Skip to main content

Electric Control of Magnetic Devices for Spintronic Computing

  • Chapter
Book cover Spintronics-based Computing

Abstract

The scaling of CMOS technology has followed Moore’s Law for more than five decades [1], enabling the continuous growth of the semiconductor industry. This trend, however, currently faces a major challenge due to increasing energy dissipation per unit area [2]. The increase in power dissipation results from the increase of static (standby) leakage power, as well as the continued increase of density as transistors are scaled down [3]. The former is a result of the fact that power needs to be continuously applied to CMOS elements in order for them to retain their information. In addition, the dynamic switching energy per unit area has also been increasing due to the increase of device density. The search for novel low-dissipation solutions at the device-, circuit- and system-levels is thus critical to the future of the electronics industry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.E. Moore, Cramming more components onto integrated circuits. Electron. Mag. 38, 114–117 (1965)

    Google Scholar 

  2. International technology roadmap for semiconductors, (ed.), 2005

    Google Scholar 

  3. T.N. Theis, P.M. Solomon, In quest of the “next switch”: prospects for greatly reduced power dissipation in a successor to the silicon field-effect transistor. Proc. IEEE 98, 2005–2014 (2010)

    Article  Google Scholar 

  4. S.A. Wolf et al., Spintronics: a spin-based electronics vision for the future. Science 294, 1488–1495 (2001)

    Article  Google Scholar 

  5. D.A. Allwood et al., Magnetic domain-wall logic. Science 309, 1688–1692 (2005)

    Article  Google Scholar 

  6. R.P. Cowburn, M.E. Welland, Room temperature magnetic quantum cellular automata. Science 287, 1466–1468 (2000)

    Article  Google Scholar 

  7. A. Khitun et al., Magnonic logic circuits. J. Phys. D 43, 264005 (2010)

    Article  Google Scholar 

  8. F.B. Ren, D. Markovic, True energy-performance analysis of the MTJ-based logic-in-memory architecture (1-bit full adder). IEEE Trans. Electron Devices 57, 1023–1028 (2010)

    Article  Google Scholar 

  9. P. Shabadi et al., Spin wave functions nanofabric update, in 2011 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) (2011), pp. 107–113

    Google Scholar 

  10. A. Khitun, K.L. Wang, Non-volatile magnonic logic circuits engineering. J. Appl. Phys. 110, 034306 (2011)

    Article  Google Scholar 

  11. S. Matsunaga et al., Fabrication of a nonvolatile full adder based on logic-in-memory architecture using magnetic tunnel junctions. Appl. Phys. Exp. 1 (2008)

    Google Scholar 

  12. S.Y. Lee et al., A full adder design using serially connected single-layer magnetic tunnel junction elements. IEEE Trans. Electron Devices 55, 890–895 (2008)

    Article  Google Scholar 

  13. K.L. Wang, P.K. Amiri, Non-volatile spintronics: perspectives on instant-on nonvolatile nanoelectronic systems. Spin 02, 1250009 (2012)

    Article  Google Scholar 

  14. B. Behin-Aein et al., Proposal for an all-spin logic device with built-in memory. Nat. Nanotechnol. 5, 266–270 (2010)

    Article  Google Scholar 

  15. T. Dietl, H. Ohno, Dilute ferromagnetic semiconductors: physics and spintronic structures. Rev. Mod. Phys. 86, 187–251 (2014)

    Article  Google Scholar 

  16. T. Dietl, A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9, 965–974 (2010)

    Article  Google Scholar 

  17. H. Ohno, Making nonmagnetic semiconductors ferromagnetic. Science 281, 951 (1998)

    Article  Google Scholar 

  18. Y. Ohno et al., Electrical spin injection in a ferromagnetic semiconductor heterostructure. Nature 402, 790–792 (1999)

    Article  Google Scholar 

  19. D. Chiba et al., Magnetization vector manipulation by electric fields. Nature 455, 515–518 (2008)

    Article  Google Scholar 

  20. A. Chernyshov et al., Evidence for reversible control of magnetization in a ferromagnetic material by means of spin-orbit magnetic field. Nat. Phys. 5, 656–659 (2009)

    Article  Google Scholar 

  21. C. Gould et al., Tunneling anisotropic magnetoresistance: a spin-valve-like tunnel magnetoresistance using a single magnetic layer. Phys. Rev. Lett. 93, 117203 (2004)

    Article  Google Scholar 

  22. M. Yamanouchi et al., Current-induced domain-wall switching in a ferromagnetic semiconductor structure. Nature 428, 539–542 (2004)

    Article  Google Scholar 

  23. H. Ohno et al., (Ga, Mn)As: a new diluted magnetic semiconductor based on GaAs. Appl. Phys. Lett. 69, 363–365 (1996)

    Article  Google Scholar 

  24. H. Munekata et al., Diluted magnetic III–V semiconductors. Phys. Rev. Lett. 63, 1849–1852 (1989)

    Article  Google Scholar 

  25. D. Ferrand et al., Carrier-induced ferromagnetic interactions in p-Doped Zn1−xMnxTe epilayers. J. Cryst. Grow. 214–215, 387–390 (2000)

    Article  Google Scholar 

  26. Y.D. Park et al., A group-IV ferromagnetic semiconductor: MnxGe1−x. Science 295, 651–654 (2002)

    Article  Google Scholar 

  27. F. Xiu et al., Electric-field-controlled ferromagnetism in high-curie-temperature Mn0.05Ge0.95 quantum dots. Nat. Mater. 9, 337–344 (2010)

    Article  Google Scholar 

  28. H. Ohno et al., Electric-field control of ferromagnetism. Nature 408, 944 (2000)

    Article  Google Scholar 

  29. T. Dietl et al., Zener model description of ferromagnetism in Zinc-Blende magnetic semiconductors. Science 287, 1019–1022 (2000)

    Article  Google Scholar 

  30. Y. Wang et al., Direct structural evidences of Mn11Ge8 and Mn5Ge2 clusters in Ge0.96 Mn0.04 thin films. Appl. Phys. Lett. 92, 101913 (2008)

    Article  Google Scholar 

  31. T. Nie et al., Quest for high-Curie temperature MnxGe1-x diluted magnetic semiconductors for room-temperature spintronics applications. J. Cryst. Growth, in press, 2015, doi: 10.1016/j.jcrysgro.2015.01.025

    Google Scholar 

  32. J. Tang et al., Spin transport in Ge nanowires for diluted magnetic semiconductor-based nonvolatile transpinor. ECS Trans. 64, 613–623 (2014)

    Article  Google Scholar 

  33. J. Tang et al., Electrical spin injection and detection in Mn5Ge3/Ge/Mn5Ge3 nanowire transistors. Nano Lett. 13, 4036–4043 (2013)

    Article  Google Scholar 

  34. International Technology Roadmap of Semiconductors (ITRS) http://www.itrs.net, 2013 Edition

  35. I. Žutić et al., Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004)

    Article  Google Scholar 

  36. M. Johnson, Bipolar spin switch. Science 260, 320–323 (1993)

    Article  Google Scholar 

  37. D.J. Monsma et al., Room temperature-operating spin-valve transistors formed by vacuum bonding. Science 281, 407–409 (1998)

    Article  Google Scholar 

  38. D.J. Monsma et al., Perpendicular hot electron spin-valve effect in a new magnetic field sensor: the spin-valve transistor. Phys. Rev. Lett. 74, 5260–5263 (1995)

    Article  Google Scholar 

  39. M.E. Flatté, G. Vignale, Unipolar spin diodes and transistors. Appl. Phys. Lett. 78, 1273–1275 (2001)

    Article  Google Scholar 

  40. J. Fabian et al., Magnetic bipolar transistor. Appl. Phys. Lett. 84, 85–87 (2004)

    Article  Google Scholar 

  41. M.E. Flatté et al., Theory of semiconductor magnetic bipolar transistors. Appl. Phys. Lett. 82, 4740–4742 (2003)

    Article  Google Scholar 

  42. D.E. Nikonov, G.I. Bourianoff, Spin gain transistor in ferromagnetic semiconductors-the semiconductor Bloch-Equations approach. IEEE Trans. Nanotech. 4, 206–214 (2005)

    Article  Google Scholar 

  43. S. Datta, B. Das, Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990)

    Article  Google Scholar 

  44. S. Sugahara, M. Tanaka, A spin metal-oxide-semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain. Appl. Phys. Lett. 84, 2307–2309 (2004)

    Article  Google Scholar 

  45. M. Johnson, R.H. Silsbee, Interfacial charge-spin coupling: injection and detection of spin magnetization in metals. Phys. Rev. Lett. 55, 1790 (1985)

    Article  Google Scholar 

  46. A. Hirohata, K. Takanashi, Future perspectives for spintronic devices. J. Phys. D Appl. Phys. 47, 193001 (2014)

    Article  Google Scholar 

  47. H.C. Koo et al., Control of spin precession in a spin-injected field effect transistor. Science 325, 1515–1518 (2009)

    Article  Google Scholar 

  48. D. Osintsev et al., Temperature dependence of the transport properties of spin field-effect transistors built with InAs and Si channels. Solid-State Electron. 71, 25–29 (2012)

    Article  Google Scholar 

  49. Y. Saito et al., Spin injection, transport, and read/write operation in Spin-Based MOSFET. Thin Solid Films 519, 8266–8273 (2011)

    Article  Google Scholar 

  50. T. Inokuchi et al., Reconfigurable characteristics of spintronics-based MOSFETs for nonvolatile integrated circuits. in 2010 Symposium on VLSI Technology (VLSIT) (2010), pp. 119–120

    Google Scholar 

  51. T. Marukame et al., Read/write operation of spin-based MOSFET using highly spin-polarized ferromagnet/MgO tunnel barrier for reconfigurable logic devices. in 2009 I.E. International Electron Devices Meeting (IEDM) (2009), pp. 1–4

    Google Scholar 

  52. S. Sugahara, J. Nitta, Spin-transistor electronics: an overview and outlook. Proc. IEEE 98, 2124–2154 (2010)

    Article  Google Scholar 

  53. S. Salahuddin, S. Datta, Interacting systems for self-correcting low power switching. Appl. Phys. Lett. 90, 093503 (2007)

    Article  Google Scholar 

  54. D. Nikonov, G. Bourianoff, Operation and modeling of semiconductor spintronics computing devices. J. Supercond. Novel Mag. 21, 479–493 (2008)

    Article  Google Scholar 

  55. S. Das Sarma et al., How to make semiconductors ferromagnetic: a first course on spintronics. Solid State Commun. 127, 99–107 (2003)

    Article  Google Scholar 

  56. L. Liu et al., Spin-torque switching with the giant spin hall effect of tantalum. Science 336, 555–558 (2012)

    Article  Google Scholar 

  57. P.K. Amiri, K.L. Wang, Voltage-controlled magnetic anisotropy in spintronic devices. Spin 02, 1240002 (2012)

    Article  Google Scholar 

  58. M. Rahman et al., Experimental prototyping of beyond-CMOS nanowire computing fabrics. in 2013 IEEE/ACM International Symposium on Nanoscale Architectures (NANOARCH) (2013), pp. 134–139

    Google Scholar 

  59. W. Eerenstein et al., Multiferroic and magnetoelectric materials. Nature 442, 759–765 (2006)

    Article  Google Scholar 

  60. R. Ramesh, N.A. Spaldin, Multiferroics: progress and prospects in thin films. Nat. Mater. 6, 21–29 (2007)

    Article  Google Scholar 

  61. M. Gajek et al., Tunnel junctions with multiferroic barriers. Nat. Mater. 6, 296–302 (2007)

    Article  Google Scholar 

  62. G. Srinivasan et al., Magnetoelectric bilayer and multilayer structures of magnetostrictive and piezoelectric oxides. Phys. Rev. B 64, 214408 (2001)

    Article  Google Scholar 

  63. T. Wu et al., Electrical control of reversible and permanent magnetization reorientation for magnetoelectric memory devices. Appl. Phys. Lett. 98, 262504 (2011)

    Article  Google Scholar 

  64. D. Chiba et al., Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat. Mater. 10, 853–856 (2011)

    Article  MathSciNet  Google Scholar 

  65. I.V. Ovchinnikov, K.L. Wang, Voltage sensitivity of Curie temperature in ultrathin metallic films. Phys. Rev. B 80, 012405 (2009)

    Article  Google Scholar 

  66. C.-F. Pai et al., Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404–4 (2012)

    Article  Google Scholar 

  67. M.K. Niranjan et al., Electric field effect on magnetization at the Fe/MgO(001) interface. Appl. Phys. Lett. 96, 222504 (2010)

    Article  Google Scholar 

  68. C.-G. Duan et al., Surface magnetoelectric effect in ferromagnetic metal films. Phys. Rev. Lett. 101, 137201 (2008)

    Article  Google Scholar 

  69. J.P. Velev et al., Multi-ferroic and magnetoelectric materials and interfaces. Philos. Trans. R Soc. A: Math. Phys. Eng. Sci. 369, 3069–3097 (2011)

    Article  Google Scholar 

  70. F. Bonell et al., Large change in perpendicular magnetic anisotropy induced by an electric field in FePd ultrathin films. Appl. Phys. Lett. 98, 232510 (2011)

    Article  Google Scholar 

  71. T. Maruyama et al., Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4, 158–161 (2009)

    Article  Google Scholar 

  72. T. Nozaki et al., Voltage-induced perpendicular magnetic anisotropy change in magnetic tunnel junctions. Appl. Phys. Lett. 96, 022506 (2010)

    Article  Google Scholar 

  73. J. Zhu et al., Voltage-induced ferromagnetic resonance in magnetic tunnel junctions. Phys. Rev. Lett. 108, 197203 (2012)

    Article  Google Scholar 

  74. T. Nozaki et al., Electric-field-induced ferromagnetic resonance excitation in an ultrathin ferromagnetic metal layer. Nat. Phys. 8, 492–497 (2012)

    Article  MathSciNet  Google Scholar 

  75. M. Mayberry, Emerging Technologies and Moore’s Law: Prospects for the Future. http://csg5.nist.gov/pml/div683/upload/Mayberry_March_2010.pdf

  76. K.L. Wang, P. Khalili Amiri, Nonvolatile spintronics: perspectives on instant-on nonvolatile nanoelectronic systems. J. Spin. 2, 1250009 (2012)

    Article  Google Scholar 

  77. C.J. Lin et al., 45nm low power CMOS logic compatible embedded STT MRAM utilizing a reverse-connection 1T/1MTJ cell. in 2009 I.E. International Electron Devices Meeting (IEDM) (2009), pp. 1–4

    Google Scholar 

  78. S. Assefa et al., Fabrication and characterization of MgO-based magnetic tunnel junctions for spin momentum transfer switching. J. Appl. Phys. 102, 063901 (2007)

    Article  Google Scholar 

  79. Y.M. Huai et al., Observation of spin-transfer switching in deep submicron-sized and low-resistance magnetic tunnel junctions. Appl. Phys. Lett. 84, 3118–3120 (2004)

    Article  Google Scholar 

  80. E. Chen et al., Advances and future prospects of spin-transfer torque random access memory. IEEE Trans. Magn. 46, 1873–1878 (2010)

    Article  Google Scholar 

  81. S.S.P. Parkin et al., Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3, 862–867 (2004)

    Article  Google Scholar 

  82. K.L. Wang et al., Low-power non-volatile spintronic memory: STT-RAM and beyond. J. Phys. D 46, 074003 (2013)

    Article  Google Scholar 

  83. P.K. Amiri et al., Low write-energy magnetic tunnel junctions for high-speed spin-transfer-torque MRAM. IEEE Electr. Device Lett. 32, 57–59 (2011)

    Article  Google Scholar 

  84. Y. Huai, Spin-transfer Torque MRAM (STT-MRAM): challenges and prospects. AAPPS Bulletin 18, 33–40 (2008)

    Google Scholar 

  85. P. Khalili Amiri, K.L. Wang, Voltage-controlled magnetic anisotropy in spintronic devices. Spin 2, 1240002 (2012)

    Article  Google Scholar 

  86. P.K. Amiri et al., Electric-field-induced thermally assisted switching of monodomain magnetic bits. J. Appl. Phys. 113, 013912 (2013)

    Article  Google Scholar 

  87. R. Dorrance et al., Diode-MTJ crossbar memory cell using voltage-induced unipolar switching for high-density MRAM. EEEE Electr. Device Lett. 34, 753–755 (2013)

    Article  Google Scholar 

  88. S. Ikeda et al., A perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Nat. Mater. 9, 721–724 (2010)

    Article  Google Scholar 

  89. D.C. Worledge et al., Spin torque switching of perpendicular Ta | CoFeB | MgO-based magnetic tunnel junctions. Appl. Phys. Lett. 98, 022501 (2011)

    Article  Google Scholar 

  90. P.K. Amiri et al., Switching current reduction using perpendicular anisotropy in CoFeB-MgO magnetic tunnel junctions. Appl. Phys. Lett. 98, 112507 (2011)

    Article  Google Scholar 

  91. S. Yakata et al., Influence of perpendicular magnetic anisotropy on spin-transfer switching current in CoFeB/MgO/CoFeB magnetic tunnel junctions. J. Appl. Phys. 105, 07D131 (2009)

    Article  Google Scholar 

  92. W.-G. Wang et al., Rapid thermal annealing study of magnetoresistance and perpendicular anisotropy in magnetic tunnel junctions based on MgO and CoFeB. Appl. Phys. Lett. 99, 102502 (2011)

    Article  Google Scholar 

  93. M. Endo et al., Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co(40)Fe(40)B(20)/Ta structures. Appl. Phys. Lett. 96, 212503 (2010)

    Article  Google Scholar 

  94. S.S. Ha, Voltage induced magnetic anisotropy change in ultrathin Fe80Co20/MgO junctions with Brillouin light scattering. Appl. Phys. Lett. 96, 142512 (2010)

    Article  Google Scholar 

  95. Y. Shiota et al., Voltage-Assisted Magnetization Switching in Ultrathin Fe80Co20 Alloy Layers. Appl. Phys. Exp. 2, 063001 (2009)

    Article  Google Scholar 

  96. Y. Shiota et al., Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39–43 (2012)

    Article  Google Scholar 

  97. W.-G. Wang et al., Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012)

    Article  Google Scholar 

  98. A.J. Schellekens et al., Electric-field control of domain wall motion in perpendicularly magnetized materials. Nat. Commun. 3, 847 (2012)

    Article  Google Scholar 

  99. C.G. Duan et al., Tailoring magnetic anisotropy at the ferromagnetic/ferroelectric interface. Appl. Phys. Lett. 92, 122905 (2008)

    Article  Google Scholar 

  100. S.E. Barnes et al., Rashba spin-orbit anisotropy and the electric field control of magnetism. Sci. Rep. 4, 4105 (2014)

    Article  Google Scholar 

  101. S. Yuasa et al., Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3, 868–871 (2004)

    Article  Google Scholar 

  102. Y. Shiota et al., Pulse voltage-induced dynamic magnetization switching in magnetic tunneling junctions with high resistance-area product. Appl. Phys. Lett. 101, 102406 (2012)

    Article  Google Scholar 

  103. J.G. Alzate et al., Voltage-induced switching of nanoscale magnetic tunnel junctions. IEDM Tech. Digest 29(5) 1–4 (2012)

    Google Scholar 

  104. W. Feng et al., Intrinsic spin Hall effect in monolayers of group-VI dichalcogenides: a first-principles study. Phys. Rev. B 86, 165108 (2012)

    Article  Google Scholar 

  105. S. Kanai, Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB-MgO magnetic tunnel junction. Appl. Phys. Lett. 101, 122403 (2012)

    Article  Google Scholar 

  106. M.T. Rahman et al., Reduction of switching current density in perpendicular magnetic tunnel junctions by tuning the anisotropy of the CoFeB free layer. J. Appl. Phys. 111, 07C907 (2012)

    Google Scholar 

  107. M. Gajek et al., Spin torque switching of 20 nm magnetic tunnel junctions with perpendicular anisotropy. Appl. Phys. Lett. 100, 132408 (2012)

    Article  Google Scholar 

  108. Z.M. Zeng et al., Ultralow-current-density and bias-field-free spin-transfer nano-oscillator. Sci. Rep. 3, 1426 (2013)

    Google Scholar 

  109. Z. Zeng et al., High-power coherent microwave emission from magnetic tunnel junction nano-oscillators with perpendicular anisotropy. ACS Nano (2012)

    Google Scholar 

  110. H. Maehara et al., High Q factor over 3000 due to out-of-plane precession in nano-contact spin-torque oscillator based on magnetic tunnel junctions. Appl. Phys. Exp. 7, 023003 (2014)

    Article  Google Scholar 

  111. B. Fang et al., Giant spin-torque diode sensitivity at low input power in the absence of bias magnetic field. arXiv:1410.4958

    Google Scholar 

  112. S. Miwa et al., Highly sensitive nanoscale spin-torque diode. Nat. Mater. 13, 50–56 (2014)

    Article  Google Scholar 

  113. J.G. Alzate et al., Voltage-induced switching of CoFeB-MgO magnetic tunnel junctions. in 56th Conference on Magnetism and Magnetic Materials Scottsdale, Arizona (2011), pp. EG-11

    Google Scholar 

  114. J.G. Alzate et al., Voltage-induced switching of nanoscale magnetic tunnel junctions. in Presented at the IEEE International Electron Devices Meeting (IEDM), San Francisco, CA (2012)

    Google Scholar 

  115. J.G. Alzate et al., Temperature dependence of the voltage-controlled perpendicular anisotropy in nanoscale MgO|CoFeB|Ta magnetic tunnel junctions. Appl. Phys. Lett. 104, 112410 (2014)

    Article  Google Scholar 

  116. A. Rajanikanth et al., Magnetic anisotropy modified by electric field in V/Fe/MgO(001)/Fe epitaxial magnetic tunnel junction. Appl. Phys. Lett. 103, 062402 (2013)

    Article  Google Scholar 

  117. T. Liu et al., Thermally robust Mo/CoFeB/MgO trilayers with strong perpendicular magnetic anisotropy. Sci. Rep. 4, 5895 (2014)

    Google Scholar 

  118. P.V. Ong et al., Electric field control and effect of Pd capping on magnetocrystalline anisotropy in FePd thin films: a first-principles study. Phys. Rev. B 89, 094422 (2014)

    Article  Google Scholar 

  119. K. Kita et al., Electric-field-control of magnetic anisotropy of Co0.6Fe0.2B0.2 oxide stacks using reduced voltage. J. Appl. Phys. 112, 033919 (2012)

    Article  Google Scholar 

  120. T. Seki et al., Coercivity change in an FePt thin layer in a Hall device by voltage application. Appl. Phys. Lett. 98, 212505 (2011)

    Article  Google Scholar 

  121. J.G. Alzate, Voltage-controlled magnetic dynamics in nanoscale magnetic tunnel junctions. Ph.D., Electrical Engineering, University of California, Los Angeles (2014)

    Google Scholar 

  122. J.A. Katine, E.E. Fullerton, Device implications of spin-transfer torques. J. Magn. Magn. Mater. 320, 1217–1226 (2008)

    Article  Google Scholar 

  123. K. Lee, S.H. Kang, Development of Embedded STT-MRAM for Mobile System-on-Chips. IEEE Trans. Magn. 47, 131–136 (2011)

    Article  Google Scholar 

  124. Note, ‘however’, that the validity of the present analysis does not depend on the sign of the VCMA effect

    Google Scholar 

  125. C.A.F. Vaz et al., Magnetism in ultrathin film structures. Rep. Progr. Phys. 71, 056501 (2008)

    Article  Google Scholar 

  126. H.B. Callen, E. Callen, The present status of the temperature dependence of magnetocrystalline anisotropy, and the l(l+1)/2 power law. J. Phys. Chem. Solids 27, 1271–1285 (1966)

    Article  Google Scholar 

  127. N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College, Philadelphia, 1976)

    Google Scholar 

  128. J.Z. Sun, Spin-current interaction with a monodomain magnetic body: a model study. Phys. Rev. B 62, 570–578 (2000)

    Article  Google Scholar 

  129. J.Z. Sun et al., Effect of subvolume excitation and spin-torque efficiency on magnetic switching. Phys. Rev. B 84, 064413 (2011)

    Article  Google Scholar 

  130. A. Sellai et al., Barrier height and interface characteristics of Au/Mn5Ge3/Ge (111) Schottky contacts for spin injection. Semicond. Sci. Technol. 27, 035014 (2012)

    Article  Google Scholar 

  131. W. Zhao, Y. Cao, Predictive technology model for nano-CMOS design exploration. J. Emerg. Technol. Comput. Syst. 3, 1 (2007)

    Article  MATH  Google Scholar 

  132. I. Ovchinnikov, K. Wang, Theory of electric-field-controlled surface ferromagnetic transition in metals. Phys. Rev. B 79, 020402 (2009)

    Article  Google Scholar 

  133. S.K. Kim et al., Experimental observation of magnetically dead layers in Ni/Pt multilayer films. Phys. Rev. B 64, 052406 (2001)

    Article  Google Scholar 

  134. R. Winkler, Spin-orbit coupling effects in two-dimensional electron and hole systems. http://rave.ohiolink.edu/ebooks/ebc/10864040 (2003)

  135. I.M. Miron et al., Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010)

    Google Scholar 

  136. Y. Fan et al., Magnetization switching through giant spin-orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014)

    Article  Google Scholar 

  137. L.D. Landau, E.M. Lifschitz, Statistical Physics, Part 2 (Pergamon Press, Oxford, 1981)

    Google Scholar 

  138. T.L. Gilbert, Classics in magnetics: a phenomenological theory of damping in ferromagnetic materials. IEEE Trans. Magn. 40, 3443–3449 (2004)

    Article  Google Scholar 

  139. G. Yu et al., Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat. Nanotechnol. 9, 548–554 (2014)

    Article  Google Scholar 

  140. S. Hoffman et al., Spin-torque ac impedance in magnetic tunnel junctions. Phys. Rev. B 86, 214420 (2012)

    Article  Google Scholar 

  141. J. Hirsch, Spin hall effect. Phys. Rev. Lett. 83, 1834–1837 (1999)

    Article  Google Scholar 

  142. Y.A. Bychkov, E.I. Rashba, Oscillatory effects and the magnetic susceptibility of carriers in inversion layers. J. Phys. C 17, 6039–6045 (1984)

    Article  Google Scholar 

  143. V.M. Edelstein, Spin polarization of conduction electrons induced by electric current in two-dimensional asymmetric electron systems. Solid State Commun. 73, 233–235 (1990)

    Article  Google Scholar 

  144. I.M. Miron et al., Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011)

    Article  Google Scholar 

  145. M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. 82, 3045–3067 (2010)

    Article  Google Scholar 

  146. X. Kou et al., Interplay between different magnetisms in Cr-doped topological insulators. ACS Nano 7, 9205–9212 (2013)

    Article  Google Scholar 

  147. J. Kim et al., Layer thickness dependence of the current-induced effective field vector in Ta|CoFeB|MgO. Nat. Mater. 12, 240–245 (2013)

    Article  Google Scholar 

  148. A. Imre et al., Majority logic gate for magnetic quantum-dot cellular automata. Science 311, 205–208 (2006)

    Article  Google Scholar 

  149. D. Bhowmik et al., Spin hall effect clocking of nanomagnetic logic without a magnetic field. Nat. Nanotechnol. 9, 59–63 (2014)

    Article  Google Scholar 

  150. Smullen CW et al., Relaxing non-volatility for fast and energy-efficient STT-RAM caches. in Presented at the IEEE 17th Int. Symp. High Performance Computer Architecture, San Antonio, TX (2011)

    Google Scholar 

  151. R. Fengbo, D. Markovic, True energy-performance analysis of the MTJ-based logic-in-memory architecture (1-bit full adder). IEEE Trans. Electr. Devices 57, 1023–1028 (2010)

    Article  Google Scholar 

  152. A. Khitun et al., Magnetic cellular nonlinear network with spin wave bus for image processing. Superlattices Microstruct. 47, 464–483 (2010)

    Article  Google Scholar 

  153. A. Khitun, Multi-frequency magnonic logic circuits for parallel data processing. J. Appl. Phys. 111, 054307 (2012)

    Article  Google Scholar 

  154. T. Schneider et al., Realization of spin-wave logic gates. Appl. Phys. Lett. 92, 022505 (2008)

    Article  Google Scholar 

  155. M.P. Kostylev et al., Spin-wave logical gates. Appl. Phys. Lett. 87, 153501-1-3 (2005)

    Article  Google Scholar 

  156. A.A. Serga et al., YIG magnonics. J. Phys. D 43, 264002 (2010)

    Article  Google Scholar 

  157. S.I. Kiselev et al., Microwave oscillations of a nanomagnet driven by a spin-polarized current. Nature 425, 380–383 (2003)

    Article  Google Scholar 

  158. S. Cherepov et al., Electric-field-induced spin wave generation using multiferroic magnetoelectric cells. Appl. Phys. Lett. 104, 082403 (2014)

    Article  Google Scholar 

  159. Y.N. Wu et al., A three-terminal spin-wave device for logic applications. J. Nanoelectron. Optoelectron. 4, 394–397 (2009)

    Article  Google Scholar 

  160. L.O. Chua, L. Yang, Cellular neural networks—theory. IEEE Trans. Circuits Syst. 35, 1257–1272 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  161. L.O. Chua, L. Yang, Cellular neural networks—applications. IEEE Trans. Circuits Syst. 35, 1273–1290 (1988)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kang L. Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this chapter

Cite this chapter

Tang, J., Shao, Q., Upadhyaya, P., Amiri, P.K., Wang, K.L. (2015). Electric Control of Magnetic Devices for Spintronic Computing. In: Zhao, W., Prenat, G. (eds) Spintronics-based Computing. Springer, Cham. https://doi.org/10.1007/978-3-319-15180-9_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-15180-9_2

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-15179-3

  • Online ISBN: 978-3-319-15180-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics