exhumation along the Cambrian East Gondwana margin and formation of Paleozoic back arc basins. Geol Soc Am Bull 117:105–116

    Google Scholar 

  • Foster DA, Gray DR, Spaggiari C, Kamenov G, Bierlein FP (2009) Palaeozoic Lachlan orogen, Australia; accretion and construction of continental crust in a marginal ocean setting: isotopic evidence from Cambrian metavolcanic rocks. Geol Soc Lond Spec Publ 318:329–349

    Google Scholar 

  • Frederiksen AW, Bostock MG, VanDecar JC, Cassidy JF (1998) Seismic structure of the upper mantle beneath the northern Canadian Cordillera from teleseismic traveltime inversion. Tectonophysics 294:43–55

    Google Scholar 

  • Gaina C, Müller D, Royer JY, Stock J, Hardebeck J, Symonds P (1998) The tectonic history of the Tasman Sea: A puzzle with 13 pieces. J Geophys Res 103:12413–12433

    Google Scholar 

  • Gibson GM, Morse MP, Ireland TR, Nayak GK (2011) Arc-continent collision and orogenesis in western Tasmanides: Insights from reactivated basement structures and formation of an ocean-continent transform boundary off western Tasmania. Gondwana Res 19:608–627

    Google Scholar 

  • Glen RA (2005) The Tasmanides of Eastern Australia. In: Vaughan APM, Leat PT, Pankhurst RJ (eds) Terrane processes at the margins of Gondwana. Geological Society, London, pp 23–96

    Google Scholar 

  • Glen RA (2013) Refining accretionary orogen models for the Tasmanides of eastern Australia. Aust J Earth Sci (in press)

    Google Scholar 

  • Glen RA, Roberts J (2012) Formation of Oroclines in the New England Orogen, Eastern Australia. J Virtual Explorer 43. doi:10.3809/jvirtex.2012.00305

  • Glen RA, Scheibner E, Vandenberg AHM (1992) Paleozoic intraplate escape tectonics in Gondwanaland and major strike-slip duplication in the Lachlan Orogen of South-eastern Australia. Geology 20:795–798

    Google Scholar 

  • Glen RA, Percival IG, Quinn CD (2009) Ordovician continental margin terranes in the Lachlan Orogen, Australia: implications for tectonics in an accretionary orogen along the east Gondwana margin. Tectonics 28:doi:10.1029/2009TC002446

  • Glen RA, Saeed CDA, Quinn Griffin WL (2011) U-Pb and Hf isotope data from zircons in the Macquarie Arc, Lachlan Orogen: implications for arc evolution and Ordovician palaeogeography along part of the east Gondwana margin. Gondwana Res 19:670–685

    Google Scholar 

  • Glen RA, Quinn CD, Cooke DR (2012) The Macquarie Arc, Lachlan orogen, New South Wales; its evolution, tectonic setting and mineral deposits. Episodes 35:177–186

    Google Scholar 

  • Glen RA, Korsch RJ, Hegarty R, Costello RD, Saeed A, Poudjom Djomani RD, Costello RD, Griffin W (2013) Geodynamic significance of the boundary between the Thomson Orogen and the Lachlan Orogen, northwestern New South Wales and the implications for Tasmanide tectonics. Austr J Earth Sci (submitted)

    Google Scholar 

  • Graeber FM, Houseman GA, Greenhalgh SA (2002) Regional teleseismic tomography of the western Lachlan Orogen and the Newer Volcanic province, southeast Australia. Geophys J Int 149:249–266

    Google Scholar 

  • Griffin WL, O’Reilly SY, Ryan CG, Gaul O, Ionov DA (1998) Secular variation in the composition of subcontinental lithospheric mantle: geophysical and geodynamic implications. In: Braun J, Dooley J, Goleby B, van der Hilst R, Kllotwijk C (eds) Structure and evolution of the Australian continent, vol 26. American Geophysical Union Geodynamic Series, pp 1–26

    Google Scholar 

  • Gunn PJ, Mackey TE, Yeates AN, Richardson RG, Seymour DB, McClenaghan MP, Calver CR, Roach MJ (1997) The basement elements of Tasmania. Explor Geophys 28:225–231

    Google Scholar 

  • Hallet M, Vassallo J, Glen R, Webster S (2005) Murray–Riverina region: an interpretation of bedrock Palaeozoic geology based on geophysical data. Q Notes Geol Surv NSW 118:1–16

    Google Scholar 

  • Hand M, Reid A, Szpunar M, Direen n, Wade B, Payne j, Barovich K (2008) Crustal architecture during the early Mesoproterozoic Hiltaba-related mineralisation event: are the Gawler Range Volcanics a foreland basin fill? MESA J 51:19–24

    Google Scholar 

  • Handler MR, Bennet VC (2001) Constraining continental structure by integrating Os isotopic ages of lithospheric mantle with geophysical and crustal data: an example from Southeastern Australia. Tectonics 20:177–188

    Google Scholar 

  • Heintz M, Kennett BLN (2005) Continental scale shear-wave splitting analysis: investigation of seismic anisotropy underneath the Australian continent. Earth Planet Sci Lett 236:106–119

    Google Scholar 

  • Hensel HD, Mcculloch MT, Chappell BW (1985) The New England Batholith: constraints on its derivation from Nd and Sr isotopic studies of granitoids and country rocks. Geochim Cosmochim Acta 49:369–384

    Google Scholar 

  • Hill D (1951) Geology. In: Mack G (ed) Handbook of Queensland. Australian Association for the Advancement of Science, Brisbane, pp 13–24

    Google Scholar 

  • Johnson BD (1973) A time term analysis of the data obtained during the Bass Strait upper mantle project (operation BUMP). Bull Aust Soc Explor Geophys 4:15–20

    Google Scholar 

  • Johnson RW (1989) Intraplate volcanism in Eastern Australia and New Zealand. Cambridge University Press, New York

    Google Scholar 

  • Kennett BLN (2003) Seismic structure in the mantle beneath Australia. In: Hillis RR, Müller RD (eds) The evolution and dynamics of the Australian PLATE, pp 7–23

    Google Scholar 

  • Kennett BLN, Abdullah A (2011) Seismic wave attenuation beneath the Australasian region. Aust J Earth Sci 58:285–295

    Google Scholar 

  • Kennett BLN, Bowman JR (1990) The structure and heterogeneity of the upper mantle. Phys Earth Planet Inter 59:134–144

    Google Scholar 

  • Kennett BLN, Salmon M (2012) AuSREM: Australian seismological reference model. Aust J Earth Sci 59:1091–1103

    Google Scholar 

  • Kennett BLN, Sambridge MS, Williamson PR (1988) Subspace methods for large scale inverse problems involving multiple parameter classes. Geophys J 94:237–247

    Google Scholar 

  • Kennett BLN, Engdahl ER, Buland R (1995) Constraints on seismic velocities in the earth from traveltimes. Geophys J Int 122:108–124

    Google Scholar 

  • Kennett BLN, Fishwick S, Reading AM, Rawlinson N (2004) Contrasts in mantle structure beneath Australia: relation to Tasman Lines? Aust J Earth Sci 51:563–569

    Google Scholar 

  • Kennett BLN, Fichtner A, Fishwick S, Yoshizawa K (2013) Australian seismological reference model (AuSREM): mantle component. Geophys J Int 192:871–887

    Google Scholar 

  • Khan A, Connolly JAD, Maclennan J, Mosegaard K (2007) Joint inversion of seismic and gravity data for lunar composition and thermal state. Geophys J Int 168:243–258

    Google Scholar 

  • Khan A, Boschi L, Connolly JAD (2011) Mapping the Earths thermochemical and anisotropic structure using global surface wave data. J Geophys Res 116. doi:10.1029/2010JB007828

  • Koketsu K, Sekine S (1998) Pseudo-bending method for three-dimensional seismic ray tracing in a spherical earth with discontinuities. Geophys J Int 132:339–346

    Google Scholar 

  • Lambeck K, Penny C (1984) Teleseismic traveltime anomalies and crustal structure in central Australia. Phys Earth Planet Inter 34:46–56

    Google Scholar 

  • Lambeck K, Stephenson R (1986) The post-Palaeozoic uplift history of Southeastern Australia. Aust J Earth Sci 33:253–270

    Google Scholar 

  • Lei J, Zhao D (2007) Teleseismic P-wave tomography and the upper mantle structure of the central Tien Shan orogenic belt. Phys Earth Planet Inter 162:165–185

    Google Scholar 

  • Lévêque JJ, Rivera L, Wittlinger G (1993) On the use of the checker-board test to assess the resolution of tomographic inversions. Geophys J Int 115:313–318

    Google Scholar 

  • Li ZX (2001) An outline of the palaeogeographic evolution of the Australasian region since the beginning of the Neoproterozoic. Earth Sci Rev 53:237–277

    Google Scholar 

  • Li ZX, Baillie PA, Powell CM (1997) Relationship between northwestern tasmania and East Gondwanaland in the late cambrian/early ordovician: paleomagnetic evidence. Tectonics 16:161–171

    Google Scholar 

  • Lister GS, Etheridge MA (1989) Detachment models for uplift and volcanism in the Eastern Highlands, and their application to the origin of passive margin mountains. In: Johnson RW (ed) Intraplate Volcanism in Eastern Australia and New Zealand. Cambridge University Press, New York, pp 297–312

    Google Scholar 

  • Lister GS, Ethridge MA, Symonds PA (1986) Detachment faulting and the evolution of passive continental margins. Geology 14:246–250

    Google Scholar 

  • Lister GS, Ethridge MA, Symonds PA (1991) Detachment models for the formation of passive continental margins. Tectonics 10:1038–1064

    Google Scholar 

  • MacCarthy J, Brochers B, Aster R (2011) Efficient stochastic estimation of the model resolution matrix diagonal and generalized cross-validation for large geophysical inverse problems. J Geophys Res 116. doi:10.1029/2011JB008234

  • Martin M, Ritter JRR (2005) High-resolution teleseismic body-wave tomography beneath SE Romania—I. Implications for the three-dimensional versus one-dimensional crustal correction strategies with a new crustal velocity model. Geophys J Int 162:448–460 (the CALIXTO working group)

    Google Scholar 

  • Musgrave R, Rawlinson N (2010) Linking the upper crust to the upper mantle: comparison of teleseismic tomography with long-wavelength features of the gravity and magnetic fields of Southeastern Australia. Explor Geophys 41:155–162

    Google Scholar 

  • Nolet G (2008) A breviary of seismic tomography: imaging the interior of the earth and sun. Cambridge University Press, Cambridge

    Google Scholar 

  • Powell W, O’Reilly S (2007) Metasomatism and sulfide mobility in lithospheric mantle beneath Eastern Australia: implications for mantle ReOs chronology. Lithos 94:132–147

    Google Scholar 

  • Price RC, Gray CM, Frey FA (1997) Strontium isotopic and trace element heterogeneity in the plains basalts of the newer Volcanic province, Victoria, Australia. Geochim Cosmochim Acta 61:171–192

    Google Scholar 

  • Rawlinson N, Fishwick S (2012) Seismic structure of the Southeast Australian lithosphere from surface and body wave tomography. Tectonophysics 572:111–122

    Google Scholar 

  • Rawlinson N, Houseman GA, Collins CDN, Drummond BJ (2001) New evidence of Tasmania’s tectonic history from a novel seismic experiment. Geophys Res Lett 28:3337–3340

    Google Scholar 

  • Rawlinson N, Kennett BLN (2004) Rapid estimation of relative and absolute delay times across a network by adaptive stacking. Geophys J Int 157:332–340

    Google Scholar 

  • Rawlinson N, Kennett BLN (2008) Teleseismic tomography of the upper mantle beneath the southern Lachan Orogen, Australia. Phys Earth Planet Inter 167:84–97

    Google Scholar 

  • Rawlinson N, Kennett BLN, Heintz M (2006a) Insights into the structure of the upper mantle beneath the Murray Basin from 3D teleseismic tomography. Austr J Earth Sci 53:595–604

    Google Scholar 

  • Rawlinson N, Reading AM, Kennett BLN (2006b) Lithospheric structure of Tasmania from a novel form of teleseismic tomography. J Geophys Res 111. doi:10.1029/2005JB003803

  • Rawlinson N, Kennett B, Vanacore E, Glen R, Fishwick S (2011) The structure of the upper mantle beneath the Delamerian and Lachlan orogens from simultaneous inversion of multiple teleseismic datasets. Gondwana Res 19:788–799

    Google Scholar 

  • Rawlinson N, Pozgay S, Fishwick S (2010a) Seismic tomography: a window into deep Earth. Phys Earth Planet Inter 178:101–135

    Google Scholar 

  • Rawlinson N, Salmon N, Kennett BLN (2013) Transportable seismic array tomography in Southeast Australia: illuminating the transition from Proterozoic to Phanerozoic lithosphere. Lithos (submitted)

    Google Scholar 

  • Rawlinson N, Sambridge M (2004a) Multiple reflection and transmission phases in complex layered media using a multistage fast marching method. Geophysics 69:1338–1350

    Google Scholar 

  • Rawlinson N, Sambridge M (2004b) Wavefront evolution in strongly heterogeneous layered media using the fast marching method. Geophys J Int 156:631–647

    Google Scholar 

  • Rawlinson N, Sambridge M, Saygin E (2008) A dynamic objective function technique for generating multiple solution models in seismic tomography. Geophys J Int 174:295–308

    Google Scholar 

  • Rawlinson N, Tkalčić H, Reading AM (2010b) Structure of the Tasmanian lithosphere from 3-D seismic tomography. Aust J Earth Sci 57:381–394

    Google Scholar 

  • Rawlinson N, Urvoy M (2006) Simultaneous inversion of active and passive source datasets for 3-D seismic structure with application to Tasmania. Geophys Res Lett 33:doi:10.1029/2006GL028105

  • Reading AM, Kennett BLN (2003) Lithospheric structure of the Pilbara Craton, Capricorn orogen and Northern Yilgarn craton, Western Australia, from teleseismic receiver functions. Aust J Earth Sci 50:439–445

    Google Scholar 

  • Ritsema J, Deuss A, van Heijst HJ, Woodhouse JH (2011) S40RTS: a degree-40 shear velocity model for the mantle from new Rayleigh wave dispersion, teleseismic traveltime and normal-mode splitting function measurements. Geophys J Int 184:1223–1236

    Google Scholar 

  • Rosenbaum G (2012) Oroclines of the southern New England Orogen, eastern Australia. Episodes 35:187–194

    Google Scholar 

  • Rutland RWR (1976) Orogenic evolution of australia. Earth Sci Rev 12:161–196

    Google Scholar 

  • Salmon K, Kennett BLN, Saygin E (2012) Australian seismological reference model (AuSREM): crustal component. Geophys J Int 192:190–206

    Google Scholar 

  • Scheibner E (1974) Fossil fracture zones (transform faults), segmentation and correlation problems in the Tasman Fold Belt system. In: Demead AK, Tweedale GW, Wilson AF (eds) Tasman geosyncline: a symposium in honour of Professor Dorothy Hill, Geological Society of Australia, Brisbane, pp 65–98

    Google Scholar 

  • Scheibner E, Veevers JJ (2000) Tasman Fold Belt System. In: Veevers JJ (ed) Billion-year earth history of Australia and neighbours in Gondwanaland. GEMOC Press, Macquarie Univ, Sydney, pp 154–234

    Google Scholar 

  • Sethian JA (1996) A fast marching level set method for monotonically advancing fronts. Proc Nat Acad Sci 93:1591–1595

    Google Scholar 

  • Shaw RD, Wellman P, Gunn P, Whitaker AJ, Tarlowski C, Morse M (1996) Australian Crustal Elements based on the distribution of geophysical domains (1:5 000 000 scale map; version 2.4, ArcGIS dataset). Geoscience Australia, Canberra

    Google Scholar 

  • Shaw SW, Flood RH, Pearson NJ (2011) The New England Batholith of eastern Australia: evidence of silicic magma mixing from 176Hf/177 Hf ratios. Lithos 126:115–126

    Google Scholar 

  • Simmons NA, Forte AM, Grand SP (2009) Joint seismic, geodynamic and mineral physical constraints on three-dimensional mantle heterogeneity: implications for the relative importance of thermal versus compositional heterogeneity. Geophys J Int 177:1284–1304

    Google Scholar 

  • Simons F, Zielhuis A, van der Hilst RD (1999) The deep structure of the Australian continent from surface wave tomography. Lithos 48:17–43

    Google Scholar 

  • Simons FJ, van der Hilst RD, Montagner JP, Zielhuis A (2002) Multimode Rayleigh wave inversion for heterogeneity and azimuthal anisotropy of the Australian upper mantle. Geophys J Int 151:738–754

    Google Scholar 

  • Spaggiari CV, Gray DR, Foster DA, McKnight S (2003) Evolution of the boundary between the western and central Lachlan Orogen: implications for Tasmanide tectonics. Aust J Earth Sci 50:725–749

    Google Scholar 

  • Spaggiari CV, Gray DR, Foster DA (2004) Lachlan Orogen subduction-accretion systematics revisited. Aust J Earth Sci 51:549–553

    Google Scholar 

  • Sutherland FL (1983) Timing, trace and origin of basaltic migration in eastern Australia. Nature 305:123–126

    Google Scholar 

  • Sutherland FL, Graham IT, Meffre S, Zwingmann H, Pogson RE (2012) Passive-margin prolonged volcanism, East Australian Plate: outbursts, progressions, plate controls and suggested causes. Aust J Earth Sci 59:983–1005

    Google Scholar 

  • Tarantola A (1987) Inverse problem theory. Elsevier, Amsterdam

    Google Scholar 

  • Thomas L (1969) Rayleigh wave dispersion in Australia. Bull Seism Soc Am 59:167–182

    Google Scholar 

  • Thomson BP (1970) A review of the Precambrian and lower Palaeozoic tectonics of South Australia. Transactions of the Royal Society of South Australia 94:193–221

    Google Scholar 

  • Trampert J, Fichtner A, Ritsema J (2013) Resolution tests revisited: the power of random numbers. Geophys J Int 192:676–680

    Google Scholar 

  • Underwood R (1969) A seismic refraction study of the crust and upper mantle in the vicinity of Bass Strait. Aust J Phys 22:573–587

    Google Scholar 

  • van der Beek PA, Braun J, Lambeck K (1999) Post-palaeozoic uplift history of Southeastern Australia revisited: results from a process-based model of landscape evolution. Aust J Earth Sci 46:157–172

    Google Scholar 

  • VandenBerg AHM (1999) Timing of orogenic events in the Lachlan orogen. Aust J Earth Sci 46:691–701

    Google Scholar 

  • van der Hilst R, Kennett B, Christie D, Grant J (1994) Project SKIPPY explores the lithosphere and mantle beneath Australia. EOS, Trans Amer Geophys Union 75:177–181

    Google Scholar 

  • Vogel DC, Keays RR (1997) The petrogenesis and platinum-group element geochemistry of the newer Volcanic province, Victoria, Australia. Chemical Geology 136:181–204

    Google Scholar 

  • Wade C, Reid A, Wingate M, Jagodzinski Barovich K (2012) Geochemistry and geochronology of the c. 1585 ma Benagerie Volcanic Suite, southern Australia: relationship to the Gawler Range Volcanics and implications for the petrogenesis of a Mesoproterozoic silicic large igneous province. Precambr Res 206:17–35

    Google Scholar 

  • Waldhauser F, Lippitsch R, Kissling E, Ansorge J (2002) High-resolution teleseismic tomography of upper-mantle structure using an a priori three-dimensional crustal model. Geophys J Int 150:403–414

    Google Scholar 

  • Wellman P (1976) Gravity trends and the growth of Australia: a tentative correlation. J Geol Soc Aust 23:11–14

    Google Scholar 

  • Wellman P (1983) Hotspot volcanism in Australia and New Zealand: Cainozoic and mid-Mesozoic. Tectonophysics 96:225–243

    Google Scholar 

  • Willman CE, VandenBerg AHM, Morand VJ (2002) Evolution of the southeastern Lachlan Fold Belt in Victoria. Aust J Earth Sci 49:271–289

    Google Scholar 

  • Yoshizawa K, Kennett BLN (2004) Multimode surface wave tomography for the Australian region using a three-stage approach incorporating finite frequency effects. J Geophys Res 109. doi:10.1029/2002JB002254

  • Zhang H, Thurber CH (2007) Estimating the model resolution matrix for large seismic tomography problems based on Lanczos bidiagonalization with partial reorthogonalization. Geophys J Int 170:337–345

    Google Scholar 

  • Zhang J, McMechan GA (1995) Estimation of resolution and covariance for large matrix inversions. Geophys J Int 121:409–426

    Google Scholar 

  • Zielhuis A, van der Hilst RD (1996) Upper-mantle shear velocity beneath eastern Australia from inversion of waveforms from SKIPPY portable arrays. Geophys J Int 127:1–16

    Google Scholar 

Download references

Acknowledgments

This work was supported by Australian Research Council Discovery Grant DP120103673.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. Rawlinson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Rawlinson, N., Kennett, B.L.N., Salmon, M., Glen, R.A. (2015). Origin of Lateral Heterogeneities in the Upper Mantle Beneath South-east Australia from Seismic Tomography. In: Khan, A., Deschamps, F. (eds) The Earth's Heterogeneous Mantle. Springer Geophysics. Springer, Cham. https://doi.org/10.1007/978-3-319-15627-9_2

Download citation

Publish with us

Policies and ethics